Half way through re-org of sigma delta

This commit is contained in:
Robin P. Clark 2012-09-26 19:45:44 +01:00
parent f1b09fa5bd
commit ef559aed94
4 changed files with 220 additions and 130 deletions

View File

@ -5,7 +5,7 @@ PNG_DIA = blockdiagramcircuit2.png bubba_oscillator_block_diagram.png circuit1
poss1finalbubba.png poss2finalbubba.png pt100.png pt100_doublef.png pt100_singlef.png \
pt100_tc.png pt100_tc_sp.png shared_component.png stat_single.png three_tree.png \
tree_abstraction_levels.png vrange.png sigma_delta_block.png ftcontext.png ct1.png hd.png \
sigdel1.png sdadc.png bubba_euler_1.png bubba_euler_2.png
sigdel1.png sdadc.png bubba_euler_1.png bubba_euler_2.png eulersd.png

View File

@ -1457,8 +1457,9 @@ could be easily detected; the failure symptom $FilterIncorrect$ may be less obs
This circuit is described in the Analog Applications Journal~\cite{bubba}[p.37].
The circuit implements an oscillator using four 45 degree phase shifts, and an inverting amplifier to provide
gain and the final 180 degrees of phase shift (making a total of 360 degrees of phase shift).
gain and the final 180 degrees of phase shift (making a total of 360). % degrees of phase shift).
The circuit provides two outputs with a quadrature phase relationship.
%
From a fault finding perspective this circuit cannot be de-composed because the whole circuit is enclosed within a feedback loop.
However, this is not a problem for FMMD, as {\fgs} are readily identifiable.
The signal path is circular (its a positive feedback circuit) and most failures would simply cause the output to stop oscillating.
@ -1546,7 +1547,7 @@ $$ CC(NIBUFF) = 0 $$
\subsection{Bringing the functional Groups Together: FMMD model of the `Bubba' Oscillator.}
We could at this point bring all the {\dcs} together into one large functional
group (see figure~\ref{fig:poss1finalbubba})
group (see figure~\ref{fig:bubbaeuler1}) %{fig:poss1finalbubba})
or we could try to merge smaller stages.
Initially we use the first identified {\fgs} to create our model without further stages of refinement/hierarchy.
@ -1555,9 +1556,9 @@ Initially we use the first identified {\fgs} to create our model without further
\subsection{FMMD Analysis using initially identified functional groups}
Our functional group for this analysis can be expressed thus:
or in Euler diagram format as in figure~\ref{fig:bubbaeuler1}.
%
$$ G^1_0 = \{ PHS45^1_1, NIBUFF^0_1, PHS45^1_2, NIBUFF^0_2, PHS45^1_3, NIBUFF^0_3 PHS45^1_4, INVAMP^1_0 \} ,$$
or in Euler diagram format as in figure~\ref{fig:bubbaeuler1}.
