copied from non-inv but have done into/abstract
This commit is contained in:
parent
0933c018db
commit
b079e75c4e
27
invopamp/Makefile
Normal file
27
invopamp/Makefile
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
DIA_IMAGES = dc1.png fg1b.png fgampa.png fgamp.png opamp.png fg1a.png fg1.png fgampb.png op1.png
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#
|
||||||
|
|
||||||
|
%.png : %.dia
|
||||||
|
dia $< -e $@
|
||||||
|
echo source $< target $@
|
||||||
|
|
||||||
|
#graphics: $(DIA_IMAGES)
|
||||||
|
|
||||||
|
paper: paper.tex invopamp_paper.tex $(DIA_IMAGES)
|
||||||
|
#latex paper.tex
|
||||||
|
#dvipdf paper pdflatex cannot use eps ffs
|
||||||
|
pdflatex paper.tex
|
||||||
|
cp paper.pdf invopamp_paper.pdf
|
||||||
|
okular invopamp_paper.pdf
|
||||||
|
|
||||||
|
|
||||||
|
# Remove the need for referncing graphics in subdirectories
|
||||||
|
#
|
||||||
|
invopamp_paper.tex: invopamp.tex paper.tex
|
||||||
|
cat invopamp.tex | sed 's/invopamp\///' > invopamp_paper.tex
|
||||||
|
|
||||||
|
bib:
|
||||||
|
bibtex paper
|
||||||
|
|
@ -8,25 +8,27 @@ This paper analyses an inverting op-amp
|
|||||||
configuration, with the opamp and gain resistors using the FMMD
|
configuration, with the opamp and gain resistors using the FMMD
|
||||||
methodology.
|
methodology.
|
||||||
%
|
%
|
||||||
It has three base components, two resistors
|
It has five base components, ifour resistors %two resistors programming gain, two programming a reference, or virtual ground voltage
|
||||||
and one op-amp.
|
and one op-amp.
|
||||||
|
|
||||||
The two resistors are used as a current balance/virtual ground to program the gain
|
Two resistors are used as a current balance/virtual ground to program the gain
|
||||||
of the amplifier. We consider the two resistors as a functional group
|
of the amplifier, and another pair to set the reference or virtual ground voltage.
|
||||||
where their function is to operate as a current balance/virtual ground.
|
We consider two of the resistors as a functional group, a potential divider
|
||||||
|
where their function is to operate as a virtual ground volatge reference.
|
||||||
|
The gain resistors work with the op-amp to determeine the gain characteristics.
|
||||||
%
|
%
|
||||||
The base component error modes of the
|
The base component error modes of the
|
||||||
resistors are used to model the current balance/virtual ground from
|
components are used to model the amplifier from
|
||||||
a failure mode perspective.
|
a failure mode perspective.
|
||||||
%
|
%
|
||||||
We determine the failure symptoms of the current balance/virtual ground and
|
We determine the failure symptoms of the potential divider and
|
||||||
consider these as failure modes of a new derived component.
|
consider this as a derived component.
|
||||||
|
|
||||||
We can now create a functional group representing the non-inverting amplifier,
|
We can now create a functional group representing the inverting amplifier,
|
||||||
by bringing the failure modes from the current balance/virtual ground and
|
by bringing the failure modes from the potential divider and
|
||||||
the op-amp into a functional group.
|
the op-amp with its gain programming resistors into a functional group.
|
||||||
%
|
%
|
||||||
This can be analysed and a derived component to represent the non inverting
|
This can be analysed and a derived component to represent the inverting
|
||||||
amplifier determined.
|
amplifier determined.
|
||||||
}
|
}
|
||||||
\section{Introduction}
|
\section{Introduction}
|
||||||
@ -36,25 +38,27 @@ This chapter analyses an inverting op-amp
|
|||||||
configuration, with the opamp and gain resistors using the FMMD
|
configuration, with the opamp and gain resistors using the FMMD
|
||||||
methodology.
|
methodology.
|
||||||
%
|
%
|
||||||
It has three base components, two resistors
|
It has five base components, ifour resistors %two resistors programming gain, two programming a reference, or virtual ground voltage
|
||||||
and one op-amp.\section{Introduction}
|
and one op-amp.
|
||||||
|
|
||||||
The two resistors are used as a current balance/virtual ground to program the gain
|
Two resistors are used as a current balance/virtual ground to program the gain
|
||||||
of the amplifier. We consider the two resistors as a functional group
|
of the amplifier, and another pair to set the reference or virtual ground voltage.
|
||||||
where their function is to operate as a current balance/virtual ground.
|
We consider two of the resistors as a functional group, a potential divider
|
||||||
|
where their function is to operate as a virtual ground volatge reference.
|
||||||
|
The gain resistors work with the op-amp to determeine the gain characteristics.
|
||||||
%
|
%
|
||||||
The base component error modes of the
|
The base component error modes of the
|
||||||
resistors are used to model the current balance/virtual ground from
|
components are used to model the amplifier from
|
||||||
a failure mode perspective.
|
a failure mode perspective.
