Working through Chris Garret comments on CH5
This commit is contained in:
parent
21deb1b9a8
commit
7b0c62022b
4
related_papers_books/view_all_pdfs.sh
Executable file
4
related_papers_books/view_all_pdfs.sh
Executable file
@ -0,0 +1,4 @@
|
||||
|
||||
|
||||
fred=`ls *.pdf`
|
||||
for l in $fred; do evince $l || acroread $l; echo $l; done
|
@ -30,6 +30,19 @@ FMEA is a broad term; it could mean anything from an informal check on how
|
||||
how failures could affect some equipment in an initial brain-storming session
|
||||
in product design, to formal submission as part of safety critical certification.
|
||||
%
|
||||
FMEA is always performed in context. That is, the equipment is always analysed for a particular purpose
|
||||
and in a given environment. An `O' ring for instance can fail by leaking
|
||||
but if fitted to a water seal on a garden hose, the system level failure is a
|
||||
would be a slight leak at the tap outside the house.
|
||||
Applied to the rocket engine on a space shuttle the failure mode
|
||||
is a catastrophic fire and destruction of the spacecraft~\cite{challenger}.
|
||||
%
|
||||
At a lower level, consider a resistor and capacitor forming a potential divider to ground.
|
||||
This could be considered a low pass filter in some electrical environments,
|
||||
but for fixed frequencies the same circuit could be used as a phase changer.
|
||||
The failure modes of the latter, could be `no~signal' and `all~pass',
|
||||
but when used as a phase changer, would be `no~signal' and `no~phase' change.
|
||||
|
||||
This chapter describes basic concepts of FMEA, uses a simple example to
|
||||
demonstrate a single FMEA analysis stage, describes the four main variants of FMEA in use today
|
||||
and explores some concepts with which we can discuss and evaluate
|
||||
|
@ -32,34 +32,47 @@ a variety of typical embedded system components including analogue/digital and e
|
||||
% % we are using for our particular project).
|
||||
%
|
||||
%This is followed by several example FMMD analyses,
|
||||
The first applies FMMD to a common configuration of
|
||||
the inverting amplifier (see section~\ref{sec:invamp}) using
|
||||
an op-amp and two resistors; this demonstrates how the re-use of the potential divider from section~\ref{subsec:potdiv}.
|
||||
The inverting amplifier is analysed again, but this time with a different
|
||||
\begin{itemize}
|
||||
\item The first example applies FMMD to an operational amplifier inverting amplifier (see section~\ref{sec:invamp})
|
||||
%using an op-amp and two resistors;
|
||||
this demonstrates how the re-use of a potential divider {\dc} from section~\ref{subsec:potdiv}.
|
||||
This inverting amplifier is analysed again, but this time with a different
|
||||
composition of {\fgs}. The two approaches, i.e. choice of membership for {\fgs}, are then discussed.
|
||||
%~\ref{sec:chap4}
|
||||
%can be re-used. %, but with provisos.
|
||||
%
|
||||
%The first
|
||||
%(see section~\ref{sec:diffamp})
|
||||
Section~\ref{sec:diffamp} analyses a circuit where two op-amps are used
|
||||
\item Section~\ref{sec:diffamp} analyses a circuit where two op-amps are used
|
||||
to create a differencing amplifier.
|
||||
Building on the two approaches from section~\ref{sec:invamp}, re-use of the non-inverting amplifier {\dc} from section~\ref{sec:invamp}
|
||||
is discussed in the context of this circuit,
|
||||
where its re-use is appropriate in the first stage and
|
||||
not in the second.
|
||||
%
|
||||
Section~\ref{sec:fivepolelp} analyses a Sallen-Key based five pole low pass filter.
|
||||
\item Section~\ref{sec:fivepolelp} analyses a Sallen-Key based five pole low pass filter.
|
||||
This demonstrates re-use the first Sallen-Key analysis, %encountered as a {\dc}
|
||||
increasing test effeciency. %saving time and effort for the analyst.
|
||||
increasing test efficiency. This example also serves to show a deep hierarchy of {\dcs}.
|
||||
\item Section~\ref{sec:bubba} shows FMMD applied to a
|
||||
loop topology---using a `Bubba' oscillator---demonstrating how FMMD id different to fault diagnosis techniques.
|
||||
%which uses
|
||||
%four op-amp stages with supporting components.
|
||||
Two analysis strategies are employed, one using
|
||||
initially identified {\fgs} and the second using a more complex hierarchy of {\fgs} and {\dcs}, showing
|
||||
that a finer grained/more de-composed approach offers more re-use possibilities in future analysis tasks.
|
||||
\item Section~\ref{sec:sigmadelta} demonstrates FMMD can be applied to mixed anal;ogue and digital circuitry
|
||||
using a sigma delta ADC.
|
||||
%shows FMMD analysing the sigma delta
|
||||
%analogue to digital converter---again with a circular signal path---which operates on both
|
||||
%analogue and digital signals.
|
||||
|
||||
\end{itemize}
|
||||
|
||||
%~\ref{sec:chap4}
|
||||
%can be re-used. %, but with provisos.
|
||||
%
|
||||
Section~\ref{sec:bubba} shows FMMD applied to a circular circuit topology---the `Bubba' oscillator---which uses
|
||||
four op-amp stages with supporting components. Two analysis stategies are employed, one using
|
||||
initially identified {\fgs} and the second using a more complex hierarchy of {\fgs} and {\dcs}.
