another trudge through the snows of stalingrad...
This commit is contained in:
parent
2a4e5510bb
commit
6d0ba7a6df
@ -149,7 +149,7 @@ and determine how they affect the operation of the potential divider.
|
||||
|
||||
For this example we look at single failure modes only.
|
||||
For each failure mode in our {\fg} `potential~divider'
|
||||
we can assign a {\fc} number (see table \ref{pdfmea}).
|
||||
we can assign a {\fc} number (see table \ref{tbl:pdfmea}).
|
||||
Each {\fc} is analysed to determine the `symptom'
|
||||
of the potential dividers' operation. For instance
|
||||
if resistor $R_1$ was to go open, then the circuit would not be grounded and the
|
||||
@ -175,7 +175,7 @@ gives a high voltage output.%We can now consider the {\fg}
|
||||
FS4: $R_2$ OPEN & LOW & LowPD \\ \hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\label{pdfmea}
|
||||
\label{tbl:pdfmea}
|
||||
\end{table}
|
||||
}
|
||||
|
||||
|
@ -5,7 +5,7 @@ PNG_DIA = blockdiagramcircuit2.png bubba_oscillator_block_diagram.png circuit1
|
||||
poss1finalbubba.png poss2finalbubba.png pt100.png pt100_doublef.png pt100_singlef.png \
|
||||
pt100_tc.png pt100_tc_sp.png shared_component.png stat_single.png three_tree.png \
|
||||
tree_abstraction_levels.png vrange.png sigma_delta_block.png ftcontext.png ct1.png hd.png \
|
||||
sigdel1.png
|
||||
sigdel1.png sdadc.png
|
||||
|
||||
|
||||
|
||||
|
@ -1656,9 +1656,9 @@ The more we can modularise, the more we decimate the $O(N^2)$ effect
|
||||
of complexity comparison.
|
||||
|
||||
|
||||
\section{Sigma Delta Analogue to Digital Converter ($\Sigma \Delta $ADC)}
|
||||
\section{Sigma Delta Analogue to Digital Converter.} %($\Sigma \Delta ADC$)}
|
||||
|
||||
The following example shows the analysis of a mixed analogue and digital circuit.
|
||||
The following example is used to demonstrate FMMD analysis of a mixed analogue and digital circuit (see figure~\ref{fig:sigmadelta}).
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./CH5_Examples/circuit4004.png}
|
||||
@ -1684,7 +1684,7 @@ The following example shows the analysis of a mixed analogue and digital circuit
|
||||
|
||||
\paragraph{How the circuit works.}
|
||||
The diagram in~\ref{fig:sigmadeltablock} shows the signal path used
|
||||
by this configuration for a $\Sigma \Delta $ADC.
|
||||
by this configuration for a \sd.
|
||||
%
|
||||
It works by placing the analogue voltage to be read into
|
||||
a mixed analogue and digital feedback circuit.
|
||||
@ -1695,16 +1695,16 @@ signal with the input.
|
||||
The output of the integrator is digitally cleaned-up by IC2 (i.e. output is TRUE or FALSE for digital logic)
|
||||
which acts as a comparator, and fed to the D type flip flop.
|
||||
%
|
||||
The output of the flip flop is a digital representation
|
||||
The output of the flip flop forms a bit pattern representing the value
|
||||
of the input voltage.
|
||||
%
|
||||
The output of the flip flop, is now cleaned as an analogue signal
|
||||
The output of the flip flop, is now level converted to an analogue signal
|
||||
(i.e. a digital 0 becomes a -ve voltage and a digital 1 becomes a +ve voltage)
|
||||
and fed into the summing integrator completing the negative feedback loop.
|
||||
|
||||
\subsection{FMMD analysis of $\Sigma \Delta $ADC}
|
||||
\subsection{FMMD analysis of \sd }
|
||||
|
||||
The partslist for the $\Sigma \Delta $ADC
|
||||
The partslist for the \sd :
|
||||
|
||||
$$\{ IC1, IC2, IC3, IC4, R1, R2, R3, R4, C1 \} $$.
|
||||
|
||||
@ -1729,12 +1729,15 @@ $$ fm ( C ) = \{OPEN, SHORT\} $$
|
||||
|
||||
\subsubsection{Summing Junction}
|
||||
We now need to choose {\fgs}. The signal path is circular, but we can start
|
||||
with the input voltage, which is applied to $R2$, we can term this voltage $V_{in}$.