|
||||||
%
|
%
|
||||||
We determine the failure symptoms of the current balance/virtual ground and
|
We determine the failure symptoms of the potential divider and
|
||||||
consider these as failure modes of a new derived component.
|
consider this as a derived component.
|
||||||
|
|
||||||
We can create a functional group representing the non-inverting amplifier,
|
We can now create a functional group representing the inverting amplifier,
|
||||||
by bringing the failure modes from the current balance/virtual ground and
|
by bringing the failure modes from the potential divider and
|
||||||
the op-amp into a functional group.
|
the op-amp with its gain programming resistors into a functional group.
|
||||||
%
|
%
|
||||||
This can now be analysed and a derived component to represent the non inverting
|
This can be analysed and a derived component to represent the inverting
|
||||||
amplifier determined.
|
amplifier determined.
|
||||||
\section{Introduction: The non-inverting amplifier}
|
\section{Introduction: The non-inverting amplifier}
|
||||||
}
|
}
|
||||||
@ -64,13 +68,13 @@ amplifier determined.
|
|||||||
A standard non inverting op amp (from ``The Art of Electronics'' ~\cite{aoe}[pp.234]) is shown in figure \ref{fig:noninvamp}.
|
A standard non inverting op amp (from ``The Art of Electronics'' ~\cite{aoe}[pp.234]) is shown in figure \ref{fig:noninvamp}.
|
||||||
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
% \begin{figure}[h]
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=200pt,keepaspectratio=true]{./invopamp/noninv.png}
|
% \includegraphics[width=200pt,keepaspectratio=true]{./invopamp/noninv.png}
|
||||||
% noninv.jpg: 341x186 pixel, 72dpi, 12.03x6.56 cm, bb=0 0 341 186
|
% % noninv.jpg: 341x186 pixel, 72dpi, 12.03x6.56 cm, bb=0 0 341 186
|
||||||
\caption{Standard non inverting amplifier configuration}
|
% \caption{Standard non inverting amplifier configuration}
|
||||||
\label{fig:noninvamp}
|
% \label{fig:noninvamp}
|
||||||
\end{figure}
|
% \end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -125,13 +129,13 @@ Thus $R1$ has failure modes $\{R1\_OPEN, R1\_SHORT\}$ and $R2$ has failure modes
|
|||||||
Modelling this as a functional group, we can draw a simple closed curve
|
Modelling this as a functional group, we can draw a simple closed curve
|
||||||
to represent each failure mode, taken from the components R1 and R2,
|
to represent each failure mode, taken from the components R1 and R2,
|
||||||
in the current balance/virtual ground, shown in figure \ref{fig:fg1}.
|
in the current balance/virtual ground, shown in figure \ref{fig:fg1}.
|
||||||
\begin{figure}[h]
|
% \begin{figure}[h]
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=200pt,keepaspectratio=true]{./invopamp/fg1.png}
|
% \includegraphics[width=200pt,keepaspectratio=true]{./invopamp/fg1.png}
|
||||||
% fg1.jpg: 430x271 pixel, 72dpi, 15.17x9.56 cm, bb=0 0 430 271
|
% % fg1.jpg: 430x271 pixel, 72dpi, 15.17x9.56 cm, bb=0 0 430 271
|
||||||
\caption{current balance/virtual ground `functional group' failure modes}
|
% \caption{current balance/virtual ground `functional group' failure modes}
|
||||||
\label{fig:fg1}
|
% \label{fig:fg1}
|
||||||
\end{figure}
|
% \end{figure}
|
||||||
}
|
}
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
@ -198,13 +202,13 @@ Each labelled asterisk in the diagram represents a failure mode scenario.
|
|||||||
The failure mode scenarios are given test case numbers, and an example to clarify this follows
|
The failure mode scenarios are given test case numbers, and an example to clarify this follows
|
||||||
in table~\ref{pdfmea}.
|
in table~\ref{pdfmea}.
|
||||||
|
|
||||||
\begin{figure}[h+]
|
% \begin{figure}[h+]
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=200pt,keepaspectratio=true]{./invopamp/fg1a.png}
|
% \includegraphics[width=200pt,keepaspectratio=true]{./invopamp/fg1a.png}
|
||||||
% fg1a.jpg: 430x271 pixel, 72dpi, 15.17x9.56 cm, bb=0 0 430 271
|
% % fg1a.jpg: 430x271 pixel, 72dpi, 15.17x9.56 cm, bb=0 0 430 271
|
||||||
\caption{current balance/virtual ground with test cases}
|
% \caption{current balance/virtual ground with test cases}
|
||||||
\label{fig:fg1a}
|
% \label{fig:fg1a}
|
||||||
\end{figure}
|
% \end{figure}
|
||||||
}
|
}
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
@ -301,13 +305,13 @@ have two symptoms, where the current balance/virtual ground will give an incorre
|
|||||||
or an incorrect high voltage (which we can term $HighPD$).
|
or an incorrect high voltage (which we can term $HighPD$).
|
||||||
We can represent the collection of these symptoms by drawing connecting lines between
|
We can represent the collection of these symptoms by drawing connecting lines between
|
||||||
the test cases and naming them (see figure \ref{fig:fg1b}).
