luchtime edit (geddit)
This commit is contained in:
parent
3b897e85d2
commit
b9d80c11d1
@ -29,7 +29,7 @@ a variety of typical embedded system components including analogue/digital and e
|
||||
The first section
|
||||
~\ref{sec:determine_fms} looks at how we determine failure mode sets for {\bcs}
|
||||
(in the context of the safety standards
|
||||
we are conforming to for our particular project).
|
||||
we are using for our particular project).
|
||||
%
|
||||
This is followed by several example FMMD analyses,
|
||||
the first analysing a common configuration of
|
||||
@ -50,13 +50,13 @@ where its re-use is appropriate in the first stage and
|
||||
not in the second.
|
||||
%
|
||||
Section~\ref{sec:fivepolelp} analyses a Sallen-Key based five pole low pass filter.
|
||||
This demonstrates FMMD being able to re-use the first Sallen-Key encountered as a {\dc}, thus
|
||||
saving time and effort for the analyst.
|
||||
This demonstrates FMMD being able to re-use the first Sallen-Key analysis, %encountered as a {\dc}
|
||||
thus saving time and effort for the analyst.
|
||||
%
|
||||
Section~\ref{sec:bubba} shows FMMD applied to a circular circuit topology---the `Bubba' oscillator---which uses
|
||||
four op-amp stages with supporting components.
|
||||
%
|
||||
Section~\ref{sec:sigmadelta} shows FMMD analysing the sigma delta analogue to digital converter---which operates on both
|
||||
Section~\ref{sec:sigmadelta} shows FMMD analysing the sigma delta analogue to digital converter---again with a circular signal path---but which also operates on both
|
||||
analogue and digital signals.
|
||||
%
|
||||
% Moving Pt100 to metrics
|
||||
@ -293,7 +293,7 @@ $$ fm(R) = \{ OPEN, SHORT \} . $$
|
||||
\centering
|
||||
\includegraphics[width=200pt]{CH5_Examples/lm258pinout.jpg}
|
||||
% lm258pinout.jpg: 478x348 pixel, 96dpi, 12.65x9.21 cm, bb=0 0 359 261
|
||||
\caption{Pinout for an LM358 dual OP-AMP}
|
||||
\caption{Pinout for an LM358 dual OpAmp}
|
||||
\label{fig:lm258}
|
||||
\end{figure}
|
||||
|
||||
@ -305,10 +305,10 @@ For the purpose of example, we look at
|
||||
a typical op-amp designed for instrumentation and measurement, the dual packaged version of the LM358~\cite{lm358}
|
||||
(see figure~\ref{fig:lm258}), and use this to compare the failure mode derivations from FMD-91 and EN298.
|
||||
|
||||
\paragraph{ Failure Modes of an OP-AMP according to FMD-91 }
|
||||
\paragraph{ Failure Modes of an OpAmp according to FMD-91 }
|
||||
|
||||
%Literature suggests, latch up, latch down and oscillation.
|
||||
For OP-AMP failures modes, FMD-91\cite{fmd91}{3-116] states,
|
||||
For OpAmp failures modes, FMD-91\cite{fmd91}{3-116] states,
|
||||
\begin{itemize}
|
||||
\item Degraded Output 50\% Low Slew rate - poor die attach
|
||||
\item No Operation - overstress 31.3\%
|
||||
@ -318,11 +318,11 @@ For OP-AMP failures modes, FMD-91\cite{fmd91}{3-116] states,
|
||||
|
||||
Again these are mostly internal causes of failure, more of interest to the component manufacturer
|
||||
than a designer looking for the symptoms of failure.
|
||||
We need to translate these failure causes within the OP-AMP into {\fms}.
|
||||
We need to translate these failure causes within the OpAmp into {\fms}.
|
||||
We can look at each failure cause in turn, and map it to potential {\fms} suitable for use in FMEA
|
||||
investigations.
|
||||
|
||||
\paragraph{OP-AMP failure cause: Poor Die attach}
|
||||
\paragraph{OpAmp failure cause: Poor Die attach}
|
||||
The symptom for this is given as a low slew rate. This means that the op-amp
|
||||
will not react quickly to changes on its input terminals.
|
||||
This is a failure symptom that may not be of concern in a slow responding system like an
|
||||
@ -343,18 +343,18 @@ We map this failure cause to $HIGH$ or $LOW$.