% HTR 23SEP2012 \begin{figure}[h+]
% HTR 23SEP2012 \centering
% HTR 23SEP2012 \includegraphics[width=300pt,keepaspectratio=true]{CH5_Examples/poss1finalbubba.png}
@ -1565,7 +1566,7 @@ $$ G^1_0 = \{ PHS45^1_1, NIBUFF^0_1, PHS45^1_2, NIBUFF^0_2, PHS45^1_3, NIBUFF^0
% HTR 23SEP2012 \caption{Bubba Oscillator: One large functional group using the initial functional groups to model oscillator.}
% HTR 23SEP2012 \label{fig:poss1finalbubba}
% HTR 23SEP2012 \end{figure}
%
\begin{figure}[h]
\centering
\includegraphics[width=400pt]{./CH5_Examples/bubba_euler_1.png}
@ -1573,7 +1574,7 @@ $$ G^1_0 = \{ PHS45^1_1, NIBUFF^0_1, PHS45^1_2, NIBUFF^0_2, PHS45^1_3, NIBUFF^0
\caption{Euler diagram showing the hierarchy of the initial FMMD analysis performed on the Bubba Oscillator circuit.}
\label{fig:bubbaeuler1}
\end{figure}
%
\begin{table}[h+]
\caption{Bubba Oscillator: Failure Mode Effects Analysis: One Large Functional Group} % title of Table
\label{tbl:bubbalargefg}
@ -1632,17 +1633,17 @@ $$ G^1_0 = \{ PHS45^1_1, NIBUFF^0_1, PHS45^1_2, NIBUFF^0_2, PHS45^1_3, NIBUFF^0
Collecting symptoms from table~\ref{tbl:bubbalargefg} we can show that for single failure modes, applying $fm$ to the bubba oscillator
returns three failure modes,
%
$$ fm(BubbaOscillator) = \{ NO_{osc}, HI_{fosc}\} . $$ %, LO_{fosc} \} . $$
%
%For the final stage of this FMMD model, we can calculate the complexity using equation~\ref{eqn:rd2}.
%$$ CC = 28 \times 8 = 224$$
%
%To obtain the total comparison complexity ($TCC$), we need to add the complexity from the
%{\dcs} that $BubbaOscillator$ was built from.
%
%$$ TCC = 28 \times 8 + 4 \times 4 + 4 \times 0 + 10 = 250$$
%
%As we have re-used the analysis for BUFF45 we could even reasonably remove
%$3 \times 4=12$ from this result, because the results from $BUFF45$ have been used four times.
%Traditional FMEA would have lead us to a much higher comparison complexity
@ -1659,7 +1660,7 @@ we may also discover new derived components that may be of use for other analyse
\clearpage
\subsection{FMMD Analysis of Bubba Oscillator using more hierarchical stages}
\subsection{FMMD Analysis of Bubba Oscillator using a finer grained modular approach (i.e. more hierarchical stages)}
The example above---from the initial {\fgs}---used one very large functional group to model the circuit.
%This mean a quite large comparison complexity for this final stage.
@ -1688,28 +1689,25 @@ We take the $NIBUFF$ and $PHS45$
and with those three, form a $PHS135BUFFERED$
functional group.
$PHS135BUFFERED$ is a {\dc} representing an actively buffered $135^{\circ}$ phase shifter.
%
A PHS45 {\dc} and an inverting amplifier\footnote{Inverting amplifiers always apply a $180^{\circ}$ phase shift.},
form a {\fg}
providing an amplified $225^{\circ}$ phase shift, which we can call $PHS225AMP$.
%
%---with the remaining $PHS45$ and the $INVAMP$ (re-used from section~\ref{sec:invamp})in a second group $PHS225AMP$---
Finally we can merge $PHS135BUFFERED$ and $PHS225AMP$ in a final stage (see figure~\ref{fig:poss2finalbubba})
Finally we can merge $PHS135BUFFERED$ and $PHS225AMP$ in a final stage (see figure~{fig:bubbaeuler2}) % \ref{fig:poss2finalbubba})
%
%We can take a more modular approach by creating two intermediate functional groups, a buffered $45^{\circ}$ phase shifter (BUFF45)
%we can combine three $BUFF45$'s to make
%a $135^{\circ}$ buffer phase shifter (PHS135BUFFERED).
%
%We can combine a $PHS45$ and a $NIBUFF$ to create
%and an amplifying $225^{\circ}$ phase shifter (PHS225AMP).
%
% By combining PHS225AMP and PHS135BUFFERED we can create a more modularised hierarchical
% model of the bubba oscillator.
% The proposed hierarchy is shown in figure~\ref{fig:poss2finalbubba}.