|
||||
$R2$ and $R1$ form a summing junction to IC1.
|
||||
$R1$ supplies the feedback voltage for the ADC, we can term this voltage as $V_{fb}$
|
||||
This can be our first {\fg}. For the symptoms, we have to think in terms of the effect
|
||||
on its performance as a summing junction and not be
|
||||
distracted by the integrator formed by $C_1$ and $IC1$.
|
||||
with the input voltage, which is applied via $R2$, we term this voltage $V_{in}$.
|
||||
%
|
||||
The feedback voltage for the ADC is supplied via $R1$, we term this voltage as $V_{fb}$.
|
||||
%The input voltage is supplied via $R2$ and we term this voltage as $V_{in}$.
|
||||
$R2$ and $R1$ form a summing junction to IC1: they thus work to fulfil this specific function.
|
||||
This can be our first {\fg} and we analyse it in table~\ref{tbl:suml=j}.
|
||||
%For the symptoms, we have to think in terms of the effect
|
||||
%on its performance as a summing junction and not be
|
||||
%distracted by the integrator formed by $C_1$ and $IC1$.
|
||||
|
||||
$$G^0_1 = \{R1, R2 \}$$
|
||||
|
||||
@ -1757,17 +1760,19 @@ $$G^0_1 = \{R1, R2 \}$$
|
||||
\end{table}
|
||||
|
||||
|
||||
From the analysis in table~\ref{tbl:sumj}, we can now create a derived component
|
||||
$SUMJ$ which has the failure modes from collecting its symptoms.
|
||||
We can state
|
||||
From the analysis in table~\ref{tbl:sumj} we collect symptoms.
|
||||
We can create the derived component
|
||||
$SUMJ$.% which has the failure modes from collecting its symptoms.
|
||||
We now state:
|
||||
|
||||
$$ fm(SUMJ) = \{ V_{in} DOM, V_{fb} DOM \} $$
|
||||
$$ fm(SUMJ) = \{ V_{in} DOM, V_{fb} DOM \} .$$
|
||||
|
||||
\subsubsection{Buffered Integrator}
|
||||
|
||||
Following the signal path, the next functional group is the integrator.
|
||||
This integrator is formed by $C$ by $IC2$\cite{aoe}[ch.4].
|
||||
The output of the integrator is fed into IC2, which acts as a buffer.
|
||||
%
|
||||
This integrator is formed by placing $C1$ in the negative feedback loop of $IC2$\cite{aoe}[p.222].
|
||||
The output of the integrator is fed into IC2, which acts as a buffer,
|
||||
%performing the function of
|
||||
isolating the integrator from any load on its output.
|
||||
These three components work together to form a buffered integrator,
|
||||
@ -1822,7 +1827,7 @@ The potential divider provides a mid rail reference voltage
|
||||
to the inverting input of IC3.
|
||||
|
||||
\paragraph{Potential divider Formed by R3,R4.}
|
||||
We re-use the analysis from section~\ref{sec:pd}, and used the derived component $PD$
|
||||
We re-use the analysis from table~\ref{tbl:pdfmea}, and used the derived component $PD$
|
||||
to represent the potential divider formed by R3 and R4. Because PD is a derived component, we can denote this
|
||||
by super-scripting it with its abstraction level of 1, thus $PD^1$.
|
||||
$$
|
||||
@ -1840,6 +1845,7 @@ We now form a {\fg} from $PD^1$ and $IC3$.
|
||||
$$ G^1_0 = \{ PD^1, IC3 \} $$
|
||||
|
||||
We now analyse the {\fg} $G^1$ in table~\ref{tbl:DS2AS}.
|
||||
%$$ fm (BFINT) = \{ HIGH, LOW, NO\_INTEGRATION , LOW\_SLEW \} $$
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{$PD^1, IC3$ Digital level to analogue level converter: Failure Mode Effects Analysis} % title of Table
|
||||
@ -1898,19 +1904,139 @@ IC4 is as yet unused, the signal path connects IC4 and DL2AL. These seem natural
|
||||
for the next {\fg}.
|
||||
BFINT and SUMJ are adjacent in the signal path and these are chosen as a {\fg} as well.
