PT100 papaer now uses bib iles in thesis directory
This commit is contained in:
parent
7cfea40498
commit
2cf2630edf
@ -188,7 +188,7 @@ We can represent this using a UML diagram in figure \ref{fig:cfg}.
|
|||||||
Using the symbol $\bowtie$ to indicate the analysis process that takes a
|
Using the symbol $\bowtie$ to indicate the analysis process that takes a
|
||||||
functional group and converts it into a new component.
|
functional group and converts it into a new component.
|
||||||
|
|
||||||
$$ \bowtie ( FG ) \mapsto DerivedComponent $$
|
\[ \bowtie ( FG ) \mapsto DerivedComponent \]
|
||||||
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
|
@ -41,7 +41,7 @@ of this process however, is `static testing'. This involves looking at the desig
|
|||||||
from the perspective of environmental stresses, natural input fault conditions\footnote{For instance in a burner controller, the gas supply pressure reducing},
|
from the perspective of environmental stresses, natural input fault conditions\footnote{For instance in a burner controller, the gas supply pressure reducing},
|
||||||
components failing, and the effects on safety this could have.
|
components failing, and the effects on safety this could have.
|
||||||
Some static testing involves checking that the germane `EN' standards have
|
Some static testing involves checking that the germane `EN' standards have
|
||||||
been complied with\footnore{for instance protection levels of enclosure, or down rating of electrical components}.
|
been complied with\footnote{for instance protection levels of enclosure, or down rating of electrical components}.
|
||||||
Failure Mode Effects Analysis (FMEA) was also applied. This involved
|
Failure Mode Effects Analysis (FMEA) was also applied. This involved
|
||||||
looking in detail at selected critical sections of the product and proposing
|
looking in detail at selected critical sections of the product and proposing
|
||||||
component failure scenarios.
|
component failure scenarios.
|
||||||
|
22
millivoltamp/Makefile
Normal file
22
millivoltamp/Makefile
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
|
||||||
|
#
|
||||||
|
# Make the propositional logic diagram a paper
|
||||||
|
#
|
||||||
|
|
||||||
|
|
||||||
|
paper: paper.tex millivoltamp_paper.tex
|
||||||
|
#latex paper.tex
|
||||||
|
#dvipdf paper pdflatex cannot use eps ffs
|
||||||
|
pdflatex paper.tex
|
||||||
|
mv paper.pdf millivoltamp_paper.pdf
|
||||||
|
okular millivoltamp_paper.pdf
|
||||||
|
|
||||||
|
|
||||||
|
# Remove the need for referncing graphics in subdirectories
|
||||||
|
#
|
||||||
|
millivoltamp_paper.tex: millivoltamp.tex
|
||||||
|
cat millivoltamp.tex | sed 's/millivoltamp\///' > millivoltamp_paper.tex
|
