Ok next to do for CC is sigma delta
have worked it out on paper, just needs formatting in latex. Then proof read and then send to John....
This commit is contained in:
parent
bb2fce91a9
commit
2ddda085cd
@ -462,8 +462,8 @@ We use these two analyses to compare the effect on comparison complexity (see ta
|
||||
\begin{tabular}{ |c|l|l|c| }
|
||||
\hline
|
||||
\textbf{Hierarchy} & \textbf{Derived} & \textbf{Complexity} & $|fm(c)|$: \textbf{number} \\
|
||||
\textbf{Level} & \textbf{Component} & \textbf{Comparison} & \textbf{of derived} \\
|
||||
& & & \textbf{failure modes} \\
|
||||
\textbf{Level} & \textbf{Component} & \textbf{Comparison} & \textbf{of derived} \\
|
||||
& & & \textbf{failure modes} OK \\
|
||||
%\hline \hline
|
||||
%\multicolumn{3}{ |c| }{Complexity Comparison against RFMEA for examples in Chapter~\ref{sec:chap5}} \\
|
||||
%\hline \hline
|
||||
@ -480,9 +480,12 @@ We use these two analyses to compare the effect on comparison complexity (see ta
|
||||
1 & INVAMP & 16 & 3 \\
|
||||
0 & NIBUFF & 0 & 4 \\
|
||||
%
|
||||
% final one has 8 components 3* NIBUFF + 1 * INVAMP + 4 * PHS45
|
||||
% (8-1) * ( (3*4) + (1*16) + (4 * 4) )
|
||||
2 & BUBBA & 308 & 2 \\
|
||||
% NIBUFF PHS45
|
||||
% 8 components so LEVEL 2 (8-1) \times ( (3*4) + (4*2) + 3 ) + LEVEL 0 16 for the INVAMP
|
||||
2 & Total for BUBBA: & 177 (FMMD) & \\
|
||||
2 & Total for BUBBA: & 328 (FMMD) & \\
|
||||
% R&C OPAMPS
|
||||
% 14 components so 13 \times ( (10*2) (4*4) )
|
||||
0 & Total for BUBBA: & 468 (RFMEA) & \\
|
||||
@ -516,7 +519,7 @@ We use these two analyses to compare the effect on comparison complexity (see ta
|
||||
\caption{Complexity Comparison figures for the Bubba Oscillator FMMD example (see section~\ref{sec:bubba}).}
|
||||
\end{table}
|
||||
%
|
||||
The initial {na\"{\i}ve} FMMD analysis reduces the number of checks by over half, the more de-composed analysis
|
||||
The initial {na\"{\i}ve} FMMD analysis reduces the number of checks by around a third, the more de-composed analysis
|
||||
by more than a factor of ten.
|
||||
|
||||
|
||||
@ -525,6 +528,49 @@ by more than a factor of ten.
|
||||
|
||||
|
||||
\label{sec:bubbaCC}
|
||||
|
||||
\begin{table}
|
||||
\label{tbl:bubbacc}
|
||||
|
||||
|
||||
\begin{tabular}{ |c|l|l|c| }
|
||||
\hline
|
||||
\textbf{Hierarchy} & \textbf{Derived} & \textbf{Complexity} & $|fm(c)|$: \textbf{number} \\
|
||||
\textbf{Level} & \textbf{Component} & \textbf{Comparison} & \textbf{of derived} \\
|
||||
& & & \textbf{failure modes} OK \\
|
||||
%\hline \hline
|
||||
%\multicolumn{3}{ |c| }{Complexity Comparison against RFMEA for examples in Chapter~\ref{sec:chap5}} \\
|
||||
%\hline \hline
|
||||
|
||||
|
||||
%Goalkeeper & GK & Paul Robinson \\ \hline
|
||||
|
||||
\hline
|
||||
|
||||
\multicolumn{3}{ |c| }{{\sd} FMMD Hierarchy: section~\ref{sec:sigmadelta}} \\ \hline
|
||||
%\multirow{3}{*} {Inverting Amplifier Two stage FMMD Hierarchy: section~\ref{sec:invamp}} & & \\
|
||||
\hline
|
||||
1 & & 4 & 2 \\
|
||||
1 & INVAMP & 16 & 3 \\
|
||||
0 & NIBUFF & 0 & 4 \\
|
||||
%
|
||||
% final one has 8 components 3* NIBUFF + 1 * INVAMP + 4 * PHS45
|
||||
% (8-1) * ( (3*4) + (1*16) + (4 * 4) )
|
||||
2 & {\sd} & 308 & 2 \\
|
||||
% NIBUFF PHS45
|
||||
% 8 components so LEVEL 2 (8-1) \times ( (3*4) + (4*2) + 3 ) + LEVEL 0 16 for the INVAMP
|
||||
2 & Total for {\sd}: & 328 (FMMD) & \\
|
||||
% R&C OPAMPS
|
||||
% 14 components so 13 \times ( (10*2) (4*4) )
|
||||
0 & Total for {\sd}: & 468 (RFMEA) & \\
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\caption{Complexity Comparison figures for the Bubba Oscillator FMMD example (see section~\ref{sec:bubba}).}
|
||||
\end{table}
|
||||
|
||||
|
||||
% \subsection{Exponential squared to Exponential}
|
||||
%
|
||||
% can I say that ?
|
||||
|
Loading…
Reference in New Issue
Block a user