|
||||
|
||||
\clearpage
|
||||
|
||||
\subsubsection{{\fg} BFINT and SUMJ}
|
||||
\subsubsection{{\fg} IC4 and DL2AL}
|
||||
|
||||
|
||||
\subsubsection{{\fg} $BFINT^1$ and $SUMJ^1$}
|
||||
|
||||
We now form a {\fg} with the two derived components $BFINT^1$ and $SUMJ^1$.
|
||||
This forms a buffered integrating summing junction which we analyse in table~\ref{tbl:BISJ}.
|
||||
|
||||
$$ G^1_0 = \{ BFINT^1, SUMJ^1 \} $$
|
||||
|
||||
%$$ fm (BFINT) = \{ HIGH, LOW, NO\_INTEGRATION , LOW\_SLEW \} $$
|
||||
%$$ fm(SUMJ) = \{ V_{in} DOM, V_{fb} DOM \} .$$
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{ $BFINT^1, SUMJ^1$ buffered integrating summing junction: Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:DS2AS}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
||||
& & & & \\
|
||||
\hline \hline
|
||||
FS1: $SUMJ^1$ $V_{in} DOM$ & & output integral of $V_{in}$ & & $OUTPUT STUCK$ \\
|
||||
FS2: $SUMJ^1$ $V_{fb} DOM$ & & output integral of $V_{fb}$ & & $OUTPUT STUCK$ \\ \hline
|
||||
|
||||
%\hline
|
||||
FS3: $BFINT^1$ $HIGH$ & & output perm. high & & $OUTPUT STUCK$ \\
|
||||
FS4: $BFINT^1$ $LOW$ & & output perm. low & & $OUTPUT STUCK$ \\ \hline
|
||||
FS5: $BFINT^1$ $ NO\_INTEGRATION$ & & no current drive & & $OUTPUT STUCK$ \\
|
||||
FS6: $BFINT^1$ $LOW\_SLEW$ & & delayed signal & & $REDUCED\_INTEGRATION$ \\ \hline
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
|
||||
|
||||
We now collect symptoms $\{ OUTPUT STUCK , REDUCED\_INTEGRATION \}$, and create a {\dc}
|
||||
called $BISJ^2$.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsubsection{{\fg} $IC4$ and $DL2AL$}
|
||||
|
||||
%$$ fm (DL2AL^2) = \{ LOW, HIGH, LOW\_SLEW \} $$
|
||||
%$$ fm ( CD4013B) = \{ HIGH, LOW, NOOP \} $$
|
||||
|
||||
The functional group formed by $IC4$ and $DL2AL$ takes the flip flop clocked and buffered
|
||||
value, and outputs it at analogue voltage levels for the summing junction.
|
||||
|
||||
$ G^2_1 = \{ IC4^0, DL2AL^2 \} $
|
||||
|
||||
We analyse the buffered flip flop circuitry in table~\ref{tbl:FFB}.
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{ $IC4^0,DL2AL^2$ flip flop buffered: Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:FFB}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
||||
& & & & \\
|
||||
\hline \hline
|
||||
FS1: $IC4^0$ $HIGH$ & & output stuck high & & $OUTPUT STUCK$ \\
|
||||
FS2: $IC4^0$ $LOW$ & & output stuck low & & $OUTPUT STUCK$ \\
|
||||
FS3: $IC4^0$ $NOOP$ & & output stuck low & & $OUTPUT STUCK$ \\ \hline
|
||||
%\hline
|
||||
FS4: $DL2AL^2$ $LOW$ & & output perm. high & & $OUTPUT STUCK$ \\
|
||||
FS5: $DL2AL^2$ $HIGH$ & & output perm. low & & $OUTPUT STUCK$ \\ \hline
|
||||
FS6: $DL2AL^2$ $LOW\_SLEW$ & & no current drive & & $LOW\_SLEW$ \\
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
We now collect symptoms $\{OUTPUT STUCK, LOW\_SLEW\}$ and create a {\dc} at the third level of symptom abstraction
|
||||
called $FFB^3$.
|
||||
|
||||
|
||||
\subsection{Final, top level {\fg} for sigma delta Converter}
|
||||
|
||||
|
||||
We now have two {\dcs}, $FFB^3$ and $BISJ^2$: we form a final functional group with these:
|
||||
$$ G^3_0 = \{ FFB^3, BISJ^2 \} .$$
|
||||
We analyse the buffered {\sd} circuit in table~\ref{tbl:FFB}.