|
||||
|
||||
\paragraph{Open $V_+$}
|
||||
This failure cause will mean that the minus input will have the very high gain
|
||||
of the OP-AMP applied to it, and the output will be forced HIGH or LOW.
|
||||
of the OpAmp applied to it, and the output will be forced HIGH or LOW.
|
||||
We map this failure cause to $HIGH$ or $LOW$.
|
||||
|
||||
\paragraph{Collecting OP-AMP failure modes from FMD-91}
|
||||
We can define an OP-AMP, under FMD-91 definitions to have the following {\fms}.
|
||||
\paragraph{Collecting OpAmp failure modes from FMD-91}
|
||||
We can define an OpAmp, under FMD-91 definitions to have the following {\fms}.
|
||||
\begin{equation}
|
||||
\label{eqn:opampfms}
|
||||
fm(OP-AMP) = \{ HIGH, LOW, NOOP, LOW_{slew} \}
|
||||
fm(OpAmp) = \{ HIGH, LOW, NOOP, LOW_{slew} \}
|
||||
\end{equation}
|
||||
|
||||
|
||||
\paragraph{Failure Modes of an OP-AMP according to EN298}
|
||||
\paragraph{Failure Modes of an OpAmp according to EN298}
|
||||
|
||||
EN298 does not specifically define OP\_AMPS failure modes; these can be determined
|
||||
by following a procedure for `integrated~circuits' outlined in
|
||||
@ -434,7 +434,7 @@ that we got from FMD-91, listed in equation~\ref{eqn:opampfms}.
|
||||
|
||||
%\clearpage
|
||||
|
||||
\subsubsection{Failure modes of an OP-AMP}
|
||||
\subsubsection{Failure modes of an OpAmp}
|
||||
|
||||
\label{sec:opamp_fms}
|
||||
For the purpose of the examples to follow, the op-amp will
|
||||
@ -450,7 +450,7 @@ The EN298 pinouts failure mode technique cannot reveal failure modes due to inte
|
||||
The FMD-91 entries for op-amps are not directly usable as
|
||||
component {\fms} in FMEA or FMMD and require interpretation.
|
||||
|
||||
%For our OP-AMP example could have come up with different symptoms for both sides. Cannot predict the effect of internal errors, for instance ($LOW_{slew}$)
|
||||
%For our OpAmp example could have come up with different symptoms for both sides. Cannot predict the effect of internal errors, for instance ($LOW_{slew}$)
|
||||
%is missing from the EN298 failure modes set.
|
||||
|
||||
|
||||
@ -661,7 +661,7 @@ If we consider the input will only be positive, we can invert the potential divi
|
||||
|
||||
We can form a {\dc} from this, and call it an inverted potential divider $INVPD$.
|
||||
|
||||
We can now form a {\fg} from the OP-AMP and the $INVPD$
|
||||
We can now form a {\fg} from the OpAmp and the $INVPD$
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{Inverting Amplifier: Single failure analysis}
|
||||
@ -792,7 +792,7 @@ We can now form a {\fg} from the OP-AMP and the $INVPD$
|
||||
$$ fm(INVAMP) = \{ {lowpass}, {high}, {low} \}.$$
|
||||
|
||||
|
||||
\subsection{Second Approach: Inverting OP-AMP analysing with three components in one larger {\fg}}
|
||||
\subsection{Second Approach: Inverting OpAmp analysing with three components in one larger {\fg}}
|
||||
|
||||
Here we analyse the same problem without using an intermediate $PD$
|
||||
derived component.
|
||||
@ -1275,7 +1275,7 @@ The op-amp IC1 is being used simply as a buffer. By placing it between the next
|
||||
on the signal path, we remove the possibility of unwanted signal feedback.
|
||||
The buffer is one of the simplest op-amp configurations.
|
||||
It has no other components, and so we can now form a {\fg}
|
||||
from the $FirstOrderLP$ and the OP-AMP component.
|
||||
from the $FirstOrderLP$ and the OpAmp component.
|
||||
|
||||
\begin{table}[ht]
|
||||
\caption{First Stage LP1: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
@ -1937,7 +1937,7 @@ there are more {\dcs} and this increases the possibility of re-use.