%
\begin{table}[h+]
\caption{BUFF45: Failure Mode Effects Analysis} % title of Table
\label{tbl:buff45}
@ -1732,18 +1730,16 @@ Finally we can merge $PHS135BUFFERED$ and $PHS225AMP$ in a final stage (see fig
\end{tabular}
\end{table}
%
Collecting symptoms from table~\ref{tbl:buff45}, we can create a derived component $BUFF45$ which has the following failure modes:
$$
fm (BUFF45) = \{ 0\_phaseshift, NO\_signal .\} % 90\_phaseshift,
$$
%
%$$ CC(BUFF45) = 7 \times 1 = 7 $$
%
We can now combine three $BUFF45$ {\dcs} and create a $PHS135BUFFERED$ {\dc}.
%
\begin{table}[h+]
\caption{PHS135BUFFERED: Failure Mode Effects Analysis} % title of Table
\label{tbl:phs135buffered}
@ -1770,20 +1766,20 @@ We can now combine three $BUFF45$ {\dcs} and create a $PHS135BUFFERED$ {\dc}.
\end{tabular}
\end{table}
%
%
Collecting symptoms from table~\ref{tbl:phs135buffered}, we can create a derived component $PHS135BUFFERED$ which has the following failure modes:
$$
fm (PHS135BUFFERED) = \{ 90\_phaseshift, NO\_signal .\} % 180\_phaseshift,
$$
%
%
%$$ CC (PHS135BUFFERED) = 3 \times 2 = 6 $$
%
%
%
The $PHS225AMP$ consists of a $PHS45$ and an $INVAMP$ (which provides $180^{\circ}$ of phase shift).
%
\begin{table}[h+]
\caption{PHS225AMP: Failure Mode Effects Analysis} % title of Table
\label{tbl:phs225amp}
@ -1805,21 +1801,21 @@ The $PHS225AMP$ consists of a $PHS45$ and an $INVAMP$ (which provides $180^{\cir
\end{tabular}
\end{table}
%
Collecting symptoms from table~\ref{tbl:phs225amp}, we can create a derived component $PHS225AMP$ which has the following failure modes:
$$
fm (PHS225AMP) = \{ 180\_phaseshift, NO\_signal .\} % 270\_phaseshift,
$$
%
%$$ CC(PHS225AMP) = 7 \times 1 $$
%
The $PHS225AMP$ consists of a $PHS45$ and an $INVAMP$ (which provides $180^{\circ}$ of phase shift).
%
%
%
To complete the analysis we now bring the derived components $PHS135BUFFERED$ and $PHS225AMP$ together
and perform FMEA with these.
%
\begin{table}[h+]
\caption{BUBBAOSC: Failure Mode Effects Analysis} % title of Table
\label{tbl:bubba2}
@ -1841,18 +1837,17 @@ and perform FMEA with these.
\end{tabular}
\end{table}
%
Collecting symptoms from table~\ref{tbl:bubba2}, we can create a derived component $BUBBAOSC$ which has the following failure modes:
$$
fm (BUBBAOSC) = \{ HI_{osc}, NO\_signal .\} % LO_{fosc},
$$
%
%We could trace the DAGs here and ensure that both analysis strategies worked ok.....
%
%$$ CC(BUBBAOSC) = 6 \times (2-1) = 6 $$
%
%
% We can now add the comparison complexities for all levels of the analysis represented in figure~\ref{fig:poss2finalbubba}.
% We have at the lowest level two $PHS45$ {\dcs} giving a CC of 8 and $INVAMP$ with a CC of 10,
% at the next level four $BUFF45$ {\dcs} giving $(4-1).7=21$,
@ -1864,10 +1859,10 @@ $$
It has %also
given us five {\dcs}, building blocks, which could potentially be re-used for similar circuitry
to analyse in the future.
%
%
\subsection{Comparing both approaches}
%
%In general with large functional groups the comparison complexity
%is higher, by an order of $O(N^2)$.
Smaller functional groups mean less by-hand checks are required.
@ -1875,9 +1870,21 @@ It also means a more finely grained model. This means that
there are more {\dcs} and this increases the possibility of re-use.
