Sigma delta CC figures written into table
This commit is contained in:
parent
2ddda085cd
commit
9818d393ec
@ -1709,7 +1709,7 @@ $$ fm (DL2AL) = \{ LOW, HIGH, LOW\_{SLEW} \} $$
|
|||||||
% This is a single component as a {\fg}, and we can state
|
% This is a single component as a {\fg}, and we can state
|
||||||
% $$ fm (DCM) = \{ HIGH, LOW, NOOP \} $$
|
% $$ fm (DCM) = \{ HIGH, LOW, NOOP \} $$
|
||||||
|
|
||||||
The digital element of the {\sd}, is the one bit memory, or D type flip flop. This
|
The digital element of the {\sd}, is a `one~bit~memory', or D type flip flop. This
|
||||||
buffers the feedback result and provides the output bit stream.
|
buffers the feedback result and provides the output bit stream.
|
||||||
We create a {\fg} from the CLOCK and IC4 to model this digital buffer.
|
We create a {\fg} from the CLOCK and IC4 to model this digital buffer.
|
||||||
|
|
||||||
@ -1866,7 +1866,7 @@ We now show the final {\dc} hierarchy in figure~\ref{fig:eulersdfinal}.
|
|||||||
The \sd example, shows that FMMD can be applied to mixed digital and analogue circuitry.
|
The \sd example, shows that FMMD can be applied to mixed digital and analogue circuitry.
|
||||||
|
|
||||||
|
|
||||||
\clearpage
|
%\clearpage
|
||||||
\section{Pt100 Analysis: FMMD and Double Failure Mode Analysis}
|
\section{Pt100 Analysis: FMMD and Double Failure Mode Analysis}
|
||||||
\label{sec:Pt100}
|
\label{sec:Pt100}
|
||||||
{
|
{
|
||||||
|
@ -126,7 +126,7 @@ with additional indexing when appropriate.
|
|||||||
\paragraph{Defining a function that returns failure modes given a component.}
|
\paragraph{Defining a function that returns failure modes given a component.}
|
||||||
The function $fm$ has a component as its domain and the components failure modes, $fms$, as its range. % (see equation~\ref{eqn:fm}).
|
The function $fm$ has a component as its domain and the components failure modes, $fms$, as its range. % (see equation~\ref{eqn:fm}).
|
||||||
Where $\mathcal{F}$ is the set of all failures,
|
Where $\mathcal{F}$ is the set of all failures,
|
||||||
$$ fm: \mathcal{C} \rightarrow \mathcal{F}$$.
|
$$ fm: \mathcal{C} \rightarrow \mathcal{F}.$$
|
||||||
We can represent the number of potential failure modes of a component $c$, to be $ | fm(c) | .$
|
We can represent the number of potential failure modes of a component $c$, to be $ | fm(c) | .$
|
||||||
|
|
||||||
\paragraph{Indexing components with the group $G$.}
|
\paragraph{Indexing components with the group $G$.}
|
||||||
@ -146,7 +146,7 @@ Where $\mathcal{G}$ represents the set of all {\fgs}, and $ \mathbb{Z}^{+} $, $C
|
|||||||
%
|
%
|
||||||
%and, where n is the number of components in the system/{\fg},
|
%and, where n is the number of components in the system/{\fg},
|
||||||
and $|fm(c_i)|$ is the number of failure modes
|
and $|fm(c_i)|$ is the number of failure modes
|
||||||
in component ${c_i}$, is given by
|
in component ${c_i}$, comparison complexity, $CC$ is given by
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eqn:CC}
|
\label{eqn:CC}
|
||||||
@ -369,14 +369,15 @@ $$
|
|||||||
%\clearpage
|
%\clearpage
|
||||||
\subsection{Complexity Comparison applied to previous FMMD Examples}
|
\subsection{Complexity Comparison applied to previous FMMD Examples}
|
||||||
|
|
||||||
All the FMMD examples in chapters \ref{sec:chap5} and \ref{sec:chap6} showed a marked reduction in comparison
|
All the FMMD examples in chapters \ref{sec:chap5}
|
||||||
|
and \ref{sec:chap6} showed a marked reduction in comparison
|
||||||
complexity compared to the RFMEA worst case figures.
|
complexity compared to the RFMEA worst case figures.
|
||||||
|
To calculate RFMEA Comparison complexity equation~\ref{eqn:CC} is used.
|
||||||
%
|
%
|
||||||
|
|
||||||
%
|
%
|
||||||
Complexity comparison vs. RFMEA for the first three examples
|
Complexity comparison vs. RFMEA for the first three examples
|
||||||
are presented in table~\ref{tbl:firstcc}.
|
are presented in table~\ref{tbl:firstcc}.
