altered formulas for defining pure~intersection and enclosure

This commit is contained in:
Robin 2010-06-06 20:49:53 +01:00
parent 2365604723
commit 31b4422e9d

View File

@ -374,10 +374,13 @@ i.e. for a Venn N diagram $Z\# = N^{2}$
\endequation \endequation
But for any diagram less But for any diagram less
complicated than Venn N, where $ Z\# $ complicated than Venn N, where $ Z\# $
is small in comparison with $2^{N}$ the algorithm becomes far more efficient. is small in comparison with $2^{N}$ the algorithm becomes far more efficient.
For FMMD failure analysis Venn 2 combinations are rare
and Venn 3 or 4 would only be required for special cases
(such as common components with a serial safety dependency; 747 engines;
relays contacts in series etc)
Examples of complexity savings are shown in section \ref{complexity}. Examples of complexity savings are shown in section \ref{complexity}.
@ -477,17 +480,29 @@ contour against all others a collection of pure intersection relationships
and enclosure relationships can be determined. and enclosure relationships can be determined.
This forms a list of relationship pairs from the cross product of all the contours. This forms a list of relationship pairs from the cross product of all the contours.
%\equation
%%\label{crossprodsingle}
%\begin{array}{l}
% pi(a,b) \; \Rightarrow
%%\stackrel{\Delta}{=}
% \; \forall \; C \; \bullet \; a \; X \; \forall C \; \bullet \; b \\
% \; \bullet (a \cap b) \; \wedge \; \neg (a \supseteq b) \; \wedge \; \neg (b \supseteq a) \\
%\end{array}
%\endequation
%
\equation \equation
%\label{crossprodsingle} %\label{crossprodsingle}
\begin{array}{l} \begin{array}{l}
pi(a,b) \; \Rightarrow pi(a,b) \; \implies
%\stackrel{\Delta}{=} a \in D \wedge b \in D \wedge a \neq b \wedge
\; \forall \; C \; \bullet \; a \; X \; \forall C \; \bullet \; b \\ \; (a \cap b) \; \wedge \; \neg (a \supseteq b) \; \wedge \; \neg (b \supseteq a) \\
\; \bullet (a \cap b) \; \wedge \; \neg (a \supseteq b) \; \wedge \; \neg (b \supseteq a) \\
\end{array} \end{array}
\endequation \endequation
Or in other words, a pure intersection is where the contours $a$ and $b$ in the diagram $D$
where $a$ intersects $b$ but $a$ does not enclode $b$ and $b$ does not enclose $a$.
\begin{figure}[h] \begin{figure}[h]
\centering \centering
\includegraphics[width=200pt,bb=0 0 452 290,keepaspectratio=true]{fzd/pice.jpg} \includegraphics[width=200pt,bb=0 0 452 290,keepaspectratio=true]{fzd/pice.jpg}
@ -517,13 +532,23 @@ This again, forms a list of relationship pairs from cross product of all the co
\equation \equation
%\label{crossprodsingle} %\label{crossprodsingle}
\begin{array}{l} \begin{array}{l}
enc(a,b) \; enc(a,b) \; \implies
%\stackrel{\Delta}{=} a \in D \wedge b \in D \wedge a \neq b \wedge
\Rightarrow \; \forall \; C \; \; \bullet a \; X \; \forall \; C \; \bullet \; b \\ (a \supset b)
\; \bullet (a \supset b) \\
\end{array} \end{array}
\endequation \endequation
%
%\equation
%%\label{crossprodsingle}
%\begin{array}{l}
% enc(a,b) \;
%%\stackrel{\Delta}{=}
%\Rightarrow \; \forall \; C \; \; \bullet a \; X \; \forall \; C \; \bullet \; b \\
% \; \bullet (a \supset b) \\
%\end{array}
%\endequation
%
\section{The Pure Intersection Chain} \section{The Pure Intersection Chain}