404 lines
14 KiB
TeX
404 lines
14 KiB
TeX
\documentclass[a4paper,10pt]{article}
|
|
\usepackage[utf8x]{inputenc}
|
|
\usepackage{graphicx}
|
|
\usepackage{fancyhdr}
|
|
\usepackage{tikz}
|
|
\usetikzlibrary{shapes,snakes}
|
|
\usetikzlibrary{shapes.gates.logic.US,trees,positioning,arrows}
|
|
\usepackage{subfigure}
|
|
\usepackage{amsfonts,amsmath,amsthm}
|
|
\usepackage{algorithm}
|
|
\usepackage{algorithmic}
|
|
\usepackage{lastpage}
|
|
|
|
\newcommand{\fg}{\em functional~group}
|
|
\newcommand{\fgs}{\em functional~groups}
|
|
\newcommand{\dc}{\em derived~component}
|
|
\newcommand{\dcs}{\em derived~components}
|
|
\newcommand{\bc}{\em base~component}
|
|
\newcommand{\bcs}{\em base~components}
|
|
\newcommand{\irl}{in~real~life}
|
|
|
|
|
|
|
|
%\usepackage{glossary}
|
|
%opening
|
|
\title{Example OPAMP circuits}
|
|
\author{Robin}
|
|
|
|
\begin{document}
|
|
\begin{abstract}
|
|
Circuits from email conversation.
|
|
|
|
Not a document to be proof read.
|
|
|
|
Proof of analysis concept.
|
|
|
|
Function $fm$ applied to a component returns its failure modes.
|
|
\end{abstract}
|
|
\maketitle
|
|
\tableofcontents
|
|
\listoffigures
|
|
|
|
|
|
|
|
\section{Non-Inverting OPAMP}
|
|
Consider a non inverting op-amp designed to amplify
|
|
a small positive voltage, typical use would be a thermocouple.
|
|
|
|
|
|
\begin{figure}[h+]
|
|
\centering
|
|
\includegraphics[width=100pt]{./mvampcircuit.png}
|
|
% mvampcircuit.png: 243x143 pixel, 72dpi, 8.57x5.04 cm, bb=0 0 243 143
|
|
\label{fig:mvampcircuit}
|
|
\caption{positive mV amplifier circuit}
|
|
\end{figure}
|
|
|
|
We can begin by looking for functional groups.
|
|
The resistors would together to perform a fairly common function in electronics, that of the potential divider.
|
|
So our first functional group is $\{ R1, R2 \}$.
|
|
|
|
|
|
\subsection{The Resistor in terms of failure modes}
|
|
|
|
We can now take the failure modes for the resistors (OPEN and SHORT EN298).
|
|
|
|
|
|
We can express the fialure modes of a component using the function $fm$, thus for the resistor, $ fm(R) = \{ OPEN, SHORT \}$.
|
|
|
|
|
|
We have two resistors in this circuit and therefore four component failure modes to consider for the potential divider,
|
|
we can now examine what effect each of these failures will have on the {\fg} (the potential divider see figure~\ref{fig:pdcircuit}).
|
|
|
|
|
|
\subsection{Analysing a potential divider in terms of failure modes}
|
|
|
|
\begin{figure}[h+]
|
|
\centering
|
|
\includegraphics[width=100pt,keepaspectratio=true]{./pd.png}
|
|
% pd.png: 361x241 pixel, 72dpi, 12.74x8.50 cm, bb=0 0 361 241
|
|
\label{fig:pdcircuit}
|
|
\caption{Potential Divider Circuit}
|
|
\end{figure}
|
|
|
|
|
|
\begin{table}[h+]
|
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
|
\textbf{Failure Scenario} & & \textbf{Pot Div Effect} & & \textbf{Symptom} \\
|
|
\hline
|
|
FS1: R1 SHORT & & $LOW$ & & $PDLow$ \\ \hline
|
|
FS2: R1 OPEN & & $HIGH$ & & $PDHigh$ \\ \hline
|
|
FS3: R2 SHORT & & $HIGH$ & & $PDHigh$ \\ \hline
|
|
FS4: R2 OPEN & & $LOW$ & & $PDLow$ \\ \hline
|
|
\hline
|
|
\end{tabular}
|
|
\end{table}
|
|
|
|
We can now create a {\dc} for the potential divider, $PD$.
|
|
|
|
$$ fm(PD) = \{ PDLow, PDHigh \}$$
|
|
|
|
Let use now consider the op-amp. According to
|
|
FMD-91~\cite{fmd91}[3-116] an op amp may have the following failure modes:
|
|
latchup(12.5\%), latchdown(6\%), nooperation(31.3\%), lowslewrate(50\%).
