\documentclass[a4paper,10pt]{article} \usepackage[utf8x]{inputenc} \usepackage{graphicx} \usepackage{fancyhdr} \usepackage{tikz} \usetikzlibrary{shapes,snakes} \usetikzlibrary{shapes.gates.logic.US,trees,positioning,arrows} \usepackage{subfigure} \usepackage{amsfonts,amsmath,amsthm} \usepackage{algorithm} \usepackage{algorithmic} \usepackage{lastpage} %\usepackage{glossary} %opening \title{Example OPAMP circuits} \author{Robin} \begin{document} \maketitle \begin{abstract} Circuits from email conversation. Not a document to be proof read. Proof of analysis concept. Function $fm$ applied to a component returns its failure modes. \end{abstract} \clearpage \section{Op-Amp circuit 1} \begin{figure}[h] \centering \includegraphics[width=200pt]{/home/robin/projects/thesis/opamp_circuits_C_GARRETT/circuit1001.png} % circuit1001.png: 420x300 pixel, 72dpi, 14.82x10.58 cm, bb=0 0 420 300 \caption{Circuit 1} \label{fig:circuit1} \end{figure} The amplifier in figure~\ref{fig:circuit1} amplifies the difference between the input voltages $+V1$ and $+V2$. It would be desirable to represent this circuit as a derived component called say $DiffAMP$. We begin by identifying functional groups from the components in the circuit. \subsection{Functional Group: Potential Divider} R1 and R2 perform as a potential divider. Resistors can fail OPEN and SHORT (according to GAS burner standard EN298 Appendix A). $$ fm(R) = \{ OPEN, SHORT \}$$ \begin{table}[ht] \caption{Potential Divider $PD$: Failure Mode Effects Analysis: Single Faults} % title of Table \centering % used for centering table \begin{tabular}{||l|c|c|l|l||} \hline \hline \textbf{Test} & \textbf{Pot.Div} & \textbf{ } & \textbf{General} \\ \textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\ % R & wire & res + & res - & description \hline \hline TC1: $R_1$ SHORT & LOW & & LowPD \\ TC2: $R_1$ OPEN & HIGH & & HighPD \\ \hline TC3: $R_2$ SHORT & HIGH & & HighPD \\ TC4: $R_2$ OPEN & LOW & & LowPD \\ \hline \hline \end{tabular} \label{tbl:pdfmea} \end{table} By collecting the symptoms in table~\ref{tbl:pdfmea} we can create a derived component $PD$ to represent the failure mode behaviour of a potential divider. Thus for single failure modes, a potential divider can fail with $fm(PD) = \{PDHigh,PDLow\}$. The potential divider is used to program the gain of IC1. IC1 and PD provide the function of buffering /amplifying the signal $+V1$. We can now examine IC1 and PD as a functional group. \subsection{Functional Group: Amplifier} Let use now consider the op-amp. According to FMD-91~\cite{fmd91}[3-116] an op amp may have the following failure modes: latchup(12.5\%), latchdown(6\%), nooperation(31.3\%), lowslewrate(50\%). $$ fm(OPAMP) = \{L\_{up}, L\_{dn}, Noop, L\_slew \} $$ By bringing the $PD$ derived component and the $OPAMP$ into a functional group we can analyse its failure mode behaviour. \begin{table}[ht] \caption{Non Inverting Amplifier $NI\_AMP$: Failure Mode Effects Analysis: Single Faults} % title of Table \centering % used for centering table \begin{tabular}{||l|c|c|l|l||} \hline \hline \textbf{Test} & \textbf{Amplifier} & \textbf{ } & \textbf{General} \\ \textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\ % R & wire & res + & res - & description \hline \hline TC1: $OPAMP$ LatchUP & Output High & & AMPHigh \\ TC2: $OPAMP$ LatchDown & Output Low : Low gain& & AMPLow \\ \hline TC3: $OPAMP$ No Operation & Output Low & & AMPLow \\ TC4: $OPAMP$ Low Slew & Low pass filtering & & LowPass \\ \hline TC5: $PD$ LowPD & Output High & & AMPHigh \\ \hline TC6: $PD$ HighPD & Output Low : Low Gain& & AMPLow \\ \hline %TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline \hline \end{tabular} \label{ampfmea} \end{table} Collecting the symptoms we can see that this amplifier fails in 3 ways $\{ AMPHigh, AMPLow, LowPass \}$. We can now create a derived component, $NI\_AMP$, to represent it. $$ fm(NI\_AMP) = \{ AMPHigh, AMPLow, LowPass \} $$ \subsection{The second Stage of the amplifier} The second stage of this amplifier, following the signal path, is the amplifier consisting of $R3,R4,IC2$. This is in exactly the same configuration as the first amplifier. Its failure modes are therefore the same. We can therefore re-use the derived component for $NI\_AMP$ \pagebreak[4] \subsection{Modelling the circuit} For the final stage of this we can create a functional group consisting of two derived components of the type $NI\_AMP$. \begin{table}[ht] \caption{Difference Amplifier $DiffAMP$ : Failure Mode Effects Analysis: Single Faults} % title of Table \centering % used for centering table \begin{tabular}{||l|c|c|l|l||} \hline \hline \textbf{Test} & \textbf{Dual Amplifier} & \textbf{ } & \textbf{General} \\ \textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\ % R & wire & res + & res - & description \hline \hline TC1: $NI\_AMP1$ AMPHigh & opamp 2 driven high & & DiffAMPLow \\ TC2: $NI\_AMP1$ AMPLow & opamp 2 fdriven low & & DiffAMPHigh \\ TC3: $NI\_AMP1$ LowPass & opamp 2 driven with lag & & DiffAMP\_LP \\ \hline TC4: $NI\_AMP2$ AMPHigh & Diff amplifier high & & DiffAMPHigh\\ TC5: $NI\_AMP2$ AMPLow & Diff amplifier low & & DiffAMPLow \\ TC6: $NI\_AMP2$ LowPass & Diff amplifier lag/lowpass & & DiffAMP\_LP \\ \hline %TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline \hline \end{tabular} \label{ampfmea} \end{table} Collecting the symptoms, we can determine the failure modes for this circuit, $\{DiffAMPLow, DiffAMPHigh, DiffAMP\_LP\}$. We now create a derived component to represent the circuit in figure~\ref{fig:circuit1}. $$ fm (DiffAMP) = \{DiffAMPLow, DiffAMPHigh, DiffAMP\_LP\} $$ Its interesting here to note that we can draw a directed graph (figure~\ref{fig:circuit1_dag}) of the failure modes and derived components. Using this we can trace any top level fault back to a component failure mode that could have caused it. In fact we can re-construct an FTA diagram from the information in this graph. We merely have to choose a top level event and work down using or gates. \begin{figure}[h] \centering \includegraphics[width=400pt]{./circuit1_dag.png} % circuit1_dag.png: 797x1145 pixel, 72dpi, 28.12x40.39 cm, bb=0 0 797 1145 \caption{Directed Acyclic Graph of Circuit1 failure modes} \label{fig:circuit1_dag} \end{figure} \clearpage \section{Op-Amp circuit 2} \begin{figure}[h] \centering \includegraphics[width=200pt]{./circuit2002.png} % circuit2002.png: 575x331 pixel, 72dpi, 20.28x11.68 cm, bb=0 0 575 331 \caption{circuit2} \label{fig:circuit2} \end{figure} \clearpage \section{Op-Amp circuit 3} \begin{figure}[h] \centering \includegraphics[width=200pt]{/home/robin/projects/thesis/opamp_circuits_C_GARRETT/circuit3003.png} % circuit3003.png: 503x326 pixel, 72dpi, 17.74x11.50 cm, bb=0 0 503 326 \caption{Circuit 3} \label{fig:circuit3} \end{figure} \end{document}