% HTR The more we can modularise, the more we decimate the $O(N^2)$ effect
% HTR of complexity comparison.
%
\clearpage
\section{Sigma Delta Analogue to Digital Converter.} %($\Sigma \Delta ADC$)}
\section{Sigma Delta Analogue to Digital Converter ($\Sigma \Delta ADC$).} %($\Sigma \Delta ADC$)}
\label{sec:sigmadelta}
The following example is used to demonstrate FMMD analysis of a mixed analogue and digital circuit (see figure~\ref{fig:sigmadelta}).
\begin{figure}[h]
@ -1887,18 +1894,16 @@ The following example is used to demonstrate FMMD analysis of a mixed analogue a
\caption{Sigma Delta Analogue to Digital Converter}
\label{fig:sigmadelta}
\end{figure}
%
\nocite{f77}
\nocite{sccs}
\nocite{electronicssysapproach}
%
\begin{figure}[h]
\centering
\includegraphics[width=200pt,keepaspectratio=true]{./CH5_Examples/sigma_delta_block.png}
% sigma_delta_block.png: 828x367 pixel, 72dpi, 29.21x12.95 cm, bb=0 0 828 367
\caption{Sigma Delta ADC signal path}
\caption{Electrical signal path Block diagram: $\Sigma \Delta ADC$} % Analogue to Digital Converter }
\label{fig:sigmadeltablock}
\end{figure}
@ -1929,36 +1934,40 @@ and fed into the summing integrator completing the negative feedback loop.
\subsection{FMMD analysis of \sd }
The partslist for the \sd :
%
$$\{ IC1, IC2, IC3, IC4, R1, R2, R3, R4, C1 \} $$.
%
IC1,2 and 3 are all Op-amps and we have failure modes from section~\ref{sec:opampfm}.
%
$$ fm(OPAMP) = \{ HIGH, LOW, NOOP, LOW\_SLEW \} $$
%
We examine the literature for a failure model for the D-type flip flop~\cite{fmd91}[3-105], the CD4013B~\cite{cd4013Bds},
and obtain its failure modes, which we can express using the $fm$ function:
%%
$$ fm ( CD4013B) = \{ HIGH, LOW, NOOP \} $$
%
The resistors and capacitor failure modes we take from EN298~\cite{en298}[An.A]
%
$$ fm ( R ) = \{OPEN, SHORT\} $$
%
$$ fm ( C ) = \{OPEN, SHORT\} $$
%
We are also given a CLOCK. For the purpose of example we shall attribute
one failure mode to this, that it might stop.
%
$$ fm ( CLOCK ) = \{ STOPPED \} $$
\subsection{Identifying initial {\fgs}}
\subsubsection{Summing Junction}
\subsubsection{Summing Junction Integrator (SUMJINT)}
We now need to choose {\fgs}. The signal path is circular, but we can start
with the input voltage, which is applied via $R2$, we term this voltage $V_{in}$.
%
The feedback voltage for the ADC is supplied via $R1$, we term this voltage as $V_{fb}$.
%The input voltage is supplied via $R2$ and we term this voltage as $V_{in}$.
$R2$ and $R1$ form a summing junction to IC1: they thus work to fulfil this specific function.
This can be our first {\fg} and we analyse it in table~\ref{tbl:suml=j}.
$R2$ and $R1$ form a summing junction to IC1: they balance the integrator provided
by the capacitor C1 and the opamp IC1.
This can be our first {\fg} and we analyse it in table~\ref{tbl:sumjint}.
%For the symptoms, we have to think in terms of the effect
%on its performance as a summing junction and not be
%distracted by the integrator formed by $C_1$ and $IC1$.