|
||||
%The first
|
||||
%(see section~\ref{sec:diffamp})
|
||||
|
||||
%
|
||||
Section~\ref{sec:sigmadelta} shows FMMD analysing the sigma delta
|
||||
analogue to digital converter---again with a circular signal path---which operates on both
|
||||
analogue and digital signals.
|
||||
%
|
||||
|
||||
%
|
||||
|
||||
%
|
||||
% Moving Pt100 to metrics
|
||||
%
|
||||
@ -67,7 +80,7 @@ analogue and digital signals.
|
||||
%failure mode classification % analysis for top level events traced back to {\bc} failure modes
|
||||
%and the analysis of double simultaneous failure modes.
|
||||
%
|
||||
Finally section~\ref{sec:elecsw} demonstrates FMMD analysis of a combined electronic and software system.
|
||||
% Now in CHAPTER 6: Finally section~\ref{sec:elecsw} demonstrates FMMD analysis of a combined electronic and software system.
|
||||
|
||||
% \section{Basic Concepts Of FMMD}
|
||||
%
|
||||
@ -599,7 +612,7 @@ Finally section~\ref{sec:elecsw} demonstrates FMMD analysis of a combined electr
|
||||
|
||||
%This configuration is interesting from methodology pers.
|
||||
There are two obvious ways in which we can model this circuit:
|
||||
One is to do this in two stages, by considering the gain resistors to be an inverted potential divider
|
||||
One is to do this in two stages, by considering the gain resistors to be a potential divider
|
||||
and then combining it with the OPAMP failure mode model.
|
||||
The second is to place all three components in one {\fg}.
|
||||
Both approaches are followed in the next two sub-sections.
|
||||
@ -607,14 +620,22 @@ Both approaches are followed in the next two sub-sections.
|
||||
\subsection{First Approach: Inverting OPAMP using a Potential Divider {\dc}}
|
||||
|
||||
We cannot simply re-use the {\dc} $PD$ from section~\ref{subsec:potdiv}, not just because
|
||||
the potential divider is inverted, but in addition, it facilitates the
|
||||
output feedback forming a current balance with the input signal. %---that potential divider would only be valid if the input signal were negative.
|
||||
the potential divider is floating. That is the polarity of
|
||||
the R2 side of the potential divider is determined by the output from the op-amp.
|
||||
The circuit schematic stipulates that the input is positive.
|
||||
What we have then, in normal operation, is an inverted potential divider.
|
||||
%, but in addition, it facilitates the
|
||||
%output feedback forming a current balance with the input signal. %---that potential divider would only be valid if the input signal were negative.
|
||||
%We want if possible to have detectable errors.
|
||||
%HIGH and LOW failures are more observable than the more generic failure modes such as `OUTOFRANGE'.
|
||||
%If we can refine the operational states of the functional group, we can obtain clearer
|
||||
%symptoms.
|
||||
Were the input to be guaranteed % the input will only be
|
||||
positive, we can view it as an inverted potential divider (see table~\ref{tbl:pdneg}).
|
||||
%Were the input to be guaranteed % the input will only be
|
||||
We can therefore view it as an inverted potential divider
|
||||
and analyse it as such, see table~\ref{tbl:pdneg}.
|
||||
We assume a valid range for the output value of this circuit.
|
||||
Thus negative or low voltages can be considered as LOW
|
||||
and voltages higher than this range considered as HIGH.
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{Inverted Potential divider: Single failure analysis}
|
||||
@ -807,9 +828,11 @@ We can now form a {\fg} from the OpAmp and the $INVPD$
|
||||
|
||||
|
||||
\subsection{Second Approach: Inverting OpAmp analysing with three components in one larger {\fg}}
|
||||
|
||||
\label{subsec:invamp2}
|
||||
Here we analyse the same problem without using an intermediate $PD$
|
||||
derived component.
|
||||
derived component. We would have to do this
|
||||
if the input voltage was not constrained to being positive.
|
||||
This concern is re-visited in the differencing amplifier example in the next section.
|
||||
|
||||
%We can use this for a more general case, because we can examine the
|
||||
%effects on the circuit for each operational case (i.e. input +ve
|
||||
@ -882,6 +905,13 @@ from the pre-analysed inverted potential divider against the OpAmp.
|
||||
Both analysis strategies obtained the same failure modes for the
|
||||
inverting amplifier (i.e. the same failure modes for the {\dc} INVAMP).
|
||||
|
||||
\subsection{Conclusion}
|
||||
All FMEA is performed in the context of the environment and functionality of the enitity
|
||||
under analysis.
|
||||
This example shows that for the condition where the input voltage
|
||||
is constrained to being positive, we can apply two levels of de-composition.
|
||||
For the unconstrained case, we have to consider all three components as one larger {\fg}.
|
||||
|
||||
% METRICS The complexity comparison figures
|
||||
% METRICS bear this out. For the two stage analysis, using equation~\ref{eqn:rd2}, we obtain a CC of $4.(2-1)+6.(2-1)=10$
|
||||
% METRICS and for the second analysis a CC of $8.(3-2)=16$.
|
||||
@ -914,8 +944,9 @@ The circuit in figure~\ref{fig:circuit1} amplifies the difference between
|
||||
the input voltages $+V1$ and $+V2$.
|
||||
The circuit is configured so that both inputs use the non-inverting,
|
||||
and thus high impedance inputs, meaning that they will not
|
||||
electrically over-load and/or unduly influence
|
||||
the sensors or circuitry supplying the voltage signals used for measurement.
|
||||
electrically load the previous stage.
