lunchtime
This commit is contained in:
parent
753f421815
commit
4ba0029270
@ -1,6 +1,6 @@
|
||||
|
||||
|
||||
PNG_DIA = circuit1_dag.png
|
||||
PNG_DIA = circuit1_dag.png mvampcircuit.png pd.png invamp.png
|
||||
|
||||
|
||||
|
||||
|
BIN
opamp_circuits_C_GARRETT/invamp.dia
Normal file
BIN
opamp_circuits_C_GARRETT/invamp.dia
Normal file
Binary file not shown.
BIN
opamp_circuits_C_GARRETT/mvampcircuit.dia
Normal file
BIN
opamp_circuits_C_GARRETT/mvampcircuit.dia
Normal file
Binary file not shown.
BIN
opamp_circuits_C_GARRETT/non_inv_amp_fmea.png
Normal file
BIN
opamp_circuits_C_GARRETT/non_inv_amp_fmea.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 62 KiB |
@ -10,6 +10,17 @@
|
||||
\usepackage{algorithm}
|
||||
\usepackage{algorithmic}
|
||||
\usepackage{lastpage}
|
||||
|
||||
\newcommand{\fg}{\em functional~group}
|
||||
\newcommand{\fgs}{\em functional~groups}
|
||||
\newcommand{\dc}{\em derived~component}
|
||||
\newcommand{\dcs}{\em derived~components}
|
||||
\newcommand{\bc}{\em base~component}
|
||||
\newcommand{\bcs}{\em base~components}
|
||||
\newcommand{\irl}{in~real~life}
|
||||
|
||||
|
||||
|
||||
%\usepackage{glossary}
|
||||
%opening
|
||||
\title{Example OPAMP circuits}
|
||||
@ -31,12 +42,101 @@ Function $fm$ applied to a component returns its failure modes.
|
||||
|
||||
|
||||
|
||||
\section{Non Inverting OPAMP}
|
||||
\section{Non-Inverting OPAMP}
|
||||
Consider a non inverting op-amp designed to amplify
|
||||
a small positive voltage, typical use would be a thermocouple.
|
||||
|
||||
|
||||
\begin{figure}[h+]
|
||||
\centering
|
||||
\includegraphics[width=100pt]{./mvampcircuit.png}
|
||||
% mvampcircuit.png: 243x143 pixel, 72dpi, 8.57x5.04 cm, bb=0 0 243 143
|
||||
\label{fig:mvampcircuit}
|
||||
\caption{positive mV amplifier circuit}
|
||||
\end{figure}
|
||||
|
||||
We can begin by looking for functional groups.
|
||||
The resistors would together to perform a fairly common function in electronics, that of the potential divider.
|
||||
So our first functional group is $\{ R1, R2 \}$.
|
||||
|
||||
|
||||
\subsection{The Resistor in terms of failure modes}
|
||||
|
||||
We can now take the failure modes for the resistors (OPEN and SHORT EN298).
|
||||
|
||||
|
||||
We can express the fialure modes of a component using the function $fm$, thus for the resistor, $ fm(R) = \{ OPEN, SHORT \}$.
|
||||
|
||||
|
||||
We have two resistors in this circuit and therefore four component failure modes to consider for the potential divider,
|
||||
we can now examine what effect each of these failures will have on the {\fg} (the potential divider see figure~\ref{fig:pdcircuit}).
|
||||
|
||||
|
||||
\subsection{Analysing a potential divider in terms of failure modes}
|
||||
|
||||
\begin{figure}[h+]
|
||||
\centering
|
||||
\includegraphics[width=100pt,keepaspectratio=true]{./pd.png}
|
||||
% pd.png: 361x241 pixel, 72dpi, 12.74x8.50 cm, bb=0 0 361 241
|
||||
\label{fig:pdcircuit}
|
||||
\caption{Potential Divider Circuit}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{table}[h+]
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Scenario} & & \textbf{Pot Div Effect} & & \textbf{Symptom} \\
|
||||
\hline
|
||||
FS1: R1 SHORT & & $LOW$ & & $PDLow$ \\ \hline
|
||||
FS2: R1 OPEN & & $HIGH$ & & $PDHigh$ \\ \hline
|
||||
FS3: R2 SHORT & & $HIGH$ & & $PDHigh$ \\ \hline
|
||||
FS4: R2 OPEN & & $LOW$ & & $PDLow$ \\ \hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
We can now create a {\dc} for the potential divider, $PD$.
|
||||
|
||||
$$ fm(PD) = \{ PDLow, PDHigh \}$$
|
||||
|
||||
Let use now consider the op-amp. According to
|
||||
FMD-91~\cite{fmd91}[3-116] an op amp may have the following failure modes:
|
||||
latchup(12.5\%), latchdown(6\%), nooperation(31.3\%), lowslewrate(50\%).
|
||||
|
||||
|
||||
\subsection{Analysing the non-inverting amplifier in terms of failure modes}
|
||||
|
||||
$$ fm(OPAMP) = \{L\_{up}, L\_{dn}, Noop, L\_slew \} $$
|
||||
|
||||
|
||||
We can now form a {\fg} with $PD$ and $OPAMP$.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=300pt]{./non_inv_amp_fmea.png}
|
||||
% non_inv_amp_fmea.png: 964x492 pixel, 96dpi, 25.50x13.02 cm, bb=0 0 723 369
|
||||
\end{figure}
|
||||
|
||||
|
||||
We can collect symptoms from the analysis and cretae a derived component
|
||||
to represent the non-inverting amplifier $NI\_AMP$.
|
||||
We now have can express the failure mode behaviour of this type of amplifier thus:
|
||||
|
||||
$$ fm(NI\_AMP) = \{ N\_INVAMP_{lowpass}, N\_INVAMP_{high}, N\_INVAMP_{low} \}.$$
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Inverting OPAMP}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./invamp.png}
|
||||
% invamp.png: 378x207 pixel, 72dpi, 13.34x7.30 cm, bb=0 0 378 207
|
||||
\caption{Inverting Amplifier Configuration}
|
||||
\label{fig:invamp}
|
||||
\end{figure}
|
||||
|
||||
This configuration is interesting from methodology perspective.
|
||||
There are two ways in which we can tackle this.
|
||||
One is to do this in two stages, by considing the gain resistors to be a potential divider
|
||||
@ -47,6 +147,8 @@ The other way is to place all three components in a {\fg}.
|
||||
|
||||
\subsection{Inverting OPAMP using three components}
|
||||
|
||||
\subsection{Comparison between the two approaches}
|
||||
|
||||
|
||||
\clearpage
|
||||
\section{Op-Amp circuit 1}
|
||||
|
BIN
opamp_circuits_C_GARRETT/pd.dia
Normal file
BIN
opamp_circuits_C_GARRETT/pd.dia
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user