263 lines
13 KiB
TeX
263 lines
13 KiB
TeX
%%% Appendix for detailed workings out from CH5
|
|
\chapter{Detailed FMMD analyses}
|
|
\section{Bubba Oscillator FMMD analyses}
|
|
|
|
For clarity the detailed workings of the FMMD analysis stages in many of the examples
|
|
in chapter 5 have been moved here for reference.
|
|
|
|
\subsection{PHS45 Detailed Analysis}
|
|
\label{detail:PHS45}
|
|
|
|
\begin{table}[h+]
|
|
\caption{PhaseShift: Failure Mode Effects Analysis: Single Faults} % title of Table
|
|
\label{tbl:firstorderlp}
|
|
|
|
\begin{tabular}{|| l | c | l ||} \hline
|
|
% \textbf{Failure Scenario} & & \textbf{First Order} & & \textbf{Symptom} \\
|
|
% & & \textbf{Low Pass Filter} & & \\
|
|
\textbf{Failure} & \textbf{$PHS45$ } & \textbf{Derived Component} \\
|
|
\textbf{cause} & \textbf{Effect} & \textbf{Failure Mode} \\
|
|
|
|
\hline
|
|
FS1: R SHORT & 0 degree's of phase shift & $0\_phaseshift$ \\
|
|
% 90 degree's of phase shift & & $90\_phaseshift$
|
|
FS2: R OPEN & No Signal & $nosignal$ \\ \hline
|
|
FS3: C SHORT & Grounded,No Signal & $nosignal$ \\
|
|
FS4: C OPEN & 0 degree's of phase shift & $0\_phaseshift$ \\ \hline
|
|
|
|
\hline
|
|
\end{tabular}
|
|
\end{table}
|
|
% PHS45
|
|
|
|
|
|
|
|
\subsection{Bubba Oscillator: One Large Functional Group: Detailed Analysis}
|
|
\label{detail:BUBOSC1}
|
|
|
|
|
|
|
|
\begin{table}[h+]
|
|
\caption{Bubba Oscillator: Failure Mode Effects Analysis: One Large Functional Group} % title of Table
|
|
\label{tbl:bubbalargefg}
|
|
|
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
|
% \textbf{Failure Scenario} & & \textbf{Bubba} & & \textbf{Symptom} \\
|
|
% & & \textbf{Oscillator} & & \\
|
|
|
|
\textbf{Failure} & & \textbf{$BubbaOscillator$ } & & \textbf{Derived Component} \\
|
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
|
|
|
\hline
|
|
|
|
|
|
FS1: $PHS45_1$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
|
|
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ \hline
|
|
% FS3: $PHS45_1$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
|
|
|
FS3: $NIBUFF_1$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\
|
|
FS4: $NIBUFF_1$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
|
FS5: $NIBUFF_1$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
|
FS6: $NIBUFF_1$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline
|
|
|
|
FS7: $PHS45_2$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
|
|
FS8: $PHS45_2$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
|
|
%FS10: $PHS45_2$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
|
|
|
|
|
FS9: $NIBUFF_2$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\
|
|
FS10: $NIBUFF_2$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
|
FS11: $NIBUFF_2$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
|
FS12: $NIBUFF_2$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline
|
|
|
|
FS13: $PHS45_3$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
|
|
FS14: $PHS45_3$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ \hline
|
|
% FS17: $PHS45_3$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
|
|
|
FS15: $NIBUFF_3$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\
|
|
FS16: $NIBUFF_3$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
|
FS17: $NIBUFF_3$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\
|
|
FS18: $NIBUFF_3$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline
|
|
|
|
FS19: $PHS45_4$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
|
|
FS20: $PHS45_4$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ \hline
|
|
% FS24: $PHS45_4$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
|
|
|
FS21: $INVAMP$ $OUTOFRANGE$ & & signal lost & & $NO_{osc}$ \\
|
|
FS22: $INVAMP$ $ZEROOUTPUT$ & & signal lost & & $NO_{osc}$ \\
|
|
FS23: $INVAMP$ $NOGAIN$ & & signal lost & & $NO_{osc}$ \\
|
|
FS24: $INVAMP$ $LOWPASS$ & & signal lost & & $NO_{osc}$ \\ \hline
|
|
|
|
|
|
% FS1: $CAP_{10nF}$ $OPEN$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
|
% FS1: $CAP_{10nF}$ $SHORT$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
|
|
\hline
|
|
|
|
\end{tabular}
|
|
\end{table}
|
|
Collecting symptoms from table~\ref{tbl:bubbalargefg} we can show that for single failure modes, applying $fm$ to the bubba oscillator
|
|
returns three failure modes,
|
|
%
|
|
$$ fm(BubbaOscillator) = \{ NO_{osc}, HI_{fosc}\} . $$ %, LO_{fosc} \} . $$
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{BUFF45: Detailed Analysis}
|
|
\label{detail:BUFF45}
|
|
|
|
|
|
|
|
\begin{table}[h+]
|
|
\caption{BUFF45: Failure Mode Effects Analysis} % title of Table
|
|
\label{tbl:buff45}
|
|
|
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
|
%\textbf{Failure Scenario} & & \textbf{BUFF45} & & \textbf{Symptom} \\
|
|
% & & & & \\
|
|
\textbf{Failure} & & \textbf{$BUFF45$ } & & \textbf{Derived Component} \\
|
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
|
|
|
\hline
|
|
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $0\_phaseshift$ \\
