ok nearly drawn a derived component for the potdiv
This commit is contained in:
parent
36fa29ce8c
commit
8c1c98e578
BIN
noninvopamp/fg1.dia
Normal file
BIN
noninvopamp/fg1.dia
Normal file
Binary file not shown.
BIN
noninvopamp/fg1.jpg
Normal file
BIN
noninvopamp/fg1.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 13 KiB |
BIN
noninvopamp/fg1a.dia
Normal file
BIN
noninvopamp/fg1a.dia
Normal file
Binary file not shown.
BIN
noninvopamp/fg1a.jpg
Normal file
BIN
noninvopamp/fg1a.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 14 KiB |
BIN
noninvopamp/fg1b.dia
Normal file
BIN
noninvopamp/fg1b.dia
Normal file
Binary file not shown.
BIN
noninvopamp/fg1b.jpg
Normal file
BIN
noninvopamp/fg1b.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 17 KiB |
BIN
noninvopamp/noninv.dia
Normal file
BIN
noninvopamp/noninv.dia
Normal file
Binary file not shown.
BIN
noninvopamp/noninv.jpg
Normal file
BIN
noninvopamp/noninv.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 5.7 KiB |
@ -24,13 +24,101 @@ We can now create a functional group representing the amplifier,
|
||||
by bringing the failure modes from the potential divider and
|
||||
the op-amp into a functional group.
|
||||
|
||||
This can now be analysed and a derived component to represent th non inverting
|
||||
This can now be analysed and a derived component to represent the non inverting
|
||||
amplifier determined.
|
||||
}
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
\section{Introduction}
|
||||
|
||||
Standard non inv op amp from ``art of electronics'' ~\cite{aoe}[pp.234] shown in figure \ref{fig:noninvamp}.
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/noninv.jpg}
|
||||
% noninv.jpg: 341x186 pixel, 72dpi, 12.03x6.56 cm, bb=0 0 341 186
|
||||
\caption{Standard non inverting amplifier configuration}
|
||||
\label{fig:noninvamp}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
The functional of the resistors in this amplifier is to set the gain.
|
||||
They operate as a potential divider and program the minus input on the op-amp
|
||||
to balance them against the positive input, giving the voltage gain ($G_v$)
|
||||
defined by $$ G_v = 1 + \frac{R2}{R1} $$ at the output.
|
||||
|
||||
As the resistors work to provide a specific function, that of a potential divider,
|
||||
we can treat them as a functional group.
|
||||
Using the EN298 specification for resistor failure ~\cite{en298}[App.A]
|
||||
we can assign failure modes of $OPEN$ and $SHORT$ to the resistors.
|
||||
Thus $R1$ has failure modes $\{R1\_OPEN, R1\_SHORT\}$ and $R2$ has failure modes $\{R2\_OPEN, R2\_SHORT\}$.
|
||||
|
||||
Modelling this as a functional group, we can draw a circle to represent each failure mode
|
||||
in the potential divider, shown in figure \ref{fig:fg1}.
|
||||
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/fg1.jpg}
|
||||
% fg1.jpg: 430x271 pixel, 72dpi, 15.17x9.56 cm, bb=0 0 430 271
|
||||
\caption{potential divider `functional group' failure modes}
|
||||
\label{fig:fg1}
|
||||
\end{figure}
|
||||
|
||||
We can now look at each of these base component failure modes,
|
||||
and determine how they will affect the operation of the potential divider.
|
||||
Each failure mode scenario we look at will be given a teat case number,
|
||||
which is represented on the diagram, with an asterisk marking
|
||||
which failure modes is is modelling (see figure \ref{fig:fg1a}).
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/fg1a.jpg}
|
||||
% fg1a.jpg: 430x271 pixel, 72dpi, 15.17x9.56 cm, bb=0 0 430 271
|
||||
\caption{potential divider with test cases}
|
||||
\label{fig:fg1a}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{table}[ht]
|
||||
\caption{Potential Divider: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
\centering % used for centering table
|
||||
\begin{tabular}{||l|c|c|l|l||}
|
||||
\hline \hline
|
||||
\textbf{Test} & \textbf{Pot.Div} & \textbf{ } & \textbf{General} \\
|
||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
||||
% R & wire & res + & res - & description
|
||||
\hline
|
||||
\hline
|
||||
TC1: $R_1$ SHORT & LOW & & Low PD \\
|
||||
TC2: $R_1$ OPEN & HIGH & & High PD \\ \hline
|
||||
TC3: $R_2$ SHORT & HIGH & & High PD \\
|
||||
TC4: $R_2$ OPEN & LOW & & Low PD \\ \hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\label{pdfmea}
|
||||
\end{table}
|
||||
|
||||
|
||||
We can now collect the symptoms of failure. From the four base component failure modes, we now
|
||||
have two symptoms, $LOW\;PD, HIGH\;PD$.
|
||||
|
||||
We can represent the collection of these symptoms by drawing connecting lines between
|
||||
the test cases and naming them (see figure \ref{fig:fg1b}).
|
||||
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/fg1b.jpg}
|
||||
% fg1b.jpg: 430x271 pixel, 72dpi, 15.17x9.56 cm, bb=0 0 430 271
|
||||
\caption{Collection of potential divider failure mode symptoms}
|
||||
\label{fig:fg1b}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\vspace{60pt}
|
||||
$$ \int_{0\-}^{\infty} f(t).e^{-s.t}.dt \; | \; s \in \mathcal{C}$$
|
||||
\today
|
||||
|
BIN
noninvopamp/opamp.dia
Normal file
BIN
noninvopamp/opamp.dia
Normal file
Binary file not shown.
@ -33,7 +33,7 @@
|
||||
\author{R.P.Clark}
|
||||
\title{Two stage FMMD analysis of a non inverting op-amp}
|
||||
\maketitle
|
||||
\input{noninvopamp}
|
||||
\input{noninvopamp_paper}
|
||||
|
||||
\bibliographystyle{plain}
|
||||
\bibliography{../vmgbibliography,../mybib}
|
||||
|
Loading…
Reference in New Issue
Block a user