expanded final equation and gave reason why it is useful
This commit is contained in:
parent
05dd07ce83
commit
dddb0da334
@ -358,7 +358,7 @@ from $1$ to $cc$ thus
|
||||
%
|
||||
|
||||
\begin{equation}
|
||||
\#\mathcal{P}_{cc} S = \sum^{k}_{1..cc} \frac{\#S!}{k!(\#S-k)!}
|
||||
|{\mathcal{P}_{cc}S}| = \sum^{k}_{1..cc} \frac{|{S}|!}{ k! ( |{S}| - k)!}
|
||||
\label{eqn:ccps}
|
||||
\end{equation}
|
||||
|
||||
@ -377,7 +377,11 @@ from the cardinality constrain powerset number.
|
||||
|
||||
Thus were we to have a simple functional group with two components R and T, of which
|
||||
$$FM(R) = \{R_o, R_s\}$$ and $$FM(T) = \{T_o, T_s, T_h\}$$.
|
||||
For a cardinality constrained powerset of 2, because there are 5 error modes
|
||||
|
||||
This means that a functional~group $FG=\{R,T\}$ will have a component failure modes set % $FM_{cfg} $
|
||||
of $FM_{cfg} = \{R_o, R_s, T_o, T_s, T_h\}$
|
||||
|
||||
For a cardinality constrained powerset of 2, because there are 5 error modes ( $|{FG_{cfg}}|=5$),
|
||||
applying equation \ref{eqn:ccps} gives :-
|
||||
|
||||
$$\frac{5!}{1!(5-1)!} + \frac{5!}{2!(5-2)!} = 15$$
|
||||
@ -392,41 +396,60 @@ $R_o \wedge R_s$. As a combination ${2 \choose 2} = 1$ . For $T$ the component w
|
||||
Thus for $cc == 2$ we must subtract $(3+1)$.
|
||||
The number of combinations to check is thus 11 for this example and this can be verified
|
||||
by listing all the required combinations:
|
||||
%
|
||||
%\vbox{
|
||||
%\subsubsection{All Eleven Cardinality Constrained \\ Powerset of 2 Elements Listed}
|
||||
%%\tiny
|
||||
%\begin{enumerate}
|
||||
%\item $\{R_o T_o\}$
|
||||
%\item $\{R_o T_s\}$
|
||||
%\item $\{R_o T_h\}$
|
||||
%\item $\{R_s T_o\}$
|
||||
%\item $\{R_s T_s\}$
|
||||
%\item $\{R_s T_h\}$
|
||||
%\item $\{R_o \}$
|
||||
%\item $\{R_s \}$
|
||||
%\item $\{T_o \}$
|
||||
%\item $\{T_s \}$
|
||||
%\item $\{T_h \}$
|
||||
%\end{enumerate}
|
||||
%%\normalsize
|
||||
%}
|
||||
%
|
||||
|
||||
\vbox{
|
||||
\subsubsection{All Eleven Cardinality Constrained \\ Powerset of 2 Elements Listed}
|
||||
%\tiny
|
||||
\begin{enumerate}
|
||||
\item $\{R_o T_o\}$
|
||||
\item $\{R_o T_s\}$
|
||||
\item $\{R_o T_h\}$
|
||||
\item $\{R_s T_o\}$
|
||||
\item $\{R_s T_s\}$
|
||||
\item $\{R_s T_h\}$
|
||||
\item $\{R_o \}$
|
||||
\item $\{R_s \}$
|
||||
\item $\{T_o \}$
|
||||
\item $\{T_s \}$
|
||||
\item $\{T_h \}$
|
||||
\end{enumerate}
|
||||
%\normalsize
|
||||
}
|
||||
$$ \mathcal{P}_{2}(FG_cfg) = \{
|
||||
\{R_o T_o\}, \{R_o T_s\}, \{R_o T_h\}, \{R_s T_o\}, \{R_s T_s\}, \{R_s T_h\}, \{R_o \}, \{R_s \}, \{T_o \}, \{T_s \}, \{T_h \}
|
||||
\}
|
||||
$$
|
||||
|
||||
And by inspection
|
||||
|
||||
$$ |\mathcal{P}_{2}(FG_cfg)| = 11 $$
|
||||
|
||||
The cardinality constrained powerset equation \ref{eqn:ccps} corrected for
|
||||
unitary state failure modes can be
|
||||
written as a general formula, where C is a set of the components (indexed by j where J
|
||||
is the set of components in the functional~group under analyis) and $\#C$
|
||||
written as a general formula (see equation \ref{eqn:correctedccps}), where C is a set of the components (indexed by j where J
|
||||
is the set of components in the functional~group under analyis) and $|{C}|$
|
||||
indicates the number of mutually exclusive fault modes each component has:-
|
||||
|
||||
%$$ \#\mathcal{P}_{cc} S = \sum^{k}_{1..cc} \frac{\#S!}{k!(\#S-k)!} $$
|
||||
\begin{equation}
|
||||
\#\mathcal{P}_{cc} S = {\sum^{k}_{1..cc} \frac{\#S!}{k!(\#S-k)!}} - {\sum^{j}_{j \in J} {\#C_{j} \choose cc}}
|
||||
|{\mathcal{P}_{cc}S}| = {\sum^{k}_{1..cc} \frac{|{S}|!}{k!(|{S}| - k)!}} - {\sum^{j}_{j \in J} {|{C_{j}}| \choose cc}}
|
||||
\label{eqn:correctedccps}
|
||||
\end{equation}
|
||||
|
||||
Expanding the combination in equation \ref{eqn:correctedccps}
|
||||
|
||||
|
||||
\begin{equation}
|
||||
|{\mathcal{P}_{cc}S}| = {\sum^{k}_{1..cc} \frac{|{S}|!}{k!(|{S}| - k)!}} - {\sum^{j}_{j \in J} \frac{|{C_j}|!}{cc!(|{C_j}| - cc)!}}
|
||||
\label{eqn:correctedccps2}
|
||||
\end{equation}
|
||||
|
||||
The equation \ref{eqn:correctedccps2} is now useful for an automated tool that
|
||||
would verify that a `N' simultaneous failures model had been completly covered
|
||||
by knowing how many test case should be covered.
|
||||
|
||||
%$$ \#\mathcal{P}_{cc} S = \sum^{k}_{1..cc} \big[ \frac{\#S!}{k!(\#S-k)!} - \sum_{j} (\#C_{j} \choose cc \big] $$
|
||||
|
||||
|
||||
|
@ -57,6 +57,7 @@ depth -0.5ex\hfill}\newcommand{\innerhead}[1]{\def\lp@innerhead{#1}}
|
||||
\newcommand{\mins}[1]{$#1^{\scriptsize\prime}$} % Minutes symbol
|
||||
\newcommand{\secs}[1]{$#1^{\scriptsize\prime\prime}$} % Seconds symbol
|
||||
\newcommand{\key}[1]{\fbox{\sc#1}} % Box for keys
|
||||
\newcommand{\modulus}[1]{\ensuremathmode{|#1|}}
|
||||
\newcommand{\?}{\_\hspace{0.115em}} % Proper spacing for
|
||||
% underscore
|
||||
\newcommand{\rev}{PA5}
|
||||
|
Loading…
Reference in New Issue
Block a user