|
||||
%over-load and/or unduly influence
|
||||
%the sensors or circuitry supplying the voltage signals used for measurement.
|
||||
It would be desirable to represent this circuit as a {\dc} called say $DiffAMP$.
|
||||
We begin by identifying functional groups from the components in the circuit.
|
||||
|
||||
@ -1090,7 +1121,7 @@ consisting of $R3,R4,IC2$.
|
||||
This is in exactly the same configuration as the first amplifier, but it is being fed by the first amplifier.
|
||||
The first amplifier was grounded and received as input `+V1' (presumably
|
||||
a positive voltage).
|
||||
This means the junction of R1 R3 is always +ve.
|
||||
This means the junction of R2 R3 is always +ve.
|
||||
This means the input voltage `+V2' could be lower than this.
|
||||
This means R3 R4 is not a fixed potential divider, with R4 being on the positive side.
|
||||
It could be on either polarity (i.e. the other way around R4 could be the negative side).
|
||||
@ -1163,6 +1194,9 @@ two derived components of the type $NI\_AMP$ and $SEC\_AMP$.
|
||||
\hline
|
||||
TC1: $NI\_AMP$ AMPHigh & IC2 output driven high & DiffAMPLow \\
|
||||
TC2: $NI\_AMP$ AMPLow & IC2 output driven low & DiffAMPHigh \\
|
||||
% Two test cases above, yes the voltage from the second op-amp will influence
|
||||
% this, BUT we are considering single failure at the moment... 17NOV2012
|
||||
|
||||
TC3: $NI\_AMP$ LowPass & IC2 output with lag & DiffAMP\_LP \\ \hline
|
||||
TC4: $SEC\_AMP$ AMPHigh & Diff amplifier high & DiffAMPHigh\\
|
||||
TC5: $SEC\_AMP$ AMPLow & Diff amplifier low & DiffAMPLow \\
|
||||
@ -1211,9 +1245,14 @@ the un-observability and would likely prompt re-design of this
|
||||
circuit\footnote{A typical way to solve an un-observability such as this is
|
||||
to periodically switch in test signals in place of the input signal.}.
|
||||
|
||||
\subsection{Conclusion}
|
||||
|
||||
This example shows a three stages hierarchy, and a graph tracing the base~component failure modes to the
|
||||
top level event. It also re-visits the the decisions about membership of {\fgs}, due to the context
|
||||
of the circuit raised in section~\ref{subsec:invamp2}.
|
||||
|
||||
\clearpage
|
||||
\section{Five Pole Low Pass Filer, using two Sallen~Key stages.}
|
||||
\section{Five Pole Low Pass Filter, using two Sallen~Key stages.}
|
||||
\label{sec:fivepolelp}
|
||||
|
||||
\begin{figure}[h]
|
||||
@ -1230,11 +1269,11 @@ to periodically switch in test signals in place of the input signal.}.
|
||||
The circuit in figure~\ref{fig:circuit2} shows a five pole low pass filter.
|
||||
Starting at the input, we have a first order low pass filter buffered by an op-amp,
|
||||
the output of this is passed to a Sallen~Key~\cite{aoe}[p.267]~\cite{electronicssysapproach}[p.288] second order low-pass filter.
|
||||
The output of this is passed into another Sallen~Key filter -- which although it may have different values
|
||||
for its resistors/capacitors and thus have a different frequency response -- is identical from a failure mode perspective.
|
||||
The output of this is passed into another Sallen~Key filter. % -- which although it may have different values
|
||||
%for its resistors/capacitors and thus have a different frequency response -- is identical from a failure mode perspective.
|
||||
Thus we can analyse the first Sallen~Key low pass filter and re-use it
|
||||
for the second stage
|
||||
(avoiding the repeat work that would have had to be performed using traditional FMEA).
|
||||
(avoiding repeat work that would have had to be performed using traditional FMEA).
|
||||
|
||||
|
||||
\begin{figure}[h]
|
||||
@ -1251,9 +1290,9 @@ for the second stage
|
||||
We begin with the first order low pass filter formed by $R10$ and $C10$.
|
||||
%
|
||||
This configuration (or {\fg}) is very commonly
|
||||
used in electronics to remove unwanted high frequencies/interference
|
||||
from a signal; here it is being used as a first stage of
|
||||
a more sophisticated low pass filter.
|
||||
used %in electronics
|
||||
to remove unwanted high frequencies/noise
|
||||
from a signal. %; here it is being used as a first stage of a more sophisticated low pass filter.
|
||||
%
|
||||
R10 and C10 act as a potential divider, with the crucial difference between a purely resistive potential divider being
|
||||
that the impedance of the capacitor is lower for higher frequencies.
|
||||
@ -1280,10 +1319,10 @@ We analyse the first order low pass filter in table~\ref{tbl:firstorderlp}.\\
|
||||
\textbf{cause} & \textbf{Low Pass Filter} & \textbf{Failure Mode} \\
|
||||
|
||||
\hline
|
||||
FS1: R10 SHORT & $No Filtering$ & $LPnofilter$ \\ \hline
|
||||
FS1: R10 SHORT & $No Filtering$ & $LPallpass$ \\ \hline
|
||||
FS2: R10 OPEN & $No Signal$ & $LPnosignal$ \\ \hline
|
||||
FS3: C10 SHORT & $No Signal$ & $LPnosignal$ \\ \hline
|
||||
FS4: C10 OPEN & $No Filtering$ & $LPnofilter$ \\ \hline
|
||||
FS4: C10 OPEN & $No Filtering$ & $LPallpass$ \\ \hline
|
||||
|
||||
\hline
|
||||
|
||||
@ -1320,7 +1359,7 @@ from the $FirstOrderLP$ and the OpAmp component.