|
|
|
|
|
|
\subsection{Analysing the non-inverting amplifier in terms of failure modes}
|
|
|
|
$$ fm(OPAMP) = \{L\_{up}, L\_{dn}, Noop, L\_slew \} $$
|
|
|
|
|
|
We can now form a {\fg} with $PD$ and $OPAMP$.
|
|
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=300pt]{./non_inv_amp_fmea.png}
|
|
% non_inv_amp_fmea.png: 964x492 pixel, 96dpi, 25.50x13.02 cm, bb=0 0 723 369
|
|
\end{figure}
|
|
|
|
|
|
We can collect symptoms from the analysis and cretae a derived component
|
|
to represent the non-inverting amplifier $NI\_AMP$.
|
|
We now have can express the failure mode behaviour of this type of amplifier thus:
|
|
|
|
$$ fm(NI\_AMP) = \{ N\_INVAMP_{lowpass}, N\_INVAMP_{high}, N\_INVAMP_{low} \}.$$
|
|
|
|
|
|
|
|
|
|
\section{Inverting OPAMP}
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics[width=200pt]{./invamp.png}
|
|
% invamp.png: 378x207 pixel, 72dpi, 13.34x7.30 cm, bb=0 0 378 207
|
|
\caption{Inverting Amplifier Configuration}
|
|
\label{fig:invamp}
|
|
\end{figure}
|
|
|
|
This configuration is interesting from methodology perspective.
|
|
There are two ways in which we can tackle this.
|
|
One is to do this in two stages, by considing the gain resistors to be a potential divider
|
|
and then combining the poential divider with the OPAMP failure mode model.
|
|
The other way is to place all three components in a {\fg}.
|
|
|
|
\subsection{Inverting OPAMP using a Potential Divider {\dc}}
|
|
|
|
\subsection{Inverting OPAMP using three components}
|
|
|
|
\subsection{Comparison between the two approaches}
|
|
|
|
|
|
\clearpage
|
|
\section{Op-Amp circuit 1}
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics[width=200pt]{/home/robin/projects/thesis/opamp_circuits_C_GARRETT/circuit1001.png}
|
|
% circuit1001.png: 420x300 pixel, 72dpi, 14.82x10.58 cm, bb=0 0 420 300
|
|
\caption{Circuit 1}
|
|
\label{fig:circuit1}
|
|
\end{figure}
|
|
|
|
|
|
The amplifier in figure~\ref{fig:circuit1} amplifies the difference between
|
|
the input voltages $+V1$ and $+V2$.
|
|
It would be desirable to represent this circuit as a derived component called say $DiffAMP$.
|
|
We begin by identifying functional groups from the components in the circuit.
|
|
|
|
|
|
\subsection{Functional Group: Potential Divider}
|
|
|
|
R1 and R2 perform as a potential divider.
|
|
Resistors can fail OPEN and SHORT (according to GAS burner standard EN298 Appendix A).
|
|
$$ fm(R) = \{ OPEN, SHORT \}$$
|
|
|
|
|
|
|
|
\begin{table}[ht]
|
|
\caption{Potential Divider $PD$: Failure Mode Effects Analysis: Single Faults} % title of Table
|
|
\centering % used for centering table
|
|
\begin{tabular}{||l|c|c|l|l||}
|
|
\hline \hline
|
|
\textbf{Test} & \textbf{Pot.Div} & \textbf{ } & \textbf{General} \\
|
|
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
|
% R & wire & res + & res - & description
|
|
\hline
|
|
\hline
|
|
TC1: $R_1$ SHORT & LOW & & LowPD \\
|
|
TC2: $R_1$ OPEN & HIGH & & HighPD \\ \hline
|
|
TC3: $R_2$ SHORT & HIGH & & HighPD \\
|
|
TC4: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
|
\hline
|
|
\end{tabular}
|
|
\label{tbl:pdfmea}
|
|
\end{table}
|
|
|
|
By collecting the symptoms in table~\ref{tbl:pdfmea} we can create a derived
|
|
component $PD$ to represent the failure mode behaviour
|
|
of a potential divider.
|
|
|
|
Thus for single failure modes, a potential divider can fail
|
|
with $fm(PD) = \{PDHigh,PDLow\}$.
|
|
|
|
|
|
The potential divider is used to program the gain of IC1.
|
|
IC1 and PD provide the function of buffering
|
|
/amplifying the signal $+V1$.
|
|
We can now examine IC1 and PD as a functional group.
|
|
|
|
\pagebreak[3]
|
|
\subsection{Functional Group: Amplifier}
|
|
|
|
Let use now consider the op-amp. According to
|
|
FMD-91~\cite{fmd91}[3-116] an op amp may have the following failure modes:
|
|
latchup(12.5\%), latchdown(6\%), nooperation(31.3\%), lowslewrate(50\%).
