.
This commit is contained in:
parent
d2ab642231
commit
4ffb457ef3
@ -339,23 +339,6 @@ Thus if the failure modes of a component $F$ are unitary~state, we can say $F \
|
||||
An example of a component with an obvious set of ``unitary~state'' failure modes is the electrical resistor.
|
||||
|
||||
Electrical resistors can fail by going OPEN or SHORTED.
|
||||
%% CUNT
|
||||
%% CUNT For a given resistor R we can apply the
|
||||
%% CUNT the function $fm$ to find its set of failure modes thus $ fm(R) = \{R_{SHORTED}, R_{OPEN}\} $.
|
||||
%% CUNT A resistor cannot fail with both conditions open and short active at the same time! The conditions
|
||||
%% CUNT OPEN and SHORT are thus mutually exclusive.
|
||||
%% CUNT Because of this, the failure mode set $F=fm(R)$ is `unitary~state'.
|
||||
%% CUNT
|
||||
%% CUNT
|
||||
%% CUNT Thus because both fault modes cannot be active at the same time, the intersection of $ R_{SHORTED} $ and $ R_{OPEN} $ cannot exist.
|
||||
%% CUNT
|
||||
%% CUNT The intersection of these is therefore the empty set, $$ R_{SHORTED} \cap R_{OPEN} \eq \emptyset $$,
|
||||
%% CUNT therefore
|
||||
%% CUNT $ fm(R) \in \mathcal{U} $.
|
||||
%% CUNT
|
||||
%% CUNT
|
||||
|
||||
|
||||
|
||||
For a given resistor R we can apply the
|
||||
the function $fm$ to find its set of failure modes thus $ fm(R) = \{R_{SHORTED}, R_{OPEN}\} $.
|
||||
@ -366,7 +349,6 @@ Because of this, the failure mode set $F=fm(R)$ is `unitary~state'.
|
||||
|
||||
Thus because both fault modes cannot be active at the same time, the intersection of $ R_{SHORTED} $ and $ R_{OPEN} $ cannot exist.
|
||||
|
||||
%%CUNT The intersection of these is therefore the empty set, $$ R_{SHORTED} \cap R_{OPEN} \eq \emptyset $$,
|
||||
The intersection of these is therefore the empty set, $$ R_{SHORTED} \cap R_{OPEN} = \emptyset $$,
|
||||
therefore
|
||||
$ fm(R) \in \mathcal{U} $.
|
||||
@ -578,12 +560,6 @@ components $C_j$ are in
|
||||
\end{itemize}
|
||||
%}
|
||||
|
||||
%% CUNT
|
||||
%% CUNT \begin{equation}
|
||||
%% CUNT |{\mathcal{P}_{cc}SU}| = {\sum^{cc}_{k=1} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
||||
%% CUNT - {\sum{j \in J} {|FM({C_{j})}| \choose 2}}}
|
||||
%% CUNT \label{eqn:correctedccps}
|
||||
%% CUNT \end{equation}
|
||||
\begin{equation}
|
||||
|{\mathcal{P}_{cc}SU}| = {\sum^{cc}_{k=1} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
||||
- {\sum_{j \in J} {|FM({C_{j})}| \choose 2}}
|
||||
@ -667,7 +643,7 @@ Thus the statistical sample space $\Omega$ for a component or derived~component
|
||||
$$ \Omega(C) = \{OK, failure\_mode_{1},failure\_mode_{2},failure\_mode_{3}, \ldots ,failure\_mode_{N}\} $$
|
||||
The failure mode set $F$ for a given component or derived~component $C$
|
||||
is therefore
|
||||
$$ F = \Omega(C) \backslash OK $$
|
||||
$$ F = \Omega(C) \backslash \{OK\} $$
|
||||
|
||||
The $OK$ statistical case is the largest in probability, and is therefore
|
||||
of interest when analysing systems from a statistical perspective.
|
||||
|
Loading…
Reference in New Issue
Block a user