|
||||
TC2: $OPAMP$ LatchDown & Output Low & LP1Low \\
|
||||
TC3: $OPAMP$ No Operation & Output Low & LP1Low \\
|
||||
TC4: $OPAMP$ Low Slew & Unwanted Low pass filtering & LP1filterincorrect \\ \hline
|
||||
TC5: $LPnofilter $ & No low pass filtering & LP1filterincorrect \\
|
||||
TC5: $LPallpass $ & No low pass filtering & LP1filterincorrect \\
|
||||
TC6: $LPnosignal $ & No input signal & LP1nosignal \\ \hline
|
||||
\hline
|
||||
|
||||
@ -1436,7 +1475,8 @@ We represent the desired FMMD hierarchy in figure~\ref{fig:circuit2h}.
|
||||
\centering
|
||||
\includegraphics[width=400pt]{./CH5_Examples/eulerfivepole.png}
|
||||
% eulerfivepole.png: 883x343 pixel, 72dpi, 31.15x12.10 cm, bb=0 0 883 343
|
||||
\caption{Euler diagram showing {\fg}/{\dc} relationships for the analysis of the Five Pole Sallen Key filter.}
|
||||
\caption{Euler diagram showing {\fg}/{\dc} relationships for the analysis of the Five Pole Sallen Key filter. This
|
||||
is an abstract version of figure~\ref{fig:circuit2002_FIVEPOLE}}.
|
||||
\label{fig:circuit2h}
|
||||
\end{figure}
|
||||
|
||||
@ -1500,7 +1540,9 @@ three op-amp driven non-inverting low pass filter elements. It is not surprising
|
||||
From a safety point of view, the failure modes $LOW$, $HIGH$ and $NO\_SIGNAL$
|
||||
could be easily detected; the failure symptom $FilterIncorrect$ may be less observable.
|
||||
|
||||
|
||||
\subsection{Conclusion}
|
||||
This example shows the analysis of a linear signal path circuit with three easily identifiable
|
||||
{\fgs} and re-use of the Sallen-Key {\dc}.
|
||||
|
||||
\clearpage
|
||||
\section{Quad Op-Amp Oscillator}
|
||||
@ -1522,9 +1564,13 @@ The circuit implements an oscillator using four 45 degree phase shifts, and an i
|
||||
gain and the final 180 degrees of phase shift (making a total of 360). % degrees of phase shift).
|
||||
The circuit provides two outputs with a quadrature phase relationship.
|
||||
%
|
||||
From a fault finding perspective this circuit cannot be de-composed because the whole circuit is enclosed within a feedback loop.
|
||||
From a fault finding perspective this circuit cannot be de-composed
|
||||
because the whole circuit is enclosed within a feedback loop,
|
||||
hence a fault anywhere in the loop is likely to affect all stages.
|
||||
%
|
||||
However, this is not a problem for FMMD, as {\fgs} are readily identifiable.
|
||||
The signal path is circular (its a positive feedback circuit) and most failures would simply cause the output to stop oscillating.
|
||||
%
|
||||
%The signal path is circular (its a positive feedback circuit) and most failures would simply cause the output to stop oscillating.
|
||||
%The top level failure modes for the FMMD hierarchy bear this out.
|
||||
%However, FMMD is a bottom -up analysis methodology and we can therefore still identify
|
||||
%{\fgs} and apply analysis from a failure mode perspective.
|
||||
@ -1533,7 +1579,7 @@ The signal path is circular (its a positive feedback circuit) and most failures
|
||||
% METRICS ($4.4 +10 \times 2 = 36$) failure modes. Applying equation~\ref{eqn:rd2} gives a complexity comparison figure of $13.36=468$.
|
||||
% METRICS We now create FMMD models and compare the complexity of FMMD and FMEA.
|
||||
%
|
||||
We start the FMMD process by determining {\fgs}.
|
||||
%We start the FMMD process by determining {\fgs}.
|
||||
We initially identify three types of functional groups, an inverting amplifier (analysed in section~\ref{fig:invamp}),
|
||||
a 45 degree phase shifter (a {$10k\Omega$} resistor and a $10nF$ capacitor) and a non-inverting buffer
|
||||
amplifier. We can name these $INVAMP$, $PHS45$ and $NIBUFF$ respectively.
|
||||
@ -1565,30 +1611,9 @@ This consists of a resistor and a capacitor. We already have failure mode models
|
||||
we now need to see how these failure modes would affect the phase shifter. Note that the circuit here
|
||||
is identical to the low pass filter in circuit topology (see \ref{sec:lp}), but its intended use is different.
|
||||
We have to analyse this circuit from the perspective of it being a {\em phase~shifter} not a {\em low~pass~filter}.
|
||||
Our functional group for the phase shifter consists of a resistor and a capacitor, $G_0 = \{ R, C \}$.
