diff --git a/fzd/fzd.tex b/fzd/fzd.tex index 6196d4a..695b720 100644 --- a/fzd/fzd.tex +++ b/fzd/fzd.tex @@ -374,10 +374,13 @@ i.e. for a Venn N diagram $Z\# = N^{2}$ \endequation - But for any diagram less +But for any diagram less complicated than Venn N, where $ Z\# $ is small in comparison with $2^{N}$ the algorithm becomes far more efficient. - +For FMMD failure analysis Venn 2 combinations are rare +and Venn 3 or 4 would only be required for special cases +(such as common components with a serial safety dependency; 747 engines; +relays contacts in series etc) Examples of complexity savings are shown in section \ref{complexity}. @@ -477,17 +480,29 @@ contour against all others a collection of pure intersection relationships and enclosure relationships can be determined. This forms a list of relationship pairs from the cross product of all the contours. +%\equation +%%\label{crossprodsingle} +%\begin{array}{l} +% pi(a,b) \; \Rightarrow +%%\stackrel{\Delta}{=} +% \; \forall \; C \; \bullet \; a \; X \; \forall C \; \bullet \; b \\ +% \; \bullet (a \cap b) \; \wedge \; \neg (a \supseteq b) \; \wedge \; \neg (b \supseteq a) \\ +%\end{array} +%\endequation +% + + \equation %\label{crossprodsingle} \begin{array}{l} - pi(a,b) \; \Rightarrow -%\stackrel{\Delta}{=} - \; \forall \; C \; \bullet \; a \; X \; \forall C \; \bullet \; b \\ - \; \bullet (a \cap b) \; \wedge \; \neg (a \supseteq b) \; \wedge \; \neg (b \supseteq a) \\ + pi(a,b) \; \implies + a \in D \wedge b \in D \wedge a \neq b \wedge + \; (a \cap b) \; \wedge \; \neg (a \supseteq b) \; \wedge \; \neg (b \supseteq a) \\ \end{array} \endequation - +Or in other words, a pure intersection is where the contours $a$ and $b$ in the diagram $D$ +where $a$ intersects $b$ but $a$ does not enclode $b$ and $b$ does not enclose $a$. \begin{figure}[h] \centering \includegraphics[width=200pt,bb=0 0 452 290,keepaspectratio=true]{fzd/pice.jpg} @@ -517,13 +532,23 @@ This again, forms a list of relationship pairs from cross product of all the co \equation %\label{crossprodsingle} \begin{array}{l} - enc(a,b) \; -%\stackrel{\Delta}{=} -\Rightarrow \; \forall \; C \; \; \bullet a \; X \; \forall \; C \; \bullet \; b \\ - \; \bullet (a \supset b) \\ + enc(a,b) \; \implies + a \in D \wedge b \in D \wedge a \neq b \wedge + (a \supset b) \end{array} \endequation +% +%\equation +%%\label{crossprodsingle} +%\begin{array}{l} +% enc(a,b) \; +%%\stackrel{\Delta}{=} +%\Rightarrow \; \forall \; C \; \; \bullet a \; X \; \forall \; C \; \bullet \; b \\ +% \; \bullet (a \supset b) \\ +%\end{array} +%\endequation +% \section{The Pure Intersection Chain}