Sigma delta CC figures written into table

This commit is contained in:
Robin Clark 2013-02-03 09:33:43 +00:00
parent 2ddda085cd
commit 9818d393ec
3 changed files with 38 additions and 31 deletions

View File

@ -1709,7 +1709,7 @@ $$ fm (DL2AL) = \{ LOW, HIGH, LOW\_{SLEW} \} $$
% This is a single component as a {\fg}, and we can state
% $$ fm (DCM) = \{ HIGH, LOW, NOOP \} $$
The digital element of the {\sd}, is the one bit memory, or D type flip flop. This
The digital element of the {\sd}, is a `one~bit~memory', or D type flip flop. This
buffers the feedback result and provides the output bit stream.
We create a {\fg} from the CLOCK and IC4 to model this digital buffer.
@ -1866,7 +1866,7 @@ We now show the final {\dc} hierarchy in figure~\ref{fig:eulersdfinal}.
The \sd example, shows that FMMD can be applied to mixed digital and analogue circuitry.
\clearpage
%\clearpage
\section{Pt100 Analysis: FMMD and Double Failure Mode Analysis}
\label{sec:Pt100}
{

View File

@ -126,7 +126,7 @@ with additional indexing when appropriate.
\paragraph{Defining a function that returns failure modes given a component.}
The function $fm$ has a component as its domain and the components failure modes, $fms$, as its range. % (see equation~\ref{eqn:fm}).
Where $\mathcal{F}$ is the set of all failures,
$$ fm: \mathcal{C} \rightarrow \mathcal{F}$$.
$$ fm: \mathcal{C} \rightarrow \mathcal{F}.$$
We can represent the number of potential failure modes of a component $c$, to be $ | fm(c) | .$
\paragraph{Indexing components with the group $G$.}
@ -146,7 +146,7 @@ Where $\mathcal{G}$ represents the set of all {\fgs}, and $ \mathbb{Z}^{+} $, $C
%
%and, where n is the number of components in the system/{\fg},
and $|fm(c_i)|$ is the number of failure modes
in component ${c_i}$, is given by
in component ${c_i}$, comparison complexity, $CC$ is given by
\begin{equation}
\label{eqn:CC}
@ -369,14 +369,15 @@ $$
%\clearpage
\subsection{Complexity Comparison applied to previous FMMD Examples}
All the FMMD examples in chapters \ref{sec:chap5} and \ref{sec:chap6} showed a marked reduction in comparison
complexity compared to the RFMEA worst case figures.
All the FMMD examples in chapters \ref{sec:chap5}
and \ref{sec:chap6} showed a marked reduction in comparison
complexity compared to the RFMEA worst case figures.
To calculate RFMEA Comparison complexity equation~\ref{eqn:CC} is used.
%
%
Complexity comparison vs. RFMEA for the first three examples
are presented in table~\ref{tbl:firstcc}.
%
%\usepackage{multirow}
\begin{table}
\label{tbl:firstcc}
@ -550,33 +551,39 @@ by more than a factor of ten.
\multicolumn{3}{ |c| }{{\sd} FMMD Hierarchy: section~\ref{sec:sigmadelta}} \\ \hline
%\multirow{3}{*} {Inverting Amplifier Two stage FMMD Hierarchy: section~\ref{sec:invamp}} & & \\
\hline
1 & & 4 & 2 \\
1 & INVAMP & 16 & 3 \\
0 & NIBUFF & 0 & 4 \\
%
% final one has 8 components 3* NIBUFF + 1 * INVAMP + 4 * PHS45
% (8-1) * ( (3*4) + (1*16) + (4 * 4) )
2 & {\sd} & 308 & 2 \\
% NIBUFF PHS45
% 8 components so LEVEL 2 (8-1) \times ( (3*4) + (4*2) + 3 ) + LEVEL 0 16 for the INVAMP
2 & Total for {\sd}: & 328 (FMMD) & \\
% R&C OPAMPS
% 14 components so 13 \times ( (10*2) (4*4) )
0 & Total for {\sd}: & 468 (RFMEA) & \\
\hline
1 & SUMJINT & 30 & 4 \\
0 & HISB & 0 & 4 \\
2 & BISJ & 8 & 2 \\ \hline
1 & DIGBUF & 2 & 4 \\
1 & PD & 4 & 2 \\
2 & DL2AL & 6 & 3 \\
3 & FFB & 5 & 2 \\ \hline
%
2 & {\sd} & 4 & 2 \\ \hline
%
%
2 & Total for {\sd}: & 55 (FMMD) & \\
% R&C OPAMPS
% 14 components so (10-1) *
0 & Total for {\sd}: & 225 (RFMEA) & \\
\hline \hline
\end{tabular}
\caption{Complexity Comparison figures for the Bubba Oscillator FMMD example (see section~\ref{sec:bubba}).}
\caption{Complexity Comparison figures for the {\sd} FMMD example (see section~\ref{sec:sigmadelta}).}
\end{table}
%
The complexity figures for this mixed analogue to digital circuit are not adversely affected by the digital to
analogue level interfacing circuitry. This is where the modular approach aids understanding and analysis.
When following this circuit through in a traditional way, we have to follow signal paths that
are level shifted, adding to the complication of analysing it for failures.
% \subsection{Exponential squared to Exponential}
%
% can I say that ?
%
\section{Unitary State Component Failure Mode sets}
\label{sec:unitarystate}
\paragraph{Design Decision/Constraint}

View File

@ -204,10 +204,10 @@ $$
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
% FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $270\_phaseshift$ \\ \hline
FS3: $INVAMP$ $L_{up}$ & & output high & & $NO_{signal}$ \\
FS4: $INVAMP$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
FS5: $INVAMP$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
FS6: $INVAMP$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
FS3: $INVAMP$ $L_{up}$ & & output high & & $NO_{signal}$ \\
FS4: $INVAMP$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
FS5: $INVAMP$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
FS6: $INVAMP$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
\hline