Started FMMD on sigma delta
This commit is contained in:
parent
46ef860d19
commit
d11edf4960
@ -4,7 +4,7 @@ PNG_DIA = blockdiagramcircuit2.png bubba_oscillator_block_diagram.png circuit1
|
|||||||
dubsim1.png invamp.png mvampcircuit.png pd.png plddouble.png plddoublesymptom.png \
|
dubsim1.png invamp.png mvampcircuit.png pd.png plddouble.png plddoublesymptom.png \
|
||||||
poss1finalbubba.png poss2finalbubba.png pt100.png pt100_doublef.png pt100_singlef.png \
|
poss1finalbubba.png poss2finalbubba.png pt100.png pt100_doublef.png pt100_singlef.png \
|
||||||
pt100_tc.png pt100_tc_sp.png shared_component.png stat_single.png three_tree.png \
|
pt100_tc.png pt100_tc_sp.png shared_component.png stat_single.png three_tree.png \
|
||||||
tree_abstraction_levels.png vrange.png
|
tree_abstraction_levels.png vrange.png sigma_delta_block.png
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -1660,6 +1660,94 @@ The following example shows the analysis of a mixed analogue and digital circuit
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=200pt,keepaspectratio=true]{./CH5_Examples/sigma_delta_block.png}
|
||||||
|
% sigma_delta_block.png: 828x367 pixel, 72dpi, 29.21x12.95 cm, bb=0 0 828 367
|
||||||
|
\caption{Sigma Delta ADC signal path}
|
||||||
|
\label{fig:sigmadeltablock}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{How the circuit works.}
|
||||||
|
The diagram in~\ref{fig:sigmadeltablock} shows the signal path used
|
||||||
|
by this configuration for a $\Sigma \Delta $ADC.
|
||||||
|
%
|
||||||
|
It works by placing the analogue voltage to be read into
|
||||||
|
a mixed analogue and digital feedback circuit.
|
||||||
|
%
|
||||||
|
A summing junction and integrator is used to compare the negative feedback
|
||||||
|
signal with the input.
|
||||||
|
%
|
||||||
|
The output of the integrator is digitally cleaned-up by IC2 (i.e. output is TRUE or FALSE for digital logic)
|
||||||
|
which acts as a comparator, and fed to the D type flip flop.
|
||||||
|
%
|
||||||
|
The output of the flip flop is a digital representation
|
||||||
|
of the input voltage.
|
||||||
|
%
|
||||||
|
The output of the flip flop, is now cleaned as an analogue signal
|
||||||
|
(i.e. a digital 0 becomes a -ve voltage and a digital 1 becomes a +ve voltage)
|
||||||
|
and fed into the summing integrator completing the negative feedback loop.
|
||||||
|
% ]
|
||||||
|
% into
|
||||||
|
%
|
||||||
|
% A summing integrator
|
||||||
|
% adds the voltage input to the feedback signal.
|
||||||
|
% The digital circuitry tries to
|
||||||
|
% apply a voltage to the integrator that will
|
||||||
|
% produce a zero output... doh this is difficult to describe.
|
||||||
|
% %
|
||||||
|
% The input voltage is summed with the feedback from the circuit
|
||||||
|
% and is fed into a comparator (IC2) that will output a plus or minus.
|
||||||
|
% This is fed into the input (D) of a DQ flip flop.
|
||||||
|
% This digitally buffers the output from the comparator.
|
||||||
|
% The output from the from the DQ flkip flop is a digital representation
|
||||||
|
% of the input voltage.
|
||||||
|
% The output from the DQ is sent to the digital comparator formed by R3,R4
|
||||||
|
% and IC3.
|
||||||
|
% The output from this is sent to the summing integrator as the signal summed with the input.
|
||||||
|
|
||||||
|
\subsection{Identifying initial {\fgs}}
|
||||||
|
|
||||||
|
\subsubsection{Summing Junction formed by R1 and R2}
|
||||||
|
|
||||||
|
The resistors R1, R2 form a summing junction
|
||||||
|
to the negative input of IC1.
|
||||||
|
Using the earlier definition for resistor failure modes,
|
||||||
|
$fm(R)= \{OPEN, SHORT\}$, we analyse the summing junction
|
||||||
|
in table~\ref{tbl:sumjunct} below.
|
||||||
|
|
||||||
|
\begin{table}[h+]
|
||||||
|
\caption{Summing Junction: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
|
\label{tbl:sumjunct}
|
||||||
|
|
||||||
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
|
\textbf{Failure Scenario} & & \textbf{Summing} & & \textbf{Symptom} \\
|
||||||
|
& & \textbf{Junction} & & \\
|
||||||
|
\hline
|
||||||
|
FS1: R1 SHORT & & R1 input dominates & & $R1\_IN\_DOM$ \\ \hline
|
||||||
|
FS2: R1 OPEN & & R2 input dominates & & $R2\_IN\_DOM$ \\ \hline
|
||||||
|
FS3: R2 SHORT & & R2 input dominates & & $R2\_IN\_DOM$ \\ \hline
|
||||||
|
FS4: R2 OPEN & & R1 input dominates & & $R1\_IN\_DOM$ \\ \hline
|
||||||
|
|
||||||
|
\hline
|
||||||
|
|
||||||
|
\end{tabular}
|
||||||
|
\end{table}
|
||||||
|
% PHS45
|
||||||
|
|
||||||
|
This summing junction fails with two symptoms. We create a {\dc} called $SUMJUNCT$ and we can state,
|
||||||
|
$$fm(SUMJUNCT) = \{ R1\_IN\_DOM, R2\_IN\_DOM \} $$.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%\subsection{FMMD Process applied to $\Sigma \Delta $ADC}.
|
||||||
|
|
||||||
|
T%he block diagram in figure~\ref{fig
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
\section{PT100 Analysis: Double failures and MTTF statistics}
|
\section{PT100 Analysis: Double failures and MTTF statistics}
|
||||||
{
|
{
|
||||||
This section
|
This section
|
||||||
|
BIN
submission_thesis/CH5_Examples/sigma_delta_block.dia
Normal file
BIN
submission_thesis/CH5_Examples/sigma_delta_block.dia
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user