|
||||||
|
%
|
||||||
%\usepackage{multirow}
|
%\usepackage{multirow}
|
||||||
\begin{table}
|
\begin{table}
|
||||||
\label{tbl:firstcc}
|
\label{tbl:firstcc}
|
||||||
@ -550,33 +551,39 @@ by more than a factor of ten.
|
|||||||
\multicolumn{3}{ |c| }{{\sd} FMMD Hierarchy: section~\ref{sec:sigmadelta}} \\ \hline
|
\multicolumn{3}{ |c| }{{\sd} FMMD Hierarchy: section~\ref{sec:sigmadelta}} \\ \hline
|
||||||
%\multirow{3}{*} {Inverting Amplifier Two stage FMMD Hierarchy: section~\ref{sec:invamp}} & & \\
|
%\multirow{3}{*} {Inverting Amplifier Two stage FMMD Hierarchy: section~\ref{sec:invamp}} & & \\
|
||||||
\hline
|
\hline
|
||||||
1 & & 4 & 2 \\
|
|
||||||
1 & INVAMP & 16 & 3 \\
|
|
||||||
0 & NIBUFF & 0 & 4 \\
|
|
||||||
%
|
|
||||||
% final one has 8 components 3* NIBUFF + 1 * INVAMP + 4 * PHS45
|
|
||||||
% (8-1) * ( (3*4) + (1*16) + (4 * 4) )
|
|
||||||
2 & {\sd} & 308 & 2 \\
|
|
||||||
% NIBUFF PHS45
|
|
||||||
% 8 components so LEVEL 2 (8-1) \times ( (3*4) + (4*2) + 3 ) + LEVEL 0 16 for the INVAMP
|
|
||||||
2 & Total for {\sd}: & 328 (FMMD) & \\
|
|
||||||
% R&C OPAMPS
|
|
||||||
% 14 components so 13 \times ( (10*2) (4*4) )
|
|
||||||
0 & Total for {\sd}: & 468 (RFMEA) & \\
|
|
||||||
|
|
||||||
\hline
|
1 & SUMJINT & 30 & 4 \\
|
||||||
|
0 & HISB & 0 & 4 \\
|
||||||
|
2 & BISJ & 8 & 2 \\ \hline
|
||||||
|
|
||||||
|
1 & DIGBUF & 2 & 4 \\
|
||||||
|
1 & PD & 4 & 2 \\
|
||||||
|
2 & DL2AL & 6 & 3 \\
|
||||||
|
3 & FFB & 5 & 2 \\ \hline
|
||||||
|
%
|
||||||
|
2 & {\sd} & 4 & 2 \\ \hline
|
||||||
|
%
|
||||||
|
%
|
||||||
|
2 & Total for {\sd}: & 55 (FMMD) & \\
|
||||||
|
% R&C OPAMPS
|
||||||
|
% 14 components so (10-1) *
|
||||||
|
0 & Total for {\sd}: & 225 (RFMEA) & \\
|
||||||
|
|
||||||
|
\hline \hline
|
||||||
|
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\caption{Complexity Comparison figures for the Bubba Oscillator FMMD example (see section~\ref{sec:bubba}).}
|
\caption{Complexity Comparison figures for the {\sd} FMMD example (see section~\ref{sec:sigmadelta}).}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
%
|
||||||
|
The complexity figures for this mixed analogue to digital circuit are not adversely affected by the digital to
|
||||||
|
analogue level interfacing circuitry. This is where the modular approach aids understanding and analysis.
|
||||||
|
When following this circuit through in a traditional way, we have to follow signal paths that
|
||||||
|
are level shifted, adding to the complication of analysing it for failures.
|
||||||
|
|
||||||
% \subsection{Exponential squared to Exponential}
|
% \subsection{Exponential squared to Exponential}
|
||||||
%
|
%
|
||||||
% can I say that ?
|
% can I say that ?
|
||||||
|
%
|
||||||
|
|
||||||
|
|
||||||
\section{Unitary State Component Failure Mode sets}
|
\section{Unitary State Component Failure Mode sets}
|
||||||
\label{sec:unitarystate}
|
\label{sec:unitarystate}
|
||||||
\paragraph{Design Decision/Constraint}
|
\paragraph{Design Decision/Constraint}
|
||||||
|
@ -204,10 +204,10 @@ $$
|
|||||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||||
% FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $270\_phaseshift$ \\ \hline
|
% FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $270\_phaseshift$ \\ \hline
|
||||||
|
|
||||||
FS3: $INVAMP$ $L_{up}$ & & output high & & $NO_{signal}$ \\
|
FS3: $INVAMP$ $L_{up}$ & & output high & & $NO_{signal}$ \\
|
||||||
FS4: $INVAMP$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
|
FS4: $INVAMP$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
|
||||||
FS5: $INVAMP$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
|
FS5: $INVAMP$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
|
||||||
FS6: $INVAMP$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
|
FS6: $INVAMP$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user