Started FMMD on sigma delta
This commit is contained in:
parent
46ef860d19
commit
d11edf4960
@ -4,7 +4,7 @@ PNG_DIA = blockdiagramcircuit2.png bubba_oscillator_block_diagram.png circuit1
|
||||
dubsim1.png invamp.png mvampcircuit.png pd.png plddouble.png plddoublesymptom.png \
|
||||
poss1finalbubba.png poss2finalbubba.png pt100.png pt100_doublef.png pt100_singlef.png \
|
||||
pt100_tc.png pt100_tc_sp.png shared_component.png stat_single.png three_tree.png \
|
||||
tree_abstraction_levels.png vrange.png
|
||||
tree_abstraction_levels.png vrange.png sigma_delta_block.png
|
||||
|
||||
|
||||
|
||||
|
@ -1660,6 +1660,94 @@ The following example shows the analysis of a mixed analogue and digital circuit
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./CH5_Examples/sigma_delta_block.png}
|
||||
% sigma_delta_block.png: 828x367 pixel, 72dpi, 29.21x12.95 cm, bb=0 0 828 367
|
||||
\caption{Sigma Delta ADC signal path}
|
||||
\label{fig:sigmadeltablock}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\paragraph{How the circuit works.}
|
||||
The diagram in~\ref{fig:sigmadeltablock} shows the signal path used
|
||||
by this configuration for a $\Sigma \Delta $ADC.
|
||||
%
|
||||
It works by placing the analogue voltage to be read into
|
||||
a mixed analogue and digital feedback circuit.
|
||||
%
|
||||
A summing junction and integrator is used to compare the negative feedback
|
||||
signal with the input.
|
||||
%
|
||||
The output of the integrator is digitally cleaned-up by IC2 (i.e. output is TRUE or FALSE for digital logic)
|
||||
which acts as a comparator, and fed to the D type flip flop.
|
||||
%
|
||||
The output of the flip flop is a digital representation
|
||||
of the input voltage.
|
||||
%
|
||||
The output of the flip flop, is now cleaned as an analogue signal
|
||||
(i.e. a digital 0 becomes a -ve voltage and a digital 1 becomes a +ve voltage)
|
||||
and fed into the summing integrator completing the negative feedback loop.
|
||||
% ]
|
||||
% into
|
||||
%
|
||||
% A summing integrator
|
||||
% adds the voltage input to the feedback signal.
|
||||
% The digital circuitry tries to
|
||||
% apply a voltage to the integrator that will
|
||||
% produce a zero output... doh this is difficult to describe.
|
||||
% %
|
||||
% The input voltage is summed with the feedback from the circuit
|
||||
% and is fed into a comparator (IC2) that will output a plus or minus.
|
||||
% This is fed into the input (D) of a DQ flip flop.
|
||||
% This digitally buffers the output from the comparator.
|
||||
% The output from the from the DQ flkip flop is a digital representation
|
||||
% of the input voltage.
|
||||
% The output from the DQ is sent to the digital comparator formed by R3,R4
|
||||
% and IC3.
|
||||
% The output from this is sent to the summing integrator as the signal summed with the input.
|
||||
|
||||
\subsection{Identifying initial {\fgs}}
|
||||
|
||||
\subsubsection{Summing Junction formed by R1 and R2}
|
||||
|
||||
The resistors R1, R2 form a summing junction
|
||||
to the negative input of IC1.
|
||||
Using the earlier definition for resistor failure modes,
|
||||
$fm(R)= \{OPEN, SHORT\}$, we analyse the summing junction
|
||||
in table~\ref{tbl:sumjunct} below.
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{Summing Junction: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
\label{tbl:sumjunct}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Scenario} & & \textbf{Summing} & & \textbf{Symptom} \\
|
||||
& & \textbf{Junction} & & \\
|
||||
\hline
|
||||
FS1: R1 SHORT & & R1 input dominates & & $R1\_IN\_DOM$ \\ \hline
|
||||
FS2: R1 OPEN & & R2 input dominates & & $R2\_IN\_DOM$ \\ \hline
|
||||
FS3: R2 SHORT & & R2 input dominates & & $R2\_IN\_DOM$ \\ \hline
|
||||
FS4: R2 OPEN & & R1 input dominates & & $R1\_IN\_DOM$ \\ \hline
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
% PHS45
|
||||
|
||||
This summing junction fails with two symptoms. We create a {\dc} called $SUMJUNCT$ and we can state,
|
||||
$$fm(SUMJUNCT) = \{ R1\_IN\_DOM, R2\_IN\_DOM \} $$.
|
||||
|
||||
|
||||
|
||||
%\subsection{FMMD Process applied to $\Sigma \Delta $ADC}.
|
||||
|
||||
T%he block diagram in figure~\ref{fig
|
||||
|
||||
|
||||
\clearpage
|
||||
\section{PT100 Analysis: Double failures and MTTF statistics}
|
||||
{
|
||||
This section
|
||||
|
BIN
submission_thesis/CH5_Examples/sigma_delta_block.dia
Normal file
BIN
submission_thesis/CH5_Examples/sigma_delta_block.dia
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user