|
||||
|
||||
|
||||
|
||||
\section{Sigma Delta Analogue to Digital Converter ($\Sigma \Delta ADC$).} %($\Sigma \Delta ADC$)}
|
||||
\section{Sigma Delta Analogue to Digital Converter (\sd).} %($\Sigma \Delta ADC$)}
|
||||
\label{sec:sigmadelta}
|
||||
The following example is used to demonstrate FMMD analysis of a mixed analogue and digital circuit (see figure~\ref{fig:sigmadelta}).
|
||||
\begin{figure}[h]
|
||||
@ -1956,7 +1956,7 @@ The following example is used to demonstrate FMMD analysis of a mixed analogue a
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./CH5_Examples/sigma_delta_block.png}
|
||||
% sigma_delta_block.png: 828x367 pixel, 72dpi, 29.21x12.95 cm, bb=0 0 828 367
|
||||
\caption{Electrical signal path Block diagram: $\Sigma \Delta ADC$} % Analogue to Digital Converter }
|
||||
\caption{Electrical signal path Block diagram: \sd} % Analogue to Digital Converter }
|
||||
\label{fig:sigmadeltablock}
|
||||
\end{figure}
|
||||
|
||||
@ -1986,11 +1986,14 @@ and fed into the summing integrator completing the negative feedback loop.
|
||||
|
||||
\subsection{FMMD analysis of \sd }
|
||||
|
||||
The partslist for the \sd :
|
||||
%The partslist for the \sd :
|
||||
%
|
||||
$$\{ IC1, IC2, IC3, IC4, R1, R2, R3, R4, C1 \} $$.
|
||||
%$$\{ IC1, IC2, IC3, IC4, R1, R2, R3, R4, C1 \} $$.
|
||||
%
|
||||
IC1,2 and 3 are all Op-amps and we have failure modes from section~\ref{sec:opampfm}.
|
||||
The parts for the \sd are a mixture of analogue (resistors, capacitors, OpAmps) and digital
|
||||
(D type flip flop, and a digital clock). We examine the failure modes of all components in this circuit below.
|
||||
%
|
||||
IC1,2 and 3 are all OpAmps and we have failure modes from section~\ref{sec:opamp_fms}.
|
||||
%
|
||||
$$ fm(OPAMP) = \{ HIGH, LOW, NOOP, LOW\_SLEW \} $$
|
||||
%
|
||||
@ -2013,7 +2016,8 @@ $$ fm ( CLOCK ) = \{ STOPPED \} $$
|
||||
\subsection{Identifying initial {\fgs}}
|
||||
|
||||
\subsubsection{Summing Junction Integrator (SUMJINT)}
|
||||
We now need to choose {\fgs}. The signal path is circular, but we can start
|
||||
We now need to choose {\fgs}. The most obvious way to find initial {\fgs} id
|
||||
to follow the signal path. The signal path is circular, but we can start
|
||||
with the input voltage, which is applied via $R2$, we term this voltage $V_{in}$.
|
||||
%
|
||||
The feedback voltage for the ADC is supplied via $R1$, we term this voltage as $V_{fb}$.
|
||||
@ -2024,12 +2028,12 @@ This can be our first {\fg} and we analyse it in table~\ref{tbl:sumjint}.
|
||||
%For the symptoms, we have to think in terms of the effect
|
||||
%on its performance as a summing junction and not be
|
||||
%distracted by the integrator formed by $C_1$ and $IC1$.
|
||||
|
||||
$$G^0_1 = \{R1, R2 \}$$
|
||||
%
|
||||
$$FG = \{R1, R2, IC1, C1 \}$$
|
||||
|
||||
\begin{table}[h+]
|
||||
\center
|
||||
\caption{ Summing Junction Integrator($SUMJINT$): Failure Mode Effects Analysis} % title of Table
|
||||
\caption{Summing Junction Integrator($SUMJINT$): Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:sumjint}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
@ -2067,48 +2071,16 @@ $$G^0_1 = \{R1, R2 \}$$
|
||||
% \end{table}
|
||||
|
||||
|
||||
From the analysis in table~\ref{tbl:sumj} we collect symptoms.
|
||||
We can create the derived component
|
||||
$SUMJINT$.% which has the failure modes from collecting its symptoms.
|
||||
From the analysis in table~\ref{tbl:sumjint} we collect symptoms.
|
||||
We create the derived component
|
||||
$SUMJINT$ and assign it the failure modes collected above.% which has the failure modes from collecting its symptoms.