|
|
|
|
|
|
$$ fm(OPAMP) = \{L\_{up}, L\_{dn}, Noop, L\_slew \} $$
|
|
|
|
|
|
By bringing the $PD$ derived component and the $OPAMP$ into
|
|
a functional group we can analyse its failure mode behaviour.
|
|
|
|
|
|
\begin{table}[ht]
|
|
\caption{Non Inverting Amplifier $NI\_AMP$: Failure Mode Effects Analysis: Single Faults} % title of Table
|
|
\centering % used for centering table
|
|
\begin{tabular}{||l|c|c|l|l||}
|
|
\hline \hline
|
|
\textbf{Test} & \textbf{Amplifier} & \textbf{ } & \textbf{General} \\
|
|
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
|
% R & wire & res + & res - & description
|
|
\hline
|
|
\hline
|
|
TC1: $OPAMP$ LatchUP & Output High & & AMPHigh \\
|
|
TC2: $OPAMP$ LatchDown & Output Low : Low gain& & AMPLow \\ \hline
|
|
TC3: $OPAMP$ No Operation & Output Low & & AMPLow \\
|
|
TC4: $OPAMP$ Low Slew & Low pass filtering & & LowPass \\ \hline
|
|
TC5: $PD$ LowPD & Output High & & AMPHigh \\ \hline
|
|
TC6: $PD$ HighPD & Output Low : Low Gain& & AMPLow \\ \hline
|
|
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
|
\hline
|
|
\end{tabular}
|
|
\label{ampfmea}
|
|
\end{table}
|
|
|
|
|
|
Collecting the symptoms we can see that this amplifier fails
|
|
in 3 ways $\{ AMPHigh, AMPLow, LowPass \}$.
|
|
We can now create a derived component, $NI\_AMP$, to represent it.
|
|
|
|
|
|
$$ fm(NI\_AMP) = \{ AMPHigh, AMPLow, LowPass \} $$
|
|
|
|
|
|
|
|
|
|
\subsection{The second Stage of the amplifier}
|
|
|
|
The second stage of this amplifier, following the signal path, is the amplifier
|
|
consisting of $R3,R4,IC2$.
|
|
|
|
This is in exactly the same configuration as the first amplifier, but it is being fed by the first amplifier.
|
|
The first amplifier was grounded and received as input `+V1' (presumably
|
|
a positive voltage).
|
|
This means the junction of R1 R3 is always +ve.
|
|
This means the input voltage `+V2' could be lower than this.
|
|
This means R3 R4 is not a potential divider with R4 being on the positive side.
|
|
It could be on either polarity (i.e. the other way around R4 could be the negative side).
|
|
Here it is more intuitive to model the resistors not as a potential divider, but individually.
|
|
%This means we are either going to
|
|
%get a high or low reading if R3 or R4 fail.
|
|
|
|
\begin{table}[ht]
|
|
\caption{Differencing Amplifier $D\_AMP$: Failure Mode Effects Analysis: Single Faults} % title of Table
|
|
\centering % used for centering table
|
|
\begin{tabular}{||l|c|c|l|l||}
|
|
\hline \hline
|
|
\textbf{Test} & \textbf{Amplifier} & \textbf{ } & \textbf{General} \\
|
|
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
|
% R & wire & res + & res - & description
|
|
\hline
|
|
\hline
|
|
TC1: $OPAMP$ LatchUP & Output High & & AMPHigh \\
|
|
TC2: $OPAMP$ LatchDown & Output Low : Low gain & & AMPLow \\ \hline
|
|
TC3: $OPAMP$ No Operation & Output Low & & AMPLow \\
|
|
TC4: $OPAMP$ Low Slew & Low pass filtering & & LowPass \\ \hline
|
|
TC5: $R3\_open$ & +V2 follower & & AMPIncorrectOutput\\ \hline
|
|
TC6: $R3\_short$ & Undefined & & AMPIncorrectOutput \\
|
|
& (impedance of IC1 vs +V2) & & \\ \hline
|
|
TC5: $R4\_open$ & High or Low output & & AMPIncorrectOutput \\
|
|
& +V2$>$+V1 $\mapsto$ High & & \\
|
|
& +V1$>$+V2 $\mapsto$ Low & & \\ \hline
|
|
TC6: $R4\_short$ & +V2 follower & & AMPIncorrectOutput \\ \hline
|
|
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
|
\hline
|
|
\end{tabular}
|
|
\label{ampfmea}
|
|
\end{table}
|
|
|
|
Collecting the symptoms we can see that this amplifier fails
|
|
in 4 ways $\{ AMPHigh, AMPLow, LowPass, AMPIncorrectOutput\}$.