|
|
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
|
%FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $90\_phaseshift$ \\ \hline
|
|
|
|
FS3: $NIBUFF_1$ $L_{up}$ & & output high & & $NO_{signal}$ \\
|
|
FS4: $NIBUFF_1$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
|
|
FS5: $NIBUFF_1$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
|
|
FS6: $NIBUFF_1$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
|
|
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
\end{table}
|
|
|
|
|
|
collecting symptoms from table~\ref{tbl:buff45}, we can create a derived component $BUFF45$ which has the following failure modes:
|
|
$$
|
|
fm (BUFF45) = \{ 0\_phaseshift, NO\_signal .\} % 90\_phaseshift,
|
|
$$
|
|
%
|
|
|
|
|
|
|
|
|
|
\subsection{PHS135BUFFERED: Failure Mode Effects Analysis} % title of Table
|
|
\label{detail:PHS135BUFFERED}
|
|
|
|
|
|
\begin{table}[h+]
|
|
\caption{PHS135BUFFERED: Failure Mode Effects Analysis} % title of Table
|
|
\label{tbl:phs135buffered}
|
|
|
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
|
%\textbf{Failure Scenario} & & \textbf{PHS135 Buffered} & & \textbf{Symptom} \\
|
|
% & & & & \\
|
|
\textbf{Failure} & & \textbf{$PHS135BUFFERED$ } & & \textbf{Derived Component} \\
|
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
|
|
|
|
|
\hline
|
|
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
|
|
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
|
%FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
|
|
|
|
FS3: $PHS45_2$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
|
|
FS4: $PHS45_2$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
|
% FS6: $PHS45_2$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
|
|
|
|
FS5: $PHS45_3$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
|
|
FS6: $PHS45_3$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
|
% FS9: $PHS45_3$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
|
|
|
|
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
\end{table}
|
|
%
|
|
%
|
|
Collecting symptoms from table~\ref{tbl:phs135buffered}, we can create a derived component $PHS135BUFFERED$ which has the following failure modes:
|
|
$$
|
|
fm (PHS135BUFFERED) = \{ 90\_phaseshift, NO\_signal .\} % 180\_phaseshift,
|
|
$$
|
|
%
|
|
|
|
\subsection{PHS225AMP: Failure Mode Effects Analysis} % title of Table
|
|
\label{detail:PHS225AMP}
|
|
\begin{table}[h+]
|
|
\caption{PHS225AMP: Failure Mode Effects Analysis} % title of Table
|
|
\label{tbl:phs225amp}
|
|
|
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
|
%\textbf{Failure Scenario} & & \textbf{PHS225AMP} & & \textbf{Symptom} \\
|
|
% & & \textbf{Oscillator} & & \\
|
|
\textbf{Failure} & & \textbf{$PHS225AMP$ } & & \textbf{Derived Component} \\
|
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
|
|
|
\hline
|
|
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $180\_phaseshift$ \\
|
|
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\ \hline
|
|
% FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $270\_phaseshift$ \\ \hline
|
|
|
|
FS3: $INVAMP$ $L_{up}$ & & output high & & $NO_{signal}$ \\
|
|
FS4: $INVAMP$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
|
|
FS5: $INVAMP$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
|
|
FS6: $INVAMP$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
\end{table}
|
|
%
|
|
Applying FMMD we create a derived component $PHS225AMP$ which has the following failure modes:
|
|
$$
|
|
fm (PHS225AMP) = \{ 180\_phaseshift, NO\_signal .\} % 270\_phaseshift,
|
|
$$
|
|
|
|
|
|
|
|
\subsection{BUBBAOSC: Failure Mode Effects Analysis} % title of Table
|
|
\label{detail:BUBBAOSC}
|
|
|
|
|
|
\begin{table}[h+]
|
|
\caption{BUBBAOSC: Failure Mode Effects Analysis} % title of Table
|
|
\label{tbl:bubba2}
|
|
|
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
|
%\textbf{Failure Scenario} & & \textbf{BUBBAOSC} & & \textbf{Symptom} \\
|
|
% & & & & \\
|
|
|
|
\textbf{Failure} & & \textbf{$BUBBAOSC$ } & & \textbf{Derived Component} \\
|
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
|
|
|
\hline
|
|
%FS1: $PHS135BUFFERED$ $180\_phaseshift$ & & phase shift high & & $LO_{fosc}$ \\
|
|
FS1: $PHS135BUFFERED$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
|
|
FS2: $PHS135BUFFERED$ $90\_phaseshift$ & & phase shift low & & $HI_{osc}$ \\ \hline
|
|
|
|
% FS4: $PHS225AMP$ $270\_phaseshift$ & & phase shift high & & $LO_{fosc}$ \\
|
|
FS4: $PHS225AMP$ $180\_phaseshift$ & & phase shift low & & $HI_{osc}$ \\
|
|
FS5: $PHS225AMP$ $NO\_signal$ & & lost signal & & $NO_{signal}$ \\ \hline
|
|
|
|
|
|
\hline
|
|
|
|
\end{tabular}
|
|
\end{table}
|
|
%
|
|
Collecting symptoms from table~\ref{tbl:bubba2}, we can create a derived component $BUBBAOSC$ which has the following failure modes:
|
|
$$
|
|
fm (BUBBAOSC) = \{ HI_{osc}, NO\_signal .\} % LO_{fosc},
|
|
$$
|
|
\clearpage
|
|
\section{Sigma Delta Detailed FMMD Analyses}
|
|
|
|
|
|
|