|
||||
Our functional group for the phase shifter consists of a resistor and a capacitor, $G_0 = \{ R, C \}$
|
||||
(FMMD analysis details at section~\ref{detail:PHS45})
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{PhaseShift: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
\label{tbl:firstorderlp}
|
||||
|
||||
\begin{tabular}{|| l | c | l ||} \hline
|
||||
% \textbf{Failure Scenario} & & \textbf{First Order} & & \textbf{Symptom} \\
|
||||
% & & \textbf{Low Pass Filter} & & \\
|
||||
\textbf{Failure} & \textbf{$PHS45$ } & \textbf{Derived Component} \\
|
||||
\textbf{cause} & \textbf{Effect} & \textbf{Failure Mode} \\
|
||||
|
||||
\hline
|
||||
FS1: R SHORT & 0 degree's of phase shift & $0\_phaseshift$ \\
|
||||
% 90 degree's of phase shift & & $90\_phaseshift$
|
||||
FS2: R OPEN & No Signal & $nosignal$ \\ \hline
|
||||
FS3: C SHORT & Grounded,No Signal & $nosignal$ \\
|
||||
FS4: C OPEN & 0 degree's of phase shift & $0\_phaseshift$ \\ \hline
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
% PHS45
|
||||
|
||||
|
||||
$$ fm (G_0) = \{ nosignal, 0\_phaseshift \} $$
|
||||
@ -1641,67 +1666,9 @@ or in Euler diagram format as in figure~\ref{fig:bubbaeuler1}.
|
||||
\label{fig:bubbaeuler1}
|
||||
\end{figure}
|
||||
%
|
||||
\begin{table}[h+]
|
||||
\caption{Bubba Oscillator: Failure Mode Effects Analysis: One Large Functional Group} % title of Table
|
||||
\label{tbl:bubbalargefg}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
% \textbf{Failure Scenario} & & \textbf{Bubba} & & \textbf{Symptom} \\
|
||||
% & & \textbf{Oscillator} & & \\
|
||||
|
||||
\textbf{Failure} & & \textbf{$BubbaOscillator$ } & & \textbf{Derived Component} \\
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
\hline
|
||||
|
||||
|
||||
FS1: $PHS45_1$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
|
||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
% FS3: $PHS45_1$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
||||
|
||||
FS3: $NIBUFF_1$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\
|
||||
FS4: $NIBUFF_1$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
||||
FS5: $NIBUFF_1$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
||||
FS6: $NIBUFF_1$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
|
||||
FS7: $PHS45_2$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
|
||||
FS8: $PHS45_2$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
|
||||
%FS10: $PHS45_2$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
||||
|
||||
|
||||
FS9: $NIBUFF_2$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\
|
||||
FS10: $NIBUFF_2$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
||||
FS11: $NIBUFF_2$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
||||
FS12: $NIBUFF_2$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
|
||||
FS13: $PHS45_3$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
|
||||
FS14: $PHS45_3$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
% FS17: $PHS45_3$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
||||
|
||||
FS15: $NIBUFF_3$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\
|
||||
FS16: $NIBUFF_3$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
||||
FS17: $NIBUFF_3$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
||||
FS18: $NIBUFF_3$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
|
||||
FS19: $PHS45_4$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
|
||||
FS20: $PHS45_4$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
% FS24: $PHS45_4$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
||||
|
||||
FS21: $INVAMP$ $OUTOFRANGE$ & & signal lost & & $NO_{osc}$ \\
|
||||
FS22: $INVAMP$ $ZEROOUTPUT$ & & signal lost & & $NO_{osc}$ \\
|
||||
FS23: $INVAMP$ $NOGAIN$ & & signal lost & & $NO_{osc}$ \\
|
||||
FS24: $INVAMP$ $LOWPASS$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
|
||||
|
||||
% FS1: $CAP_{10nF}$ $OPEN$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
||||
% FS1: $CAP_{10nF}$ $SHORT$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
|
||||
Collecting symptoms from table~\ref{tbl:bubbalargefg} we can show that for single failure modes, applying $fm$ to the bubba oscillator
|
||||
The detail of the FMMD analysis can be found in section~\ref{detail:BUBOSC1}.
|
||||
Applying $fm$ to the bubba oscillator
|
||||
returns three failure modes,
|
||||
%
|
||||
$$ fm(BubbaOscillator) = \{ NO_{osc}, HI_{fosc}\} . $$ %, LO_{fosc} \} . $$
|
||||
@ -1794,33 +1761,9 @@ Finally we form a final {\fg} with $PHS135BUFFERED$ and $PHS225AMP$,
|
||||
% model of the bubba oscillator.
|
||||
% The proposed hierarchy is shown in figure~\ref{fig:poss2finalbubba}.
|
||||
%
|
||||
\begin{table}[h+]
|
||||
\caption{BUFF45: Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:buff45}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
%\textbf{Failure Scenario} & & \textbf{BUFF45} & & \textbf{Symptom} \\
|
||||
% & & & & \\
|
||||
\textbf{Failure} & & \textbf{$BUFF45$ } & & \textbf{Derived Component} \\
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
\hline
|
||||
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $0\_phaseshift$ \\
|
||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
%FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $90\_phaseshift$ \\ \hline
|
||||
|
||||
FS3: $NIBUFF_1$ $L_{up}$ & & output high & & $NO_{signal}$ \\
|
||||
FS4: $NIBUFF_1$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
|
||||
FS5: $NIBUFF_1$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
|
||||
FS6: $NIBUFF_1$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
%
|
||||
collecting symptoms from table~\ref{tbl:buff45}, we can create a derived component $BUFF45$ which has the following failure modes:
|
||||
%
|
||||
We analyse the {\fg} (see section~\ref{detail:BUFF45}) and create a derived component, $BUFF45$ which has the following failure modes:
|
||||
$$
|
||||
fm (BUFF45) = \{ 0\_phaseshift, NO\_signal .\} % 90\_phaseshift,
|
||||
$$
|
||||
@ -1829,43 +1772,7 @@ $$
|
||||
%
|
||||
We can now combine three $BUFF45$ {\dcs} and create a $PHS135BUFFERED$ {\dc}.