@ -1967,8 +1976,8 @@ $$G^0_1 = \{R1, R2 \}$$
\begin{table}[h+]
\center
\caption{R1,R2 Summing Junction: Failure Mode Effects Analysis} % title of Table
\label{tbl:sumj}
\caption{ Summing Junction Integrator: Failure Mode Effects Analysis} % title of Table
\label{tbl:sumjint}
\begin{tabular}{|| l | l | c | c | l ||} \hline
\textbf{Failure Scenario} & & \textbf{failure result} & & \textbf{Symptom} \\
@ -1978,74 +1987,111 @@ $$G^0_1 = \{R1, R2 \}$$
FS2: $R1$ $SHORT$ & & $V_{fb}$ dominates input & & $V_{fb} DOM$ \\ \hline
FS3: $R2$ $OPEN$ & & $V_{fb}$ dominates input & & $V_{fb} DOM$ \\
FS4: $R2$ $SHORT$ & & $V_{in}$ dominates input & & $V_{in} DOM$ \\ \hline
FS5: $IC1$ $HIGH$ & & output perm. high & & HIGH \\
FS6: $IC1$ $LOW$ & & output perm. low & & LOW \\ \hline
FS7: $IC1$ $NOOP$ & & no current to drive C1 & & NO\_INTEGRATION \\
FS8: $IC1$ $LOW\_SLEW$ & & signal delay to C1 & & NO\_INTEGRATION \\ \hline
FS9: $C1$ $OPEN$ & & no capacitance & & NO\_INTEGRATION \\
FS10: $C1$ $SHORT$ & & no capacitance & & NO\_INTEGRATION \\ \hline
% \hline
% FS1: $IC2$ $HIGH$ & & output perm. high & & HIGH \\
% FS2: $IC2$ $LOW$ & & output perm. low & & LOW \\ \hline
% FS3: $IC2$ $NOOP$ & & no current drive & & LOW \\
% FS4: $IC2$ $LOW\_SLEW$ & & delayed signal & & LOW\_SLEW \\ \hline
% \hline
\hline
\end{tabular}
\end{table}
%
%
% \end{tabular}
% \end{table}
From the analysis in table~\ref{tbl:sumj} we collect symptoms.
We can create the derived component
$SUMJ$.% which has the failure modes from collecting its symptoms.
$SUMJINT$.% which has the failure modes from collecting its symptoms.
We now state:
$$ fm(SUMJ) = \{ V_{in} DOM, V_{fb} DOM \} .$$
$$ fm(SUMJUINT) = \{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$$
\subsubsection{Buffered Integrator}
Following the signal path, the next functional group is the integrator.
% \subsubsection{Buffered Integrator}
%
% Following the signal path, the next functional group is the integrator.
% %
% This integrator is formed by placing $C1$ in the negative feedback loop of $IC2$\cite{aoe}[p.222].
% The output of the integrator is fed into IC2, which acts as a buffer,
% %performing the function of
% isolating the integrator from any load on its output.
% These three components work together to form a buffered integrator,
% and nicely form a {\fg}.
%
% $$G^0_2 = \{IC1, C1, IC2\}.$$
%
% The buffered integrator is analysed in table~\ref{tbl:intg}.
%
%
% \begin{table}[h+]
% \center
% \caption{IC1,C1,IC2 Buffered Integrator: Failure Mode Effects Analysis} % title of Table
% \label{tbl:intg}
%
% \begin{tabular}{|| l | l | c | c | l ||} \hline
% \textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
% & & & & \\
% \hline \hline
%
%
%
% From the analysis in table~\ref{tbl:intg}, we can now create a derived component
% $BFINT$ which has the failure modes from collecting symptoms from the analysis in table~\ref{tbl:intg}.
% We can state
%
% $$ fm (BFINT) = \{ HIGH, LOW, NO\_INTEGRATION , LOW\_SLEW \} $$
%
This integrator is formed by placing $C1$ in the negative feedback loop of $IC2$\cite{aoe}[p.222].
