Sigma delta CC figures written into table
This commit is contained in:
parent
2ddda085cd
commit
9818d393ec
@ -1709,7 +1709,7 @@ $$ fm (DL2AL) = \{ LOW, HIGH, LOW\_{SLEW} \} $$
|
||||
% This is a single component as a {\fg}, and we can state
|
||||
% $$ fm (DCM) = \{ HIGH, LOW, NOOP \} $$
|
||||
|
||||
The digital element of the {\sd}, is the one bit memory, or D type flip flop. This
|
||||
The digital element of the {\sd}, is a `one~bit~memory', or D type flip flop. This
|
||||
buffers the feedback result and provides the output bit stream.
|
||||
We create a {\fg} from the CLOCK and IC4 to model this digital buffer.
|
||||
|
||||
@ -1866,7 +1866,7 @@ We now show the final {\dc} hierarchy in figure~\ref{fig:eulersdfinal}.
|
||||
The \sd example, shows that FMMD can be applied to mixed digital and analogue circuitry.
|
||||
|
||||
|
||||
\clearpage
|
||||
%\clearpage
|
||||
\section{Pt100 Analysis: FMMD and Double Failure Mode Analysis}
|
||||
\label{sec:Pt100}
|
||||
{
|
||||
|
@ -126,7 +126,7 @@ with additional indexing when appropriate.
|
||||
\paragraph{Defining a function that returns failure modes given a component.}
|
||||
The function $fm$ has a component as its domain and the components failure modes, $fms$, as its range. % (see equation~\ref{eqn:fm}).
|
||||
Where $\mathcal{F}$ is the set of all failures,
|
||||
$$ fm: \mathcal{C} \rightarrow \mathcal{F}$$.
|
||||
$$ fm: \mathcal{C} \rightarrow \mathcal{F}.$$
|
||||
We can represent the number of potential failure modes of a component $c$, to be $ | fm(c) | .$
|
||||
|
||||
\paragraph{Indexing components with the group $G$.}
|
||||
@ -146,7 +146,7 @@ Where $\mathcal{G}$ represents the set of all {\fgs}, and $ \mathbb{Z}^{+} $, $C
|
||||
%
|
||||
%and, where n is the number of components in the system/{\fg},
|
||||
and $|fm(c_i)|$ is the number of failure modes
|
||||
in component ${c_i}$, is given by
|
||||
in component ${c_i}$, comparison complexity, $CC$ is given by
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:CC}
|
||||
@ -369,14 +369,15 @@ $$
|
||||
%\clearpage
|
||||
\subsection{Complexity Comparison applied to previous FMMD Examples}
|
||||
|
||||
All the FMMD examples in chapters \ref{sec:chap5} and \ref{sec:chap6} showed a marked reduction in comparison
|
||||
complexity compared to the RFMEA worst case figures.
|
||||
All the FMMD examples in chapters \ref{sec:chap5}
|
||||
and \ref{sec:chap6} showed a marked reduction in comparison
|
||||
complexity compared to the RFMEA worst case figures.
|
||||
To calculate RFMEA Comparison complexity equation~\ref{eqn:CC} is used.
|
||||
%
|
||||
|
||||
%
|
||||
Complexity comparison vs. RFMEA for the first three examples
|
||||
are presented in table~\ref{tbl:firstcc}.
|
||||
|
||||
%
|
||||
%\usepackage{multirow}
|
||||
\begin{table}
|
||||
\label{tbl:firstcc}
|
||||
@ -550,33 +551,39 @@ by more than a factor of ten.
|
||||
\multicolumn{3}{ |c| }{{\sd} FMMD Hierarchy: section~\ref{sec:sigmadelta}} \\ \hline
|
||||
%\multirow{3}{*} {Inverting Amplifier Two stage FMMD Hierarchy: section~\ref{sec:invamp}} & & \\
|
||||
\hline
|
||||
1 & & 4 & 2 \\
|
||||
1 & INVAMP & 16 & 3 \\
|
||||
0 & NIBUFF & 0 & 4 \\
|
||||
%
|
||||
% final one has 8 components 3* NIBUFF + 1 * INVAMP + 4 * PHS45
|
||||
% (8-1) * ( (3*4) + (1*16) + (4 * 4) )
|
||||
2 & {\sd} & 308 & 2 \\
|
||||
% NIBUFF PHS45
|
||||
% 8 components so LEVEL 2 (8-1) \times ( (3*4) + (4*2) + 3 ) + LEVEL 0 16 for the INVAMP
|
||||
2 & Total for {\sd}: & 328 (FMMD) & \\
|
||||
% R&C OPAMPS
|
||||
% 14 components so 13 \times ( (10*2) (4*4) )
|
||||
0 & Total for {\sd}: & 468 (RFMEA) & \\
|
||||
|
||||
\hline
|
||||
1 & SUMJINT & 30 & 4 \\
|
||||
0 & HISB & 0 & 4 \\
|
||||
2 & BISJ & 8 & 2 \\ \hline
|
||||
|
||||
1 & DIGBUF & 2 & 4 \\
|
||||
1 & PD & 4 & 2 \\
|
||||
2 & DL2AL & 6 & 3 \\
|
||||
3 & FFB & 5 & 2 \\ \hline
|
||||
%
|
||||
2 & {\sd} & 4 & 2 \\ \hline
|
||||
%
|
||||
%
|
||||
2 & Total for {\sd}: & 55 (FMMD) & \\
|
||||
% R&C OPAMPS
|
||||
% 14 components so (10-1) *
|
||||
0 & Total for {\sd}: & 225 (RFMEA) & \\
|
||||
|
||||
\hline \hline
|
||||
|
||||
\end{tabular}
|
||||
\caption{Complexity Comparison figures for the Bubba Oscillator FMMD example (see section~\ref{sec:bubba}).}
|
||||
\caption{Complexity Comparison figures for the {\sd} FMMD example (see section~\ref{sec:sigmadelta}).}
|
||||
\end{table}
|
||||
|
||||
%
|
||||
The complexity figures for this mixed analogue to digital circuit are not adversely affected by the digital to
|
||||
analogue level interfacing circuitry. This is where the modular approach aids understanding and analysis.
|
||||
When following this circuit through in a traditional way, we have to follow signal paths that
|
||||
are level shifted, adding to the complication of analysing it for failures.
|
||||
|
||||
% \subsection{Exponential squared to Exponential}
|
||||
%
|
||||
% can I say that ?
|
||||
|
||||
|
||||
|
||||
%
|
||||
\section{Unitary State Component Failure Mode sets}
|
||||
\label{sec:unitarystate}
|
||||
\paragraph{Design Decision/Constraint}
|
||||
|
@ -204,10 +204,10 @@ $$
|
||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
% FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $270\_phaseshift$ \\ \hline
|
||||
|
||||
FS3: $INVAMP$ $L_{up}$ & & output high & & $NO_{signal}$ \\
|
||||
FS4: $INVAMP$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
|
||||
FS5: $INVAMP$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
|
||||
FS6: $INVAMP$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
FS3: $INVAMP$ $L_{up}$ & & output high & & $NO_{signal}$ \\
|
||||
FS4: $INVAMP$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
|
||||
FS5: $INVAMP$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
|
||||
FS6: $INVAMP$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
|
||||
\hline
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user