|
||||
%
|
||||
\begin{table}[h+]
|
||||
\caption{PHS135BUFFERED: Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:phs135buffered}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
%\textbf{Failure Scenario} & & \textbf{PHS135 Buffered} & & \textbf{Symptom} \\
|
||||
% & & & & \\
|
||||
\textbf{Failure} & & \textbf{$PHS135BUFFERED$ } & & \textbf{Derived Component} \\
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
|
||||
\hline
|
||||
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
|
||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
%FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
|
||||
|
||||
FS3: $PHS45_2$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
|
||||
FS4: $PHS45_2$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
% FS6: $PHS45_2$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
|
||||
|
||||
FS5: $PHS45_3$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
|
||||
FS6: $PHS45_3$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
% FS9: $PHS45_3$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
|
||||
|
||||
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
%
|
||||
%
|
||||
Collecting symptoms from table~\ref{tbl:phs135buffered}, we can create a derived component $PHS135BUFFERED$ which has the following failure modes:
|
||||
$$
|
||||
fm (PHS135BUFFERED) = \{ 90\_phaseshift, NO\_signal .\} % 180\_phaseshift,
|
||||
$$
|
||||
%
|
||||
%
|
||||
%$$ CC (PHS135BUFFERED) = 3 \times 2 = 6 $$
|
||||
%
|
||||
@ -1873,36 +1780,9 @@ $$
|
||||
%
|
||||
The $PHS225AMP$ consists of a $PHS45$, providing $45^{\circ}$ of phase shift, and an
|
||||
$INVAMP$, providing $180^{\circ}$ giving a total of $225^{\circ}$.
|
||||
Detailed FMMD analysis may be found in section~\ref{detail:PHS225AMP}.
|
||||
%
|
||||
\begin{table}[h+]
|
||||
\caption{PHS225AMP: Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:phs225amp}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
%\textbf{Failure Scenario} & & \textbf{PHS225AMP} & & \textbf{Symptom} \\
|
||||
% & & \textbf{Oscillator} & & \\
|
||||
\textbf{Failure} & & \textbf{$PHS225AMP$ } & & \textbf{Derived Component} \\
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
\hline
|
||||
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $180\_phaseshift$ \\
|
||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
% FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $270\_phaseshift$ \\ \hline
|
||||
|
||||
FS3: $INVAMP$ $L_{up}$ & & output high & & $NO_{signal}$ \\
|
||||
FS4: $INVAMP$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
|
||||
FS5: $INVAMP$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
|
||||
FS6: $INVAMP$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
%
|
||||
Collecting symptoms from table~\ref{tbl:phs225amp}, we can create a derived component $PHS225AMP$ which has the following failure modes:
|
||||
$$
|
||||
fm (PHS225AMP) = \{ 180\_phaseshift, NO\_signal .\} % 270\_phaseshift,
|
||||
$$
|
||||
%
|
||||
%$$ CC(PHS225AMP) = 7 \times 1 $$
|
||||
%
|
||||
@ -1911,38 +1791,15 @@ The $PHS225AMP$ consists of a $PHS45$ and an $INVAMP$ (which provides $180^{\cir
|
||||
%
|
||||
%
|
||||
To complete the analysis we now bring the derived components $PHS135BUFFERED$ and $PHS225AMP$ together
|
||||
and perform FMEA with these, to obtain a model for the Bubba Oscillator.
|
||||
%
|
||||
\begin{table}[h+]
|
||||
\caption{BUBBAOSC: Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:bubba2}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
%\textbf{Failure Scenario} & & \textbf{BUBBAOSC} & & \textbf{Symptom} \\
|
||||
% & & & & \\
|
||||
|
||||
\textbf{Failure} & & \textbf{$BUBBAOSC$ } & & \textbf{Derived Component} \\
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
\hline
|
||||
%FS1: $PHS135BUFFERED$ $180\_phaseshift$ & & phase shift high & & $LO_{fosc}$ \\
|
||||
FS1: $PHS135BUFFERED$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
|
||||
FS2: $PHS135BUFFERED$ $90\_phaseshift$ & & phase shift low & & $HI_{osc}$ \\ \hline
|
||||
|
||||
% FS4: $PHS225AMP$ $270\_phaseshift$ & & phase shift high & & $LO_{fosc}$ \\
|
||||
FS4: $PHS225AMP$ $180\_phaseshift$ & & phase shift low & & $HI_{osc}$ \\
|
||||
FS5: $PHS225AMP$ $NO\_signal$ & & lost signal & & $NO_{signal}$ \\ \hline
|
||||
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
%
|
||||
Collecting symptoms from table~\ref{tbl:bubba2}, we can create a derived component $BUBBAOSC$ which has the following failure modes:
|
||||
and perform FMEA with these (see section~\ref{detail:BUBBAOSC}), to obtain a model for the Bubba Oscillator.
|
||||
%Collecting symptoms from table~\ref{tbl:bubba2}, we can create a derived component $BUBBAOSC$ which has the following failure modes:
|
||||
$$
|
||||
fm (BUBBAOSC) = \{ HI_{osc}, NO\_signal .\} % LO_{fosc},
|
||||
$$
|
||||
|
||||
|
||||
|
||||
|
||||
%
|
||||
%We could trace the DAGs here and ensure that both analysis strategies worked ok.....
|
||||
%
|
||||
@ -1972,6 +1829,17 @@ there are more {\dcs} and therefore increases the potential for re-use of pre-an
|
||||
% HTR The more we can modularise, the more we decimate the $O(N^2)$ effect
|
||||
% HTR of complexity comparison.