|
the test cases and naming them (see figure \ref{fig:fg1b}).
|
||||||
\begin{figure}[h+]
|
% \begin{figure}[h+]
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=200pt,keepaspectratio=true]{./invopamp/fg1b.png}
|
% \includegraphics[width=200pt,keepaspectratio=true]{./invopamp/fg1b.png}
|
||||||
% fg1b.jpg: 430x271 pixel, 72dpi, 15.17x9.56 cm, bb=0 0 430 271
|
% % fg1b.jpg: 430x271 pixel, 72dpi, 15.17x9.56 cm, bb=0 0 430 271
|
||||||
\caption{Collection of current balance/virtual ground failure mode symptoms}
|
% \caption{Collection of current balance/virtual ground failure mode symptoms}
|
||||||
\label{fig:fg1b}
|
% \label{fig:fg1b}
|
||||||
\end{figure}
|
% \end{figure}
|
||||||
%\clearpage
|
%\clearpage
|
||||||
|
|
||||||
We can now make a `derived component' to represent this current balance/virtual ground.
|
We can now make a `derived component' to represent this current balance/virtual ground.
|
||||||
@ -317,13 +321,13 @@ We can use the symbol $\bowtie$ to represent taking the analysed
|
|||||||
{\fg} and creating from it, a {\dc}.
|
{\fg} and creating from it, a {\dc}.
|
||||||
|
|
||||||
%We could represent it algebraically thus: $ \bowtie(PotDiv) =
|
%We could represent it algebraically thus: $ \bowtie(PotDiv) =
|
||||||
\begin{figure}[h+]
|
% \begin{figure}[h+]
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=200pt,keepaspectratio=true]{./invopamp/dc1.png}
|
% \includegraphics[width=200pt,keepaspectratio=true]{./invopamp/dc1.png}
|
||||||
% dc1.jpg: 430x619 pixel, 72dpi, 15.17x21.84 cm, bb=0 0 430 619
|
% % dc1.jpg: 430x619 pixel, 72dpi, 15.17x21.84 cm, bb=0 0 430 619
|
||||||
\caption{From functional group to derived component}
|
% \caption{From functional group to derived component}
|
||||||
\label{fig:dc1}
|
% \label{fig:dc1}
|
||||||
\end{figure}
|
% \end{figure}
|
||||||
}
|
}
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
|
51
invopamp/paper.tex
Normal file
51
invopamp/paper.tex
Normal file
@ -0,0 +1,51 @@
|
|||||||
|
|
||||||
|
\documentclass[a4paper,10pt]{article}
|
||||||
|
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usepackage{fancyhdr}
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usepackage{amsfonts,amsmath,amsthm}
|
||||||
|
\usetikzlibrary{shapes.gates.logic.US,trees,positioning,arrows}
|
||||||
|
\input{../style}
|
||||||
|
\usepackage{ifthen}
|
||||||
|
\usepackage{lastpage}
|
||||||
|
\usetikzlibrary{shapes,snakes}
|
||||||
|
|
||||||
|
\newboolean{paper}
|
||||||
|
\setboolean{paper}{true} % boolvar=true or false
|
||||||
|
|
||||||
|
\newboolean{pld}
|
||||||
|
\setboolean{pld}{false} % boolvar=true or false : draw analysis using propositional logic diagrams
|
||||||
|
|
||||||
|
\newboolean{dag}
|
||||||
|
\setboolean{dag}{true} % boolvar=true or false : draw analysis using directed acylic graphs
|
||||||
|
\def\layersep{2.5cm}
|
||||||
|
|
||||||
|
|
||||||
|
%\newtheorem{definition}{Definition:}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\pagestyle{fancy}
|
||||||
|
\fancyhf{}
|
||||||
|
%\renewcommand{\chaptermark}[1]{\markboth{ \emph{#1}}{}}
|
||||||
|
\fancyhead[LO]{}
|
||||||
|
\fancyhead[RE]{\leftmark}
|
||||||
|
%\fancyfoot[LE,RO]{\thepage}
|
||||||
|
\cfoot{Page \thepage\ of \pageref{LastPage}}
|
||||||
|
\rfoot{\today}
|
||||||
|
\lhead{Two stage FMMD analysis of an inverting op-amp configuration}
|
||||||
|
|
||||||
|
%\outerhead{{\small\bf Developing a rigorous bottom-up modular static failure mode modelling methodology}}
|
||||||
|
%\innerfoot{{\small\bf R.P. Clark } }
|
||||||
|
% numbers at outer edges
|
||||||
|
\pagenumbering{arabic} % Arabic page numbers hereafter
|
||||||
|
\author{R.P.Clark}
|
||||||
|
\title{Two stage FMMD analysis of a an inverting op-amp configuration}
|
||||||
|
\maketitle
|
||||||
|
\input{invopamp_paper}
|
||||||
|
|
||||||
|
\bibliographystyle{plain}
|
||||||
|
\bibliography{../vmgbibliography,../mybib}
|
||||||
|
|
||||||
|
\today
|
||||||
|
\end{document}
|
Loading…
Reference in New Issue
Block a user