|
||||
We now state:
|
||||
|
||||
$$ fm(SUMJUINT) = \{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$$
|
||||
$$ fm(SUMJUINT^1_0) = \{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$$
|
||||
|
||||
% \subsubsection{Buffered Integrator}
|
||||
%
|
||||
% Following the signal path, the next functional group is the integrator.
|
||||
% %
|
||||
% This integrator is formed by placing $C1$ in the negative feedback loop of $IC2$\cite{aoe}[p.222].
|
||||
% The output of the integrator is fed into IC2, which acts as a buffer,
|
||||
% %performing the function of
|
||||
% isolating the integrator from any load on its output.
|
||||
% These three components work together to form a buffered integrator,
|
||||
% and nicely form a {\fg}.
|
||||
%
|
||||
% $$G^0_2 = \{IC1, C1, IC2\}.$$
|
||||
%
|
||||
% The buffered integrator is analysed in table~\ref{tbl:intg}.
|
||||
%
|
||||
%
|
||||
% \begin{table}[h+]
|
||||
% \center
|
||||
% \caption{IC1,C1,IC2 Buffered Integrator: Failure Mode Effects Analysis} % title of Table
|
||||
% \label{tbl:intg}
|
||||
%
|
||||
% \begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
% \textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
||||
% & & & & \\
|
||||
% \hline \hline
|
||||
%
|
||||
%
|
||||
%
|
||||
% From the analysis in table~\ref{tbl:intg}, we can now create a derived component
|
||||
% $BFINT$ which has the failure modes from collecting symptoms from the analysis in table~\ref{tbl:intg}.
|
||||
% We can state
|
||||
%
|
||||
% $$ fm (BFINT) = \{ HIGH, LOW, NO\_INTEGRATION , LOW\_SLEW \} $$
|
||||
%
|
||||
That is the failure modes of our new {\dc} $SUMJINT^1_0$ are $\{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$
|
||||
|
||||
\clearpage
|
||||
|
||||
\subsubsection{High Impedance Signal Buffer (HISB)}
|
||||
|
||||
@ -2123,7 +2095,11 @@ It therefore has the failure modes of an Op-amp.
|
||||
\center
|
||||
|
||||
% \center
|
||||
\caption{ High Impedance Signal Buffer (HISB) : Failure Mode Effects Analysis} % title of Table
|
||||
\caption{ High Impedance Signal Buffer : Failure Mode Effects Analysis} % title of Table
|
||||
|
||||
This is an OpAmp in a signal buffer configuration.
|
||||
As it is performing one particular function
|
||||
we my consider it as a derived component, that of a High Impedance Signal Buffer (HISB).
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
|
||||
@ -2134,24 +2110,19 @@ It therefore has the failure modes of an Op-amp.
|
||||
|
||||
\hline\hline
|
||||
|
||||
FS5: $IC2$ $HIGH$ & & output perm. high & & HIGH \\
|
||||
FS6: $IC2$ $LOW$ & & output perm. low & & LOW \\ \hline
|
||||
FS7: $IC2$ $NOOP$ & & no current to output & & $NOOP$ \\
|
||||
FS8: $IC2$ $LOW\_SLEW$ & & delay signal & & $LOW\_SLEW$ \\ \hline
|
||||
FS1: $IC2$ $HIGH$ & & output perm. high & & HIGH \\
|
||||
FS2: $IC2$ $LOW$ & & output perm. low & & LOW \\
|
||||
FS3: $IC2$ $NOOP$ & & no current to output & & $NOOP$ \\
|
||||
FS4: $IC2$ $LOW\_SLEW$ & & delay signal & & $LOW\_{SLEW}$ \\ \hline
|
||||
|
||||
|
||||
% FS1: $IC2$ $HIGH$ & & output perm. high & & HIGH \\
|
||||
% FS2: $IC2$ $LOW$ & & output perm. low & & LOW \\ \hline
|
||||
% FS3: $IC2$ $NOOP$ & & no current drive & & LOW \\
|
||||
% FS4: $IC2$ $LOW\_SLEW$ & & delayed signal & & LOW\_SLEW \\ \hline
|
||||
% \hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
% \hline
|
||||
%
|
||||
% \end{tabular}
|
||||
% \end{table}
|
||||
We create the {\dc} $HISB^1_1$ and it failure mode may be stated as $fm(HISB^1_1) = \{HIGH, LOW, NOOP, LOW_{SLEW} \}$.