|
||||
%
|
||||
\subsection{conclusion}
|
||||
With FMMD there is always a choice for the membership of {\fgs}.
|
||||
This example has shown that the simple approach, identifying
|
||||
initial {\fgs} and using them to build a large {\fg} to model the circuit
|
||||
gives a valid result.
|
||||
However, it involves a large reasoning distance, the final stage
|
||||
having 24 failure modes to consider against each of the other seven {\dcs}.
|
||||
A finer grained approach produces more potentially re-usable {\dcs} and
|
||||
involves a several stages with lower reasoning distances.
|
||||
|
||||
|
||||
|
||||
\clearpage
|
||||
|
||||
|
262
submission_thesis/appendixes/detailed_analysis.tex
Normal file
262
submission_thesis/appendixes/detailed_analysis.tex
Normal file
@ -0,0 +1,262 @@
|
||||
%%% Appendix for detailed workings out from CH5
|
||||
\chapter{Detailed FMMD analyses}
|
||||
\section{Bubba Oscillator FMMD analyses}
|
||||
|
||||
For clarity the detailed workings of the FMMD analysis stages in many of the examples
|
||||
in chapter 5 have been moved here for reference.
|
||||
|
||||
\subsection{PHS45 Detailed Analysis}
|
||||
\label{detail:PHS45}
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{PhaseShift: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
\label{tbl:firstorderlp}
|
||||
|
||||
\begin{tabular}{|| l | c | l ||} \hline
|
||||
% \textbf{Failure Scenario} & & \textbf{First Order} & & \textbf{Symptom} \\
|
||||
% & & \textbf{Low Pass Filter} & & \\
|
||||
\textbf{Failure} & \textbf{$PHS45$ } & \textbf{Derived Component} \\
|
||||
\textbf{cause} & \textbf{Effect} & \textbf{Failure Mode} \\
|
||||
|
||||
\hline
|
||||
FS1: R SHORT & 0 degree's of phase shift & $0\_phaseshift$ \\
|
||||
% 90 degree's of phase shift & & $90\_phaseshift$
|
||||
FS2: R OPEN & No Signal & $nosignal$ \\ \hline
|
||||
FS3: C SHORT & Grounded,No Signal & $nosignal$ \\
|
||||
FS4: C OPEN & 0 degree's of phase shift & $0\_phaseshift$ \\ \hline
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
% PHS45
|
||||
|
||||
|
||||
|
||||
\subsection{Bubba Oscillator: One Large Functional Group: Detailed Analysis}
|
||||
\label{detail:BUBOSC1}
|
||||
|
||||
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{Bubba Oscillator: Failure Mode Effects Analysis: One Large Functional Group} % title of Table
|
||||
\label{tbl:bubbalargefg}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
% \textbf{Failure Scenario} & & \textbf{Bubba} & & \textbf{Symptom} \\
|
||||
% & & \textbf{Oscillator} & & \\
|
||||
|
||||
\textbf{Failure} & & \textbf{$BubbaOscillator$ } & & \textbf{Derived Component} \\
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
\hline
|
||||
|
||||
|
||||
FS1: $PHS45_1$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
|
||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
% FS3: $PHS45_1$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
||||
|
||||
FS3: $NIBUFF_1$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\
|
||||
FS4: $NIBUFF_1$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
||||
FS5: $NIBUFF_1$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
||||
FS6: $NIBUFF_1$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
|
||||
FS7: $PHS45_2$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
|
||||
FS8: $PHS45_2$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
|
||||
%FS10: $PHS45_2$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
||||
|
||||
|
||||
FS9: $NIBUFF_2$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\
|
||||
FS10: $NIBUFF_2$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
||||
FS11: $NIBUFF_2$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
||||
FS12: $NIBUFF_2$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
|
||||
FS13: $PHS45_3$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
|
||||
FS14: $PHS45_3$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
% FS17: $PHS45_3$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
||||
|
||||
FS15: $NIBUFF_3$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\
|
||||
FS16: $NIBUFF_3$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
||||
FS17: $NIBUFF_3$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
||||
FS18: $NIBUFF_3$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
|
||||
FS19: $PHS45_4$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
|
||||
FS20: $PHS45_4$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
% FS24: $PHS45_4$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
||||
|
||||
FS21: $INVAMP$ $OUTOFRANGE$ & & signal lost & & $NO_{osc}$ \\
|
||||
FS22: $INVAMP$ $ZEROOUTPUT$ & & signal lost & & $NO_{osc}$ \\
|
||||
FS23: $INVAMP$ $NOGAIN$ & & signal lost & & $NO_{osc}$ \\
|
||||
FS24: $INVAMP$ $LOWPASS$ & & signal lost & & $NO_{osc}$ \\ \hline
|
||||
|
||||
|
||||
% FS1: $CAP_{10nF}$ $OPEN$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
||||
% FS1: $CAP_{10nF}$ $SHORT$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
Collecting symptoms from table~\ref{tbl:bubbalargefg} we can show that for single failure modes, applying $fm$ to the bubba oscillator
|
||||
returns three failure modes,
|
||||
%
|
||||
$$ fm(BubbaOscillator) = \{ NO_{osc}, HI_{fosc}\} . $$ %, LO_{fosc} \} . $$
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{BUFF45: Detailed Analysis}
|
||||
\label{detail:BUFF45}
|
||||
|
||||
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{BUFF45: Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:buff45}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