|
|
We can now create a derived component, $D\_AMP$, to represent it.
|
|
|
|
|
|
$$ fm(D\_AMP) = \{ AMPHigh, AMPLow, LowPass, AMPIncorrectOutput \} $$
|
|
|
|
|
|
|
|
%Its failure modes are therefore the same. We can therefore re-use
|
|
%the derived component for $NI\_AMP$
|
|
|
|
\pagebreak[4]
|
|
\subsection{Modelling the circuit}
|
|
|
|
For the final stage of this we can create a functional group consisting of
|
|
two derived components of the type $NI\_AMP$ and $D\_AMP$.
|
|
|
|
|
|
|
|
\begin{table}[ht]
|
|
\caption{Difference Amplifier $DiffAMP$ : Failure Mode Effects Analysis: Single Faults} % title of Table
|
|
\centering % used for centering table
|
|
\begin{tabular}{||l|c|c|l|l||}
|
|
\hline \hline
|
|
\textbf{Test} & \textbf{Dual Amplifier} & \textbf{ } & \textbf{General} \\
|
|
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
|
% R & wire & res + & res - & description
|
|
\hline
|
|
\hline
|
|
TC1: $NI\_AMP$ AMPHigh & opamp 2 driven high & & DiffAMPLow \\
|
|
TC2: $NI\_AMP$ AMPLow & opamp 2 fdriven low & & DiffAMPHigh \\
|
|
TC3: $NI\_AMP$ LowPass & opamp 2 driven with lag & & DiffAMP\_LP \\ \hline
|
|
TC4: $D\_AMP$ AMPHigh & Diff amplifier high & & DiffAMPHigh\\
|
|
TC5: $D\_AMP$ AMPLow & Diff amplifier low & & DiffAMPLow \\
|
|
TC6: $D\_AMP$ LowPass & Diff amplifier lag/lowpass & & DiffAMP\_LP \\ \hline
|
|
TC7: $D\_AMP$ IncorrectOutput & Output voltage & & DiffAMPIncorrect \\
|
|
TC7: $D\_AMP$ & $ \neg (V2 - V1) $ & & \\ \hline
|
|
\hline
|
|
\end{tabular}
|
|
\label{ampfmea}
|
|
\end{table}
|
|
|
|
|
|
|
|
Collecting the symptoms, we can determine the failure modes for this circuit, $\{DiffAMPLow, DiffAMPHigh, DiffAMP\_LP, DiffAMPIncorrect \}$.
|
|
|
|
|
|
We now create a derived component to represent the circuit in figure~\ref{fig:circuit1}.
|
|
|
|
$$ fm (DiffAMP) = \{DiffAMPLow, DiffAMPHigh, DiffAMP\_LP DiffAMPIncorrect\} $$
|
|
|
|
|
|
Its interesting here to note that we can draw a directed graph (figure~\ref{fig:circuit1_dag})
|
|
of the failure modes and derived components.
|
|
Using this we can trace any top level fault back to
|
|
a component failure mode that could have caused it.
|
|
In fact we can re-construct an FTA diagram from the information in this graph.
|
|
We merely have to choose a top level event and work down using or gates.
|
|
|
|
This circuit performs poorly from a safety point of view.
|
|
Its failure modes could be indistinguishable from valid readings (especially
|
|
wihen it becomes a V2 follower).
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics[width=400pt]{./circuit1_dag.png}
|
|
% circuit1_dag.png: 797x1145 pixel, 72dpi, 28.12x40.39 cm, bb=0 0 797 1145
|
|
\caption{Directed Acyclic Graph of Circuit1 failure modes}
|
|
\label{fig:circuit1_dag}
|
|
\end{figure}
|
|
|
|
|
|
|
|
|
|
\clearpage
|
|
\section{Op-Amp circuit 2}
|
|
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics[width=200pt]{./circuit2002.png}
|
|
% circuit2002.png: 575x331 pixel, 72dpi, 20.28x11.68 cm, bb=0 0 575 331
|
|
\caption{circuit2}
|
|
\label{fig:circuit2}
|
|
\end{figure}
|
|
|
|
|
|
\clearpage
|
|
\section{Op-Amp circuit 3}
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics[width=200pt]{/home/robin/projects/thesis/opamp_circuits_C_GARRETT/circuit3003.png}
|
|
% circuit3003.png: 503x326 pixel, 72dpi, 17.74x11.50 cm, bb=0 0 503 326
|
|
\caption{Circuit 3}
|
|
\label{fig:circuit3}
|
|
\end{figure}
|
|
\clearpage
|
|
\section{Standard Non-inverting OP AMP}
|
|
|
|
\end{document}
|