diff --git a/component_failure_modes_definition/component_failure_modes_definition.tex b/component_failure_modes_definition/component_failure_modes_definition.tex index 5e6a68f..af6bf9f 100644 --- a/component_failure_modes_definition/component_failure_modes_definition.tex +++ b/component_failure_modes_definition/component_failure_modes_definition.tex @@ -358,7 +358,7 @@ from $1$ to $cc$ thus % \begin{equation} - \#\mathcal{P}_{cc} S = \sum^{k}_{1..cc} \frac{\#S!}{k!(\#S-k)!} + |{\mathcal{P}_{cc}S}| = \sum^{k}_{1..cc} \frac{|{S}|!}{ k! ( |{S}| - k)!} \label{eqn:ccps} \end{equation} @@ -377,7 +377,11 @@ from the cardinality constrain powerset number. Thus were we to have a simple functional group with two components R and T, of which $$FM(R) = \{R_o, R_s\}$$ and $$FM(T) = \{T_o, T_s, T_h\}$$. -For a cardinality constrained powerset of 2, because there are 5 error modes + +This means that a functional~group $FG=\{R,T\}$ will have a component failure modes set % $FM_{cfg} $ +of $FM_{cfg} = \{R_o, R_s, T_o, T_s, T_h\}$ + +For a cardinality constrained powerset of 2, because there are 5 error modes ( $|{FG_{cfg}}|=5$), applying equation \ref{eqn:ccps} gives :- $$\frac{5!}{1!(5-1)!} + \frac{5!}{2!(5-2)!} = 15$$ @@ -392,41 +396,60 @@ $R_o \wedge R_s$. As a combination ${2 \choose 2} = 1$ . For $T$ the component w Thus for $cc == 2$ we must subtract $(3+1)$. The number of combinations to check is thus 11 for this example and this can be verified by listing all the required combinations: +% +%\vbox{ +%\subsubsection{All Eleven Cardinality Constrained \\ Powerset of 2 Elements Listed} +%%\tiny +%\begin{enumerate} +%\item $\{R_o T_o\}$ +%\item $\{R_o T_s\}$ +%\item $\{R_o T_h\}$ +%\item $\{R_s T_o\}$ +%\item $\{R_s T_s\}$ +%\item $\{R_s T_h\}$ +%\item $\{R_o \}$ +%\item $\{R_s \}$ +%\item $\{T_o \}$ +%\item $\{T_s \}$ +%\item $\{T_h \}$ +%\end{enumerate} +%%\normalsize +%} +% -\vbox{ -\subsubsection{All Eleven Cardinality Constrained \\ Powerset of 2 Elements Listed} -%\tiny -\begin{enumerate} -\item $\{R_o T_o\}$ -\item $\{R_o T_s\}$ -\item $\{R_o T_h\}$ -\item $\{R_s T_o\}$ -\item $\{R_s T_s\}$ -\item $\{R_s T_h\}$ -\item $\{R_o \}$ -\item $\{R_s \}$ -\item $\{T_o \}$ -\item $\{T_s \}$ -\item $\{T_h \}$ -\end{enumerate} -%\normalsize -} +$$ \mathcal{P}_{2}(FG_cfg) = \{ + \{R_o T_o\}, \{R_o T_s\}, \{R_o T_h\}, \{R_s T_o\}, \{R_s T_s\}, \{R_s T_h\}, \{R_o \}, \{R_s \}, \{T_o \}, \{T_s \}, \{T_h \} + \} +$$ +And by inspection + +$$ |\mathcal{P}_{2}(FG_cfg)| = 11 $$ The cardinality constrained powerset equation \ref{eqn:ccps} corrected for unitary state failure modes can be -written as a general formula, where C is a set of the components (indexed by j where J -is the set of components in the functional~group under analyis) and $\#C$ +written as a general formula (see equation \ref{eqn:correctedccps}), where C is a set of the components (indexed by j where J +is the set of components in the functional~group under analyis) and $|{C}|$ indicates the number of mutually exclusive fault modes each component has:- %$$ \#\mathcal{P}_{cc} S = \sum^{k}_{1..cc} \frac{\#S!}{k!(\#S-k)!} $$ \begin{equation} - \#\mathcal{P}_{cc} S = {\sum^{k}_{1..cc} \frac{\#S!}{k!(\#S-k)!}} - {\sum^{j}_{j \in J} {\#C_{j} \choose cc}} + |{\mathcal{P}_{cc}S}| = {\sum^{k}_{1..cc} \frac{|{S}|!}{k!(|{S}| - k)!}} - {\sum^{j}_{j \in J} {|{C_{j}}| \choose cc}} \label{eqn:correctedccps} \end{equation} +Expanding the combination in equation \ref{eqn:correctedccps} +\begin{equation} + |{\mathcal{P}_{cc}S}| = {\sum^{k}_{1..cc} \frac{|{S}|!}{k!(|{S}| - k)!}} - {\sum^{j}_{j \in J} \frac{|{C_j}|!}{cc!(|{C_j}| - cc)!}} + \label{eqn:correctedccps2} +\end{equation} + +The equation \ref{eqn:correctedccps2} is now useful for an automated tool that +would verify that a `N' simultaneous failures model had been completly covered +by knowing how many test case should be covered. + %$$ \#\mathcal{P}_{cc} S = \sum^{k}_{1..cc} \big[ \frac{\#S!}{k!(\#S-k)!} - \sum_{j} (\#C_{j} \choose cc \big] $$ diff --git a/component_failure_modes_definition/style.tex b/component_failure_modes_definition/style.tex index 79082ab..b1b0261 100644 --- a/component_failure_modes_definition/style.tex +++ b/component_failure_modes_definition/style.tex @@ -57,6 +57,7 @@ depth -0.5ex\hfill}\newcommand{\innerhead}[1]{\def\lp@innerhead{#1}} \newcommand{\mins}[1]{$#1^{\scriptsize\prime}$} % Minutes symbol \newcommand{\secs}[1]{$#1^{\scriptsize\prime\prime}$} % Seconds symbol \newcommand{\key}[1]{\fbox{\sc#1}} % Box for keys +\newcommand{\modulus}[1]{\ensuremathmode{|#1|}} \newcommand{\?}{\_\hspace{0.115em}} % Proper spacing for % underscore \newcommand{\rev}{PA5}