|
||||
|
||||
\subsubsection{Digital level to analogue level conversion ($DL2AL$).}
|
||||
Digital level to analogue level conversion is performed by IC3 in conjunction with a potential divider formed by R3,R4.
|
||||
@ -2161,27 +2132,27 @@ to the inverting input of IC3.
|
||||
\paragraph{Potential divider Formed by R3,R4.}
|
||||
We re-use the analysis from table~\ref{tbl:pdfmea}, and use the derived component $PD$
|
||||
to represent the potential divider formed by R3 and R4. Because PD is a derived component, we can denote this
|
||||
by super-scripting it with its abstraction level of 1, thus $PD^1$.
|
||||
by super-scripting it with its abstraction level of 1, thus $PD$.
|
||||
$$
|
||||
fm(PD^1) = \{ HIGH, LOW \}.
|
||||
fm(PD) = \{ HIGH, LOW \}.
|
||||
$$
|
||||
|
||||
%
|
||||
IC3 is an op-amp and has the failure modes
|
||||
$$fm(IC3) = \{\{ HIGH, LOW, NOOP, LOW\_SLEW \} . $$
|
||||
|
||||
%
|
||||
The digital signal is supplied to the non-inverting input.
|
||||
The output is a voltage level in the analogue domain $-V$ or $+V$.
|
||||
%
|
||||
We now form a {\fg} from $PD $ and $IC3$.
|
||||
%
|
||||
$$ FG = \{ PD , IC3 \} $$
|
||||
%
|
||||
We now analyse the {\fg} $G $ in table~\ref{tbl:DS2AS}.
|
||||
|
||||
We now form a {\fg} from $PD^1$ and $IC3$.
|
||||
|
||||
$$ G^1_0 = \{ PD^1, IC3 \} $$
|
||||
|
||||
We now analyse the {\fg} $G^1$ in table~\ref{tbl:DS2AS}.
|
||||
%$$ fm (BFINT) = \{ HIGH, LOW, NO\_INTEGRATION , LOW\_SLEW \} $$
|
||||
|
||||
\begin{table}[h+]
|
||||
\center
|
||||
\caption{$PD^1, IC3$ Digital level to analogue level converter: Failure Mode Effects Analysis} % title of Table
|
||||
\caption{$PD , IC3$ Digital level to analogue level converter: Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:DS2AS}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
@ -2192,34 +2163,78 @@ We now analyse the {\fg} $G^1$ in table~\ref{tbl:DS2AS}.
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
\hline \hline
|
||||
FS1: $PD^1$ $HIGH$ & & output perm. low & & LOW \\
|
||||
FS2: $PD^1$ $LOW$ & & output perm. low & & HIGH \\ \hline
|
||||
FS1: $PD $ $HIGH$ & & output perm. low & & LOW \\
|
||||
FS2: $PD $ $LOW$ & & output perm. low & & HIGH \\ \hline
|
||||
|
||||
\hline
|
||||
FS3: $IC3$ $HIGH$ & & output perm. high & & HIGH \\
|
||||
FS4: $IC3$ $LOW$ & & output perm. low & & LOW \\ \hline
|
||||
FS4: $IC3$ $LOW$ & & output perm. low & & LOW \\
|
||||
FS5: $IC3$ $NOOP$ & & no current drive & & LOW \\
|
||||
FS6: $IC3$ $LOW\_SLEW$ & & delayed signal & & LOW\_SLEW \\ \hline
|
||||
FS6: $IC3$ $LOW\_{SLEW}$ & & delayed signal & & $LOW\_{SLEW}$ \\ \hline
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
We collect the symptoms of failure $\{ LOW, HIGH, LOW\_SLEW \}$.
|
||||
We collect the symptoms of failure $\{ LOW, HIGH, LOW\_{SLEW} \}$.
|
||||
We can now derive a new component to represent the level conversion and call it $DL2AL$.
|
||||
|
||||
$$ DL2AL^2 = D(G^1_0) $$
|
||||
$$ DL2AL = D(FG = \{ PD , IC3 \}) $$
|
||||
|
||||
$$ fm (DL2AL^2) = \{ LOW, HIGH, LOW\_SLEW \} $$
|
||||
$$ fm (DL2AL^2) = \{ LOW, HIGH, LOW\_{SLEW} \} $$
|
||||
|
||||
\clearpage
|
||||
|
||||
|
||||
|
||||
|
||||
% \subsubsection{digital clocked memory (flip-flop).}
|
||||
\subsubsection{$DIGBUF$ --- digital clocked memory (flip-flop).}
|
||||
%
|
||||
% This is a single component as a {\fg}, and we can state
|
||||
% $$ fm (DCM) = \{ HIGH, LOW, NOOP \} $$
|
||||
|
||||
The digital element of the {\sd}, is the one bit memory, or D type flip flop. This
|
||||
buffers the feedback result and provides the output bit stream.