The output of the integrator is fed into IC2, which acts as a buffer,
%performing the function of
isolating the integrator from any load on its output.
These three components work together to form a buffered integrator,
and nicely form a {\fg}.
$$G^0_2 = \{IC1, C1, IC2\}.$$
The buffered integrator is analysed in table~\ref{tbl:intg}.
\subsubsection{High Impedance Signal Buffer (HISB)}
Next in the signal path (see figure~\ref{fig:sigmadeltablock}) is a signal buffer.
This presents a high impedance to the circuit driving it.
This prevents electrical loading, and thus interference with, the SUMJINT stage.
This is simply an op-amp
with the input connected to the +ve input and the -ve input grounded.
It therefore has the failure modes of an Op-amp.
\begin{table}[h+]
\center
\caption{IC1,C1,IC2 Buffered Integrator: Failure Mode Effects Analysis} % title of Table
\label{tbl:intg}
% \center
\caption{ High Impedance Signal Buffer (HISB) : Failure Mode Effects Analysis} % title of Table
\begin{tabular}{|| l | l | c | c | l ||} \hline
\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
\textbf{Failure Scenario} & & \textbf{failure result} & & \textbf{Symptom} \\
& & & & \\
\hline \hline
FS1: $IC1$ $HIGH$ & & output perm. high & & HIGH \\
FS2: $IC1$ $LOW$ & & output perm. low & & LOW \\ \hline
FS3: $IC1$ $NOOP$ & & no current to drive C1 & & NO\_INTEGRATION \\
FS4: $IC1$ $LOW\_SLEW$ & & signal delay to C1 & & NO\_INTEGRATION \\ \hline
\hline\hline
FS3: $C1$ $OPEN$ & & no capacitance & & NO\_INTEGRATION \\
FS4: $C1$ $SHORT$ & & no capacitance & & NO\_INTEGRATION \\ \hline
FS5: $IC2$ $HIGH$ & & output perm. high & & HIGH \\
FS6: $IC2$ $LOW$ & & output perm. low & & LOW \\ \hline
FS7: $IC2$ $NOOP$ & & no current to output & & $NOOP$ \\
FS8: $IC2$ $LOW\_SLEW$ & & delay signal & & $LOW\_SLEW$ \\ \hline
\hline
FS1: $IC2$ $HIGH$ & & output perm. high & & HIGH \\
FS2: $IC2$ $LOW$ & & output perm. low & & LOW \\ \hline
FS3: $IC2$ $NOOP$ & & no current drive & & LOW \\
FS4: $IC2$ $LOW\_SLEW$ & & delayed signal & & LOW\_SLEW \\ \hline
\hline
% FS1: $IC2$ $HIGH$ & & output perm. high & & HIGH \\
% FS2: $IC2$ $LOW$ & & output perm. low & & LOW \\ \hline
% FS3: $IC2$ $NOOP$ & & no current drive & & LOW \\
% FS4: $IC2$ $LOW\_SLEW$ & & delayed signal & & LOW\_SLEW \\ \hline
% \hline
\end{tabular}
\end{table}
From the analysis in table~\ref{tbl:intg}, we can now create a derived component
$BFINT$ which has the failure modes from collecting symptoms from the analysis in table~\ref{tbl:intg}.
We can state
$$ fm (BFINT) = \{ HIGH, LOW, NO\_INTEGRATION , LOW\_SLEW \} $$
% \hline
%
% \end{tabular}
% \end{table}
\subsubsection{Digital level to analogue level conversion ($DL2AL$).}
Digital level to analogue level conversion is performed by IC3 in conjunction with a potential divider formed by R3,R4.
@ -2113,19 +2159,41 @@ $$ fm (DL2AL^2) = \{ LOW, HIGH, LOW\_SLEW \} $$
\subsection{First {\fgs} analysed}
We have analysed the initial {\fgs} and can now take stock of the situation
and see what is now required. Figure~\ref{fig:sigdel1} shows how far the
hierarchy has been built.
