bme680/main.c
2023-11-05 03:04:06 +00:00

204 lines
5.2 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "bme680.h"
#include "i2c.h"
#define DEVICE "/dev/i2c-1"
#define ADDRESS 0x77
#define AMBIENT_TEMP_GUESS 25.0
#define HEATER_TARGET 320.0
int i2c_dev_fd;
int linux_i2c_init (void);
int linux_i2c_read (uint8_t reg, uint8_t *dst, uint32_t size);
int linux_i2c_write (uint8_t reg, uint8_t value);
int linux_i2c_deinit (void);
int main(void) {
bme680_t bme680;
uint8_t mode;
int i;
/* 1. Assign functions for interacting with the device */
bme680.dev.init = linux_i2c_init;
bme680.dev.read = linux_i2c_read;
bme680.dev.write = linux_i2c_write;
bme680.dev.deinit = linux_i2c_deinit;
/* 2. set the device mode */
mode = BME680_MODE_FLOAT | BME680_I2C | BME680_ENABLE_GAS;
/* BME680_MODE_INT | BME680_SPI; */
/* 3. initialise device, and check its id */
if (bme680_init(&bme680, mode) != 0) {
fprintf(stderr, "bme680_init()\n");
exit(EXIT_FAILURE);
}
/* 4. reset */
bme680_reset(&bme680);
/* 5. read calibration parameters from the device and store in memory */
if (bme680_calibrate(&bme680) != 0) {
fprintf(stderr, "bme680_calibrate()\n");
bme680_deinit(&bme680);
exit(EXIT_FAILURE);
}
/* debug */
bme680_print_calibration(&bme680);
/* 6. set up device config */
bme680.cfg.osrs_t = BME680_OVERSAMPLE_X16;
bme680.cfg.osrs_p = BME680_OVERSAMPLE_X16;
bme680.cfg.osrs_h = BME680_OVERSAMPLE_X8;
bme680.cfg.filter = BME680_IIR_COEFF_127;
/* configuring gas sensor. */
/* NB: mode |= BME680_ENABLE_GAS; */
/* there are 10 possible heater setpoints */
/* they can be though of as frames that define one single gas-resistance measurement */
/* they do not carry over or affect eachother in any way. */
for(i=0; i<10; i++) {
/* calculate a resistance target, based on desired temp, and ambient temp */
bme680.cfg.res_heat[i] = bme680_calc_target(&bme680, HEATER_TARGET, AMBIENT_TEMP_GUESS);
/* initial heating current for the setpoint. Could be useful in cold places.. */
/* 7-bit word. Each step/lsb is equiv. to 1/8 mA; so max 16 mA */
/* this s.p. field is allowed to be left as 0 if no preload is required. */
bme680.cfg.idac_heat[i] = BME680_IDAC(20);
/* define the time between the start of heating and start of resistance sensing in this s.p.*/
/* Bosch datasheet suggests ~30 - 40ms is usually all that is required to get up to temp. */
/* 60 * 16 = 960 ms wait before sampling resistance starts. */
/* the first value is 6-bit (0...64) with 1 ms step size. */
bme680.cfg.gas_wait[i] = BME680_GAS_WAIT(60, BME680_GAS_WAIT_X16);
}
/* The BME680 does not cycle between setpoints. They have to be manually set. */
/* After each "run", the setpoint has to be changed. */
bme680.cfg.setpoint = 0; /* 0 thru 9 */
/* 7. write config to device */
if (bme680_configure(&bme680) != 0) {
fprintf(stderr, "bme680_configure()\n");
bme680_deinit(&bme680);
exit(EXIT_FAILURE);
}
/* 8. Start forced measurement. After it finishes, it should remember the previous config. */
if (bme680_start(&bme680) != 0) {
fprintf(stderr, "bme680_start()\n");
bme680_deinit(&bme680);
exit(EXIT_FAILURE);
}
/* 9. poll the meas_status register until all scheduled conversions are done */
if (bme680_poll(&bme680) != 0) {
fprintf(stderr, "bme680_poll()\n");
bme680_deinit(&bme680);
exit(EXIT_FAILURE);
}
/* 10. read the ADC's and perform a conversion */
if (bme680_read(&bme680) != 0) {
fprintf(stderr, "bme680_read()\n");
bme680_deinit(&bme680);
exit(EXIT_FAILURE);
}
/* 11. use data ! */
if (BME680_IS_FLOAT(bme680.mode)) {
puts("float mode");
printf("tfine: %f\n", bme680.fcomp.tfine);
printf("temp: %f degC\n", bme680.fcomp.temp);
printf("press: %f Pa\n", bme680.fcomp.press);
printf("humidity: %f %% RH\n", bme680.fcomp.hum);
if (BME680_GAS_ENABLED(bme680.mode)) {
printf("gas resistance: %f Ohm\n", bme680.fcomp.gas_res);
printf("== for heater target=%.1f and ambient temp=%.1f (degC)\n", HEATER_TARGET, AMBIENT_TEMP_GUESS);
}
} else {
puts("integer mode");
printf("tfine: %d\n", bme680.icomp.tfine);
printf("temp: %d (degC * 100)\n", bme680.icomp.temp);
printf("press: %d Pa\n", bme680.icomp.press);
printf("humidity: %d (%% RH * 1000)\n", bme680.icomp.hum);
if (BME680_GAS_ENABLED(bme680.mode)) {
printf("gas resistance: %d Ohm\n", bme680.icomp.gas_res);
printf("== for heater target=%.1f and ambient temp=%.1f (degC)\n", HEATER_TARGET, AMBIENT_TEMP_GUESS);
}
}
bme680_deinit(&bme680);
return 0;
}
// STUBS
int linux_i2c_init (void) {
int ret;
puts("i2c_init");
if ((ret = i2c_init(DEVICE, ADDRESS)) > 0) {
i2c_dev_fd = ret;
return 0;
}
return 1;
}
int linux_i2c_read (uint8_t reg, uint8_t *dst, uint32_t size) {
uint32_t i;
printf("i2c_read: %.2X (%d) [", reg, size);
if (i2c_read_reg(i2c_dev_fd, reg, dst, size) != I2C_OK) {
return 1;
}
for(i=0; i<size; i++) {
printf("%.2X", dst[i]);
if (i < (size - 1)) {
printf(", ");
}
}
printf("]\n");
return 0;
}
int linux_i2c_write (uint8_t reg, uint8_t value) {
printf("i2c_write: %.2X [%.2X]\n", reg, value);
if (i2c_write_reg(i2c_dev_fd, reg, value) != I2C_OK) {
return 1;
}
return 0;
}
int linux_i2c_deinit (void) {
puts("i2c_deinit");
close(i2c_dev_fd);
return 0;
}