Robin_PHD/opamp_circuits_C_GARRETT/opamps.tex
Robin Clark cbc38e69f3 As sent to C Garret et all in reply to
circuits for analysis email.
2011-10-07 18:09:02 +01:00

231 lines
7.3 KiB
TeX

\documentclass[a4paper,10pt]{article}
\usepackage[utf8x]{inputenc}
\usepackage{graphicx}
\usepackage{fancyhdr}
\usepackage{tikz}
\usetikzlibrary{shapes,snakes}
\usetikzlibrary{shapes.gates.logic.US,trees,positioning,arrows}
\usepackage{subfigure}
\usepackage{amsfonts,amsmath,amsthm}
\usepackage{algorithm}
\usepackage{algorithmic}
\usepackage{lastpage}
%\usepackage{glossary}
%opening
\title{Example OPAMP circuits}
\author{Robin}
\begin{document}
\maketitle
\begin{abstract}
Circuits from email conversation.
Not a document to be proof read.
Proof of analysis concept.
Function $fm$ applied to a component returns its failure modes.
\end{abstract}
\clearpage
\section{Op-Amp circuit 1}
\begin{figure}[h]
\centering
\includegraphics[width=200pt]{/home/robin/projects/thesis/opamp_circuits_C_GARRETT/circuit1001.png}
% circuit1001.png: 420x300 pixel, 72dpi, 14.82x10.58 cm, bb=0 0 420 300
\caption{Circuit 1}
\label{fig:circuit1}
\end{figure}
The amplifier in figure~\ref{fig:circuit1} amplifies the difference between
the input voltages $+V1$ and $+V2$.
It would be desirable to represent this circuit as a derived component called say $DiffAMP$.
We begin by identifying functional groups from the components in the circuit.
\subsection{Functional Group: Potential Divider}
R1 and R2 perform as a potential divider.
Resistors can fail OPEN and SHORT (according to GAS burner standard EN298 Appendix A).
$$ fm(R) = \{ OPEN, SHORT \}$$
\begin{table}[ht]
\caption{Potential Divider $PD$: Failure Mode Effects Analysis: Single Faults} % title of Table
\centering % used for centering table
\begin{tabular}{||l|c|c|l|l||}
\hline \hline
\textbf{Test} & \textbf{Pot.Div} & \textbf{ } & \textbf{General} \\
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
% R & wire & res + & res - & description
\hline
\hline
TC1: $R_1$ SHORT & LOW & & LowPD \\
TC2: $R_1$ OPEN & HIGH & & HighPD \\ \hline
TC3: $R_2$ SHORT & HIGH & & HighPD \\
TC4: $R_2$ OPEN & LOW & & LowPD \\ \hline
\hline
\end{tabular}
\label{tbl:pdfmea}
\end{table}
By collecting the symptoms in table~\ref{tbl:pdfmea} we can create a derived
component $PD$ to represent the failure mode behaviour
of a potential divider.
Thus for single failure modes, a potential divider can fail
with $fm(PD) = \{PDHigh,PDLow\}$.
The potential divider is used to program the gain of IC1.
IC1 and PD provide the function of buffering
/amplifying the signal $+V1$.
We can now examine IC1 and PD as a functional group.
\subsection{Functional Group: Amplifier}
Let use now consider the op-amp. According to
FMD-91~\cite{fmd91}[3-116] an op amp may have the following failure modes:
latchup(12.5\%), latchdown(6\%), nooperation(31.3\%), lowslewrate(50\%).
$$ fm(OPAMP) = \{L\_{up}, L\_{dn}, Noop, L\_slew \} $$
By bringing the $PD$ derived component and the $OPAMP$ into
a functional group we can analyse its failure mode behaviour.
\begin{table}[ht]
\caption{Non Inverting Amplifier $NI\_AMP$: Failure Mode Effects Analysis: Single Faults} % title of Table
\centering % used for centering table
\begin{tabular}{||l|c|c|l|l||}
\hline \hline
\textbf{Test} & \textbf{Amplifier} & \textbf{ } & \textbf{General} \\
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
% R & wire & res + & res - & description
\hline
\hline
TC1: $OPAMP$ LatchUP & Output High & & AMPHigh \\
TC2: $OPAMP$ LatchDown & Output Low : Low gain& & AMPLow \\ \hline
TC3: $OPAMP$ No Operation & Output Low & & AMPLow \\
TC4: $OPAMP$ Low Slew & Low pass filtering & & LowPass \\ \hline
TC5: $PD$ LowPD & Output High & & AMPHigh \\ \hline
TC6: $PD$ HighPD & Output Low : Low Gain& & AMPLow \\ \hline
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
\hline
\end{tabular}
\label{ampfmea}
\end{table}
Collecting the symptoms we can see that this amplifier fails
in 3 ways $\{ AMPHigh, AMPLow, LowPass \}$.