|
||||
%
|
||||
% FFB^3 $\{OUTPUT STUCK, LOW\_SLEW\}$
|
||||
% BISJ^2 $\{ OUTPUT STUCK , REDUCED\_INTEGRATION \}$
|
||||
%
|
||||
\begin{table}[h+]
|
||||
\caption{ $FFB^3, BISJ^2$ \sd : Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:sd}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
||||
& & & & \\
|
||||
\hline \hline
|
||||
FS1: $FFB^3$ $OUTPUT STUCK$ & & value max high or low & & $OUTPUT\_OUT\_OF\_RANGE$ \\
|
||||
FS2: $FFB^3$ $LOW\_SLEW$ & & values will appear larger & & $OUTPUT\_INCORRECT$ \\
|
||||
% FS3: $IC4^0$ $NOOP$ & & output stuck low & & $OUTPUT STUCK$ \\ \hline
|
||||
%\hline
|
||||
FS3: $BISJ^2$ $OUTPUT STUCK$ & & value max high or low & & $OUTPUT\_OUT\_OF\_RANGE$ \\
|
||||
FS4: $BISJ^2$ $REDUCED\_INTEGRATION$ & & values will appear larger & & $OUTPUT\_INCORRECT$ \\ \hline
|
||||
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
%\clearpage
|
||||
We now collect the symptoms for the \sd $ \;
|
||||
\{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$.
|
||||
We can now create a {\dc} to represent the analogue to digital converter, $SADC^4$.
|
||||
$$fm(SADC^4) = \{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$$
|
||||
We now show the final hierarchy in figure~\ref{fig:sdadc}.
|
||||
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=400pt]{./CH5_Examples/sdadc.png}
|
||||
% sdadc.png: 886x1134 pixel, 72dpi, 31.26x40.01 cm, bb=0 0 886 1134
|
||||
\caption{FMMD Analysis hierarchy for the {\sd}}
|
||||
\label{fig:sdadc}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
\clearpage
|
||||
% ]
|
||||
% into
|
||||
%
|
||||
@ -1963,11 +2089,11 @@ BFINT and SUMJ are adjacent in the signal path and these are chosen as a {\fg} a
|
||||
% $$fm(SUMJUNCT) = \{ R1\_IN\_DOM, R2\_IN\_DOM \} $$.
|
||||
|
||||
|
||||
The D type flip flop
|
||||
%The D type flip flop
|
||||
|
||||
%\subsection{FMMD Process applied to $\Sigma \Delta $ADC}.
|
||||
|
||||
T%he block diagram in figure~\ref{fig
|
||||
%T%he block diagram in figure~\ref{fig
|
||||
|
||||
|
||||
\clearpage
|
||||
@ -1983,8 +2109,8 @@ This section
|
||||
% These failure symptoms are used to define
|
||||
% a derived component.
|
||||
%
|
||||
demonstrates FMMDs ability to model multiple {\fms}, and shows
|
||||
how statistics for part {\fms} can be used to determine the statistical likelihood of failure symptoms.
|
||||
demonstrates FMMDs ability to model multiple simultaneous {\fms}, and shows
|
||||
how statistics for part {\fms} can be used to determine the statistical likelihood of failure symptoms.
|
||||
|
||||
|
||||
For this example we look at an industry standard temperature measurement circuit,
|
||||
|
BIN
submission_thesis/CH5_Examples/sdadc.dia
Normal file
BIN
submission_thesis/CH5_Examples/sdadc.dia
Normal file
Binary file not shown.
Binary file not shown.
@ -28,7 +28,10 @@
|
||||
\setlength{\oddsidemargin}{0mm} \setlength{\evensidemargin}{0mm}
|
||||
%
|
||||
\newcommand{\permil}{\ensuremath{0/{\!}_{00}}}
|
||||
\newcommand{\emp}{} %% do nothing, all the italics are unnecessary
|
||||
%\newcommand{\emp}{ELECTRO MAGNETIC FUKING PULSE}
|
||||
\newcommand{\emp}{} %% was italics
|
||||
%\newcommand{\sd}{\ensuremath{\Sigma \Delta ADC}}
|
||||
\newcommand{\sd}{\ensuremath{Sigma\;Delta\;ADC}}
|
||||
\newcommand{\derivec}{{D}}
|
||||
\newcommand{\abslev}{\ensuremath{\alpha}}
|
||||
\newcommand{\oc}{\ensuremath{^{o}{C}}}
|
||||
|
Loading…
Reference in New Issue
Block a user