We have analysed the initial {\fgs} and
have created our first {\dcs}. %and can now take stock of the situation
%and see what is now required.
%Figure~\ref{fig:sigdel1} shows which {\fgs} we have analysed so far.
%hierarchy has been built.
These are:
\begin{itemize}
\item SUMJINT --- A summing junction and integrator,
\item HISB --- A High impedance buffer,
\item DIGITALBUFF --- A one bit digital buffer,
\item DL2AL --- A digital to analog level converter.
\end{itemize}
These {\dcs} follow to signal path shown in figure~\ref{fig:sigmadeltablock}.
We now use these {\dcs} to create a final {\fg} to represent the failure mode
behaviour of the $\Sigma \Delta ADC$. We represent this
in the Euler diagram in figure~\ref{fig:eulersd}.
\begin{figure}[h+]
\begin{figure}[h]
\centering
\includegraphics[width=400pt]{./CH5_Examples/sigdel1.png}
% sigdel1.png: 766x618 pixel, 72dpi, 27.02x21.80 cm, bb=0 0 766 618
\caption{First stage of FMMD analysis: Sigma delta Converter}
\label{fig:sigdel1}
\includegraphics[width=400pt]{./CH5_Examples/eulersd.png}
% eulersd.png: 1018x334 pixel, 72dpi, 35.91x11.78 cm, bb=0 0 1018 334
\caption{Euler diagram showing the functional grouping used to model the $\Sigma \Delta ADC$}
\label{fig:eulersd}
\end{figure}
%
% \begin{figure}[h+]
% \centering
% \includegraphics[width=400pt]{./CH5_Examples/sigdel1.png}
% % sigdel1.png: 766x618 pixel, 72dpi, 27.02x21.80 cm, bb=0 0 766 618
% \caption{First stage of FMMD analysis: Sigma delta Converter}
% \label{fig:sigdel1}
% \end{figure}
IC4 is as yet unused, the signal path connects IC4 and DL2AL. These seem natural candidates
for the next {\fg}.
@ -2137,7 +2205,7 @@ BFINT and SUMJ are adjacent in the signal path and these are chosen as a {\fg} a
\subsubsection{{\fg} $BFINT^1$ and $SUMJ^1$}
We now form a {\fg} with the two derived components $BFINT^1$ and $SUMJ^1$.
We now form a {\fg} with the two derived components $BFINT^1$ and $SUMJINT^1$.
This forms a buffered integrating summing junction which we analyse in table~\ref{tbl:BISJ}.
$$ G^1_0 = \{ BFINT^1, SUMJ^1 \} $$
@ -2188,7 +2256,7 @@ called $BISJ^2$.
The functional group formed by $IC4$ and $DL2AL$ takes the flip flop clocked and buffered
value, and outputs it at analogue voltage levels for the summing junction.
$ G^2_1 = \{ IC4^0, DL2AL^2 \} $
$ G^2_1 = \{ IC4^0, DL2AL^2, CLOCK\} $
We analyse the buffered flip flop circuitry in table~\ref{tbl:FFB}.
@ -2208,8 +2276,9 @@ We analyse the buffered flip flop circuitry in table~\ref{tbl:FFB}.
FS5: $DL2AL^2$ $HIGH$ & & output perm. low & & $OUTPUT STUCK$ \\ \hline
FS6: $DL2AL^2$ $LOW\_SLEW$ & & no current drive & & $LOW\_SLEW$ \\
FS7: $CLOCK^0$ $STOPPED$ & & output stuck & & $OUTPUT STUCK$ \\
\hline
\hline
\end{tabular}
\end{table}
@ -2325,6 +2394,27 @@ We now show the final hierarchy in figure~\ref{fig:sdadc}.
\section{Applying FMMD to Software}
\label{sec:elecsw}
FMMD can be applied to software, and thus we can build complete failure models