%\textbf{Failure Scenario} & & \textbf{BUFF45} & & \textbf{Symptom} \\
|
||||
% & & & & \\
|
||||
\textbf{Failure} & & \textbf{$BUFF45$ } & & \textbf{Derived Component} \\
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
\hline
|
||||
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $0\_phaseshift$ \\
|
||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
%FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $90\_phaseshift$ \\ \hline
|
||||
|
||||
FS3: $NIBUFF_1$ $L_{up}$ & & output high & & $NO_{signal}$ \\
|
||||
FS4: $NIBUFF_1$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
|
||||
FS5: $NIBUFF_1$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
|
||||
FS6: $NIBUFF_1$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
|
||||
collecting symptoms from table~\ref{tbl:buff45}, we can create a derived component $BUFF45$ which has the following failure modes:
|
||||
$$
|
||||
fm (BUFF45) = \{ 0\_phaseshift, NO\_signal .\} % 90\_phaseshift,
|
||||
$$
|
||||
%
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{PHS135BUFFERED: Failure Mode Effects Analysis} % title of Table
|
||||
\label{detail:PHS135BUFFERED}
|
||||
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{PHS135BUFFERED: Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:phs135buffered}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
%\textbf{Failure Scenario} & & \textbf{PHS135 Buffered} & & \textbf{Symptom} \\
|
||||
% & & & & \\
|
||||
\textbf{Failure} & & \textbf{$PHS135BUFFERED$ } & & \textbf{Derived Component} \\
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
|
||||
\hline
|
||||
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
|
||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
%FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
|
||||
|
||||
FS3: $PHS45_2$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
|
||||
FS4: $PHS45_2$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
% FS6: $PHS45_2$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
|
||||
|
||||
FS5: $PHS45_3$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
|
||||
FS6: $PHS45_3$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
% FS9: $PHS45_3$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
|
||||
|
||||
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
%
|
||||
%
|
||||
Collecting symptoms from table~\ref{tbl:phs135buffered}, we can create a derived component $PHS135BUFFERED$ which has the following failure modes:
|
||||
$$
|
||||
fm (PHS135BUFFERED) = \{ 90\_phaseshift, NO\_signal .\} % 180\_phaseshift,
|
||||
$$
|
||||
%
|
||||
|
||||
\subsection{PHS225AMP: Failure Mode Effects Analysis} % title of Table
|
||||
\label{detail:PHS225AMP}
|
||||
\begin{table}[h+]
|
||||
\caption{PHS225AMP: Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:phs225amp}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
%\textbf{Failure Scenario} & & \textbf{PHS225AMP} & & \textbf{Symptom} \\
|
||||
% & & \textbf{Oscillator} & & \\
|
||||
\textbf{Failure} & & \textbf{$PHS225AMP$ } & & \textbf{Derived Component} \\
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
\hline
|
||||
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $180\_phaseshift$ \\
|
||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
% FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $270\_phaseshift$ \\ \hline
|
||||
|
||||
FS3: $INVAMP$ $L_{up}$ & & output high & & $NO_{signal}$ \\
|
||||
FS4: $INVAMP$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
|
||||
FS5: $INVAMP$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
|
||||
FS6: $INVAMP$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
%
|
||||
Applying FMMD we create a derived component $PHS225AMP$ which has the following failure modes:
|
||||
$$
|
||||
fm (PHS225AMP) = \{ 180\_phaseshift, NO\_signal .\} % 270\_phaseshift,
|
||||
$$
|
||||
|
||||
|
||||
|
||||
\subsection{BUBBAOSC: Failure Mode Effects Analysis} % title of Table
|
||||
\label{detail:BUBBAOSC}
|
||||
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{BUBBAOSC: Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:bubba2}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
%\textbf{Failure Scenario} & & \textbf{BUBBAOSC} & & \textbf{Symptom} \\
|
||||
% & & & & \\
|
||||
|
||||
\textbf{Failure} & & \textbf{$BUBBAOSC$ } & & \textbf{Derived Component} \\
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
\hline
|
||||
%FS1: $PHS135BUFFERED$ $180\_phaseshift$ & & phase shift high & & $LO_{fosc}$ \\
|
||||
FS1: $PHS135BUFFERED$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
|
||||
FS2: $PHS135BUFFERED$ $90\_phaseshift$ & & phase shift low & & $HI_{osc}$ \\ \hline
|
||||
|
||||
% FS4: $PHS225AMP$ $270\_phaseshift$ & & phase shift high & & $LO_{fosc}$ \\
|
||||
FS4: $PHS225AMP$ $180\_phaseshift$ & & phase shift low & & $HI_{osc}$ \\
|
||||
FS5: $PHS225AMP$ $NO\_signal$ & & lost signal & & $NO_{signal}$ \\ \hline
|
||||
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
%
|
||||
Collecting symptoms from table~\ref{tbl:bubba2}, we can create a derived component $BUBBAOSC$ which has the following failure modes:
|
||||
$$
|
||||
fm (BUBBAOSC) = \{ HI_{osc}, NO\_signal .\} % LO_{fosc},
|
||||
$$
|
||||
\clearpage
|
||||
\section{Sigma Delta Detailed FMMD Analyses}
|
||||
|
||||
|
||||
|
@ -92,7 +92,7 @@
|
||||
\input{CH7_Conclusion/copy}
|
||||
|
||||
\appendix
|
||||
|
||||
\input{appendixes/detailed_analysis}
|
||||
\input{appendixes/formal}
|
||||
\input{appendixes/algorithmic}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user