We can now create a derived component, $NI\_AMP$, to represent it.
$$ fm(NI\_AMP) = \{ AMPHigh, AMPLow, LowPass \} $$
\subsection{The second Stage of the amplifier}
The second stage of this amplifier, following the signal path, is the amplifier
consisting of $R3,R4,IC2$.
This is in exactly the same configuration as the first amplifier.
Its failure modes are therefore the same. We can therefore re-use
the derived component for $NI\_AMP$
\pagebreak[4]
\subsection{Modelling the circuit}
For the final stage of this we can create a functional group consisting of
two derived components of the type $NI\_AMP$.
\begin{table}[ht]
\caption{Difference Amplifier $DiffAMP$ : Failure Mode Effects Analysis: Single Faults} % title of Table
\centering % used for centering table
\begin{tabular}{||l|c|c|l|l||}
\hline \hline
\textbf{Test} & \textbf{Dual Amplifier} & \textbf{ } & \textbf{General} \\
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
% R & wire & res + & res - & description
\hline
\hline
TC1: $NI\_AMP1$ AMPHigh & opamp 2 driven high & & DiffAMPLow \\
TC2: $NI\_AMP1$ AMPLow & opamp 2 fdriven low & & DiffAMPHigh \\
TC3: $NI\_AMP1$ LowPass & opamp 2 driven with lag & & DiffAMP\_LP \\ \hline
TC4: $NI\_AMP2$ AMPHigh & Diff amplifier high & & DiffAMPHigh\\
TC5: $NI\_AMP2$ AMPLow & Diff amplifier low & & DiffAMPLow \\
TC6: $NI\_AMP2$ LowPass & Diff amplifier lag/lowpass & & DiffAMP\_LP \\ \hline
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
\hline
\end{tabular}
\label{ampfmea}
\end{table}
Collecting the symptoms, we can determine the failure modes for this circuit, $\{DiffAMPLow, DiffAMPHigh, DiffAMP\_LP\}$.
We now create a derived component to represent the circuit in figure~\ref{fig:circuit1}.
$$ fm (DiffAMP) = \{DiffAMPLow, DiffAMPHigh, DiffAMP\_LP\} $$
Its interesting here to note that we can draw a directed graph (figure~\ref{fig:circuit1_dag})
of the failure modes and derived components.
Using this we can trace any top level fault back to
a component failure mode that could have caused it.
In fact we can re-construct an FTA diagram from the information in this graph.
We merely have to choose a top level event and work down using or gates.
\begin{figure}[h]
\centering
\includegraphics[width=400pt]{./circuit1_dag.png}
% circuit1_dag.png: 797x1145 pixel, 72dpi, 28.12x40.39 cm, bb=0 0 797 1145
\caption{Directed Acyclic Graph of Circuit1 failure modes}
\label{fig:circuit1_dag}
\end{figure}
\clearpage
\section{Op-Amp circuit 2}
\begin{figure}[h]
\centering
\includegraphics[width=200pt]{./circuit2002.png}
% circuit2002.png: 575x331 pixel, 72dpi, 20.28x11.68 cm, bb=0 0 575 331
\caption{circuit2}
\label{fig:circuit2}
\end{figure}
\clearpage
\section{Op-Amp circuit 3}
\begin{figure}[h]
\centering
\includegraphics[width=200pt]{/home/robin/projects/thesis/opamp_circuits_C_GARRETT/circuit3003.png}
% circuit3003.png: 503x326 pixel, 72dpi, 17.74x11.50 cm, bb=0 0 503 326
\caption{Circuit 3}
\label{fig:circuit3}
\end{figure}
\end{document}