altered formulas for defining pure~intersection and enclosure
This commit is contained in:
parent
2365604723
commit
31b4422e9d
47
fzd/fzd.tex
47
fzd/fzd.tex
@ -374,10 +374,13 @@ i.e. for a Venn N diagram $Z\# = N^{2}$
|
||||
\endequation
|
||||
|
||||
|
||||
But for any diagram less
|
||||
But for any diagram less
|
||||
complicated than Venn N, where $ Z\# $
|
||||
is small in comparison with $2^{N}$ the algorithm becomes far more efficient.
|
||||
|
||||
For FMMD failure analysis Venn 2 combinations are rare
|
||||
and Venn 3 or 4 would only be required for special cases
|
||||
(such as common components with a serial safety dependency; 747 engines;
|
||||
relays contacts in series etc)
|
||||
Examples of complexity savings are shown in section \ref{complexity}.
|
||||
|
||||
|
||||
@ -477,17 +480,29 @@ contour against all others a collection of pure intersection relationships
|
||||
and enclosure relationships can be determined.
|
||||
This forms a list of relationship pairs from the cross product of all the contours.
|
||||
|
||||
%\equation
|
||||
%%\label{crossprodsingle}
|
||||
%\begin{array}{l}
|
||||
% pi(a,b) \; \Rightarrow
|
||||
%%\stackrel{\Delta}{=}
|
||||
% \; \forall \; C \; \bullet \; a \; X \; \forall C \; \bullet \; b \\
|
||||
% \; \bullet (a \cap b) \; \wedge \; \neg (a \supseteq b) \; \wedge \; \neg (b \supseteq a) \\
|
||||
%\end{array}
|
||||
%\endequation
|
||||
%
|
||||
|
||||
|
||||
\equation
|
||||
%\label{crossprodsingle}
|
||||
\begin{array}{l}
|
||||
pi(a,b) \; \Rightarrow
|
||||
%\stackrel{\Delta}{=}
|
||||
\; \forall \; C \; \bullet \; a \; X \; \forall C \; \bullet \; b \\
|
||||
\; \bullet (a \cap b) \; \wedge \; \neg (a \supseteq b) \; \wedge \; \neg (b \supseteq a) \\
|
||||
pi(a,b) \; \implies
|
||||
a \in D \wedge b \in D \wedge a \neq b \wedge
|
||||
\; (a \cap b) \; \wedge \; \neg (a \supseteq b) \; \wedge \; \neg (b \supseteq a) \\
|
||||
\end{array}
|
||||
\endequation
|
||||
|
||||
|
||||
Or in other words, a pure intersection is where the contours $a$ and $b$ in the diagram $D$
|
||||
where $a$ intersects $b$ but $a$ does not enclode $b$ and $b$ does not enclose $a$.
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,bb=0 0 452 290,keepaspectratio=true]{fzd/pice.jpg}
|
||||
@ -517,13 +532,23 @@ This again, forms a list of relationship pairs from cross product of all the co
|
||||
\equation
|
||||
%\label{crossprodsingle}
|
||||
\begin{array}{l}
|
||||
enc(a,b) \;
|
||||
%\stackrel{\Delta}{=}
|
||||
\Rightarrow \; \forall \; C \; \; \bullet a \; X \; \forall \; C \; \bullet \; b \\
|
||||
\; \bullet (a \supset b) \\
|
||||
enc(a,b) \; \implies
|
||||
a \in D \wedge b \in D \wedge a \neq b \wedge
|
||||
(a \supset b)
|
||||
\end{array}
|
||||
\endequation
|
||||
|
||||
%
|
||||
%\equation
|
||||
%%\label{crossprodsingle}
|
||||
%\begin{array}{l}
|
||||
% enc(a,b) \;
|
||||
%%\stackrel{\Delta}{=}
|
||||
%\Rightarrow \; \forall \; C \; \; \bullet a \; X \; \forall \; C \; \bullet \; b \\
|
||||
% \; \bullet (a \supset b) \\
|
||||
%\end{array}
|
||||
%\endequation
|
||||
%
|
||||
|
||||
\section{The Pure Intersection Chain}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user