|
||||
We create a {\fg} from the CLOCK and IC4 to model this digital buffer.
|
||||
|
||||
$$FG = \{ IC4, CLOCK \}$$
|
||||
|
||||
|
||||
%% DIGBUF --- Digital Buffer
|
||||
|
||||
We now analyse this {\fg} in table~\ref{tbl:digbuf}.
|
||||
|
||||
|
||||
\begin{table}[h+]
|
||||
\center
|
||||
\caption{$ IC4, CLOCK $ Digital Buffer: Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:digbuf}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
%\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
||||
% & & & & \\
|
||||
% & & & & \\
|
||||
\textbf{Failure} & & \textbf{$DIGBUF$ } & & \textbf{Derived Component} \\
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
%$$ fm ( CD4013B) = \{ HIGH, LOW, NOOP \} $$
|
||||
\hline \hline
|
||||
FS1: $CLOCK$ $STOPPED$ & & buffer stopped & & STOPPED \\ \hline
|
||||
|
||||
FS2: $IC4$ $HIGH$ & & buffer stopped & & STOPPED \\
|
||||
FS3: $IC4$ $LOW$ & & buffer stopped & & STOPPED \\
|
||||
FS4: $IC4$ $NOOP$ & & no current drive & & LOW \\ \hline
|
||||
\hline
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
We collect the symptoms of failure $\{ LOW, STOPPED \}$.
|
||||
We can now derive a new component to represent the level conversion and call it $DIGBUF$.
|
||||
|
||||
|
||||
$$ fm (DIGBUF) = \{ LOW, STOPPED \} $$
|
||||
|
||||
|
||||
%%% END DIGBUF
|
||||
|
||||
\subsection{First {\fgs} analysed}
|
||||
|
||||
@ -2234,12 +2249,14 @@ These are:
|
||||
\item HISB --- A High impedance buffer,
|
||||
\item DIGITALBUFF --- A one bit digital buffer,
|
||||
\item DL2AL --- A digital to analog level converter.
|
||||
\item DIGBUF --- A digital one bit buffer/memory
|
||||
\end{itemize}
|
||||
These {\dcs} follow to signal path shown in figure~\ref{fig:sigmadeltablock}.
|
||||
We now use these {\dcs} to create a final {\fg} to represent the failure mode
|
||||
behaviour of the $\Sigma \Delta ADC$. We represent this
|
||||
in the Euler diagram in figure~\ref{fig:eulersd}.
|
||||
|
||||
The next stage is to create {\fgs} from these initial {\dcs}
|
||||
and make a complete failure mode mode for the {\sd}.
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
@ -2259,26 +2276,24 @@ in the Euler diagram in figure~\ref{fig:eulersd}.
|
||||
% \end{figure}
|
||||
|
||||
|
||||
IC4 is as yet unused, the signal path connects IC4 and DL2AL. These seem natural candidates
|
||||
for the next {\fg}.
|
||||
%IC4 is as yet unused, the signal path connects IC4 and DL2AL. These seem natural candidates
|
||||
%for the next {\fg}.
|
||||
BFINT and SUMJ are adjacent in the signal path and these are chosen as a {\fg} as well.
|
||||
|
||||
\clearpage
|
||||
|
||||
|
||||
|
||||
\subsubsection{{\fg} $BFINT^1$ and $SUMJ^1$}
|
||||
\subsubsection{{\fg} $HISB$ and $SUMJINT$}
|
||||
|
||||
We now form a {\fg} with the two derived components $BFINT^1$ and $SUMJINT^1$.
|
||||
We now form a {\fg} with the two derived components $HISB$ and $SUMJINT$.
|
||||
This forms a buffered integrating summing junction which we analyse in table~\ref{tbl:BISJ}.
|
||||
|
||||
$$ G^1_0 = \{ BFINT^1, SUMJ^1 \} $$
|
||||
$$ FG = \{ HISB, SUMJINT \} $$
|
||||
|
||||
%$$ fm (BFINT) = \{ HIGH, LOW, NO\_INTEGRATION , LOW\_SLEW \} $$
|
||||
%$$ fm(SUMJ) = \{ V_{in} DOM, V_{fb} DOM \} .$$
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{ $BFINT^1, SUMJ^1$ buffered integrating summing junction($BISJ$): Failure Mode Effects Analysis} % title of Table
|
||||
\caption{ $HISB , SUMJINT$ buffered integrating summing junction($BISJ$): Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:DS2AS}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
@ -2290,14 +2305,17 @@ $$ G^1_0 = \{ BFINT^1, SUMJ^1 \} $$
|
||||
|
||||
|
||||
\hline \hline
|
||||
FS1: $SUMJ^1$ $V_{in} DOM$ & & output integral of $V_{in}$ & & $OUTPUT STUCK$ \\
|
||||
FS2: $SUMJ^1$ $V_{fb} DOM$ & & output integral of $V_{fb}$ & & $OUTPUT STUCK$ \\ \hline
|
||||
|
||||
FS1: $SUMJINT$ $V_{in} DOM$ & & output integral of $V_{in}$ & & $OUTPUT STUCK$ \\
|
||||
FS2: $SUMJINT$ $V_{fb} DOM$ & & output integral of $V_{fb}$ & & $OUTPUT STUCK$ \\
|
||||
% $$ fm(SUMJUINT^1_0) = \{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$$
|
||||
FS3: $SUMJINT$ $NO\_INTEGRATION$ & & output stuck high or low & & $OUTPUT STUCK$ \\
|
||||
FS4: $SUMJINT$ $HIGH$ & & output stuck high & & $OUTPUT STUCK$ \\
|
||||
FS5: $SUMJINT$ $LOW$ & & output stuck low & & $OUTPUT STUCK$ \\ \hline
|
||||
%\hline
|
||||
FS3: $BFINT^1$ $HIGH$ & & output perm. high & & $OUTPUT STUCK$ \\
|
||||
FS4: $BFINT^1$ $LOW$ & & output perm. low & & $OUTPUT STUCK$ \\ \hline
|
||||
FS5: $BFINT^1$ $ NO\_INTEGRATION$ & & no current drive & & $OUTPUT STUCK$ \\
|
||||
FS6: $BFINT^1$ $LOW\_SLEW$ & & delayed signal & & $REDUCED\_INTEGRATION$ \\ \hline
|
||||
FS6: $HISB$ $HIGH$ & & output perm. high & & $OUTPUT STUCK$ \\
|
||||
FS7: $HISB$ $LOW$ & & output perm. low & & $OUTPUT STUCK$ \\
|
||||
FS8: $HISB$ $ NO\_INTEGRATION$ & & no current drive & & $OUTPUT STUCK$ \\
|
||||
FS9: $HISB$ $LOW\_SLEW$ & & delayed signal & & $REDUCED\_INTEGRATION$ \\ \hline
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
@ -2317,40 +2335,40 @@ called $BISJ^2$.
|
||||
|
||||
|
||||
|
||||
\subsubsection{{\fg} $IC4$ and $DL2AL$}
|
||||
\subsubsection{{\fg} $DL2AL$ and $DIGBUF$}
|
||||
|
||||
%$$ fm (DL2AL^2) = \{ LOW, HIGH, LOW\_SLEW \} $$
|
||||
%$$ fm ( CD4013B) = \{ HIGH, LOW, NOOP \} $$
|
||||
|
||||
The functional group formed by $IC4$ and $DL2AL$ takes the flip flop clocked and buffered
|
||||
The functional group formed by $DIGBUF$ and $DL2AL$ takes the flip flop clocked and buffered
|
||||
value, and outputs it at analogue voltage levels for the summing junction.
|
||||
|
||||
$ G^2_1 = \{ IC4^0, DL2AL^2, CLOCK\} $
|
||||
$ FG = \{ DIGBUF, DL2AL \} $
|
||||
|
||||
We analyse the buffered flip flop circuitry in table~\ref{tbl:FFB}.
|
||||
We analyse the buffered flip flop circuitry in table~\ref{tbl:digbuf}.
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{ $IC4^0,DL2AL^2$ flip flop buffered($FFB$): Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:FFB}
|
||||
\caption{ $DIGBUF,DL2AL$ flip flop buffered($FFB$): Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:digbuf}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
%\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
||||
% & & & & \\
|
||||
% & & & & \\
|
||||
\textbf{Failure} & & \textbf{$FFB$ } & & \textbf{Derived Component} \\
|
||||
\textbf{Failure} & & \textbf{$DIGBUF$ } & & \textbf{Derived Component} \\
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
|
||||
\hline \hline
|
||||
FS1: $IC4^0$ $HIGH$ & & output stuck high & & $OUTPUT STUCK$ \\
|
||||
FS2: $IC4^0$ $LOW$ & & output stuck low & & $OUTPUT STUCK$ \\
|
||||
FS3: $IC4^0$ $NOOP$ & & output stuck low & & $OUTPUT STUCK$ \\ \hline
|
||||
FS1: $DIGBUF$ $STOPPED$ & & output stuck & & $OUTPUT STUCK$ \\
|
||||
FS2: $DIGBUF$ $LOW$ & & output stuck low & & $OUTPUT STUCK$ \\
|
||||
\\ \hline
|
||||
%\hline
|
||||
FS4: $DL2AL^2$ $LOW$ & & output perm. high & & $OUTPUT STUCK$ \\
|
||||
FS5: $DL2AL^2$ $HIGH$ & & output perm. low & & $OUTPUT STUCK$ \\ \hline
|
||||
FS6: $DL2AL^2$ $LOW\_SLEW$ & & no current drive & & $LOW\_SLEW$ \\
|
||||
FS3: $DL2AL$ $LOW$ & & output perm. high & & $OUTPUT STUCK$ \\
|
||||
FS4: $DL2AL$ $HIGH$ & & output perm. low & & $OUTPUT STUCK$ \\ \hline
|
||||
FS5: $DL2AL$ $LOW\_SLEW$ & & no current drive & & $LOW\_SLEW$ \\
|
||||
|
||||
|
||||
FS7: $CLOCK^0$ $STOPPED$ & & output stuck & & $OUTPUT STUCK$ \\
|
||||
\hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
@ -2360,6 +2378,7 @@ We now collect symptoms $\{OUTPUT STUCK, LOW\_SLEW\}$ and create a {\dc} at the
|
||||
called $FFB^3$.
|
||||
|
||||
|
||||
\clearpage
|
||||
\subsection{Final, top level {\fg} for sigma delta Converter}
|
||||
|
||||
|
||||
@ -2402,13 +2421,13 @@ $$fm(SSDADC^4) = \{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$$
|
||||
We now show the final hierarchy in figure~\ref{fig:sdadc}.
|
||||
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=400pt]{./CH5_Examples/sdadc.png}
|
||||
% sdadc.png: 886x1134 pixel, 72dpi, 31.26x40.01 cm, bb=0 0 886 1134
|
||||
\caption{FMMD Analysis hierarchy for the {\sd}}
|
||||
\label{fig:sdadc}
|
||||
\end{figure}
|
||||
% \begin{figure}[h]
|
||||
% \centering
|
||||
% \includegraphics[width=400pt]{./CH5_Examples/sdadc.png}
|
||||
% % sdadc.png: 886x1134 pixel, 72dpi, 31.26x40.01 cm, bb=0 0 886 1134
|
||||
% \caption{FMMD Analysis hierarchy for the {\sd}}
|
||||
% \label{fig:sdadc}
|
||||
% \end{figure}
|
||||
|
||||
\clearpage
|
||||
% ]
|
||||
|
@ -31,8 +31,8 @@
|
||||
\newcommand{\permil}{\ensuremath{0/{\!}_{00}}}
|
||||
%\newcommand{\emp}{ELECTRO MAGNETIC FUKING PULSE}
|
||||
\newcommand{\emp}{} %% was italics
|
||||
%\newcommand{\sd}{\ensuremath{\Sigma \Delta ADC}}
|
||||
\newcommand{\sd}{\ensuremath{Sigma\;Delta\;ADC}}
|
||||
\newcommand{\sd}{\ensuremath{\Sigma \Delta ADC}}
|
||||
%\newcommand{\sd}{\ensuremath{Sigma\;Delta\;ADC}}
|
||||
\newcommand{\derivec}{{D}}
|
||||
\newcommand{\abslev}{\ensuremath{\alpha}}
|
||||
\newcommand{\oc}{\ensuremath{^{o}{C}}}
|
||||
|
Loading…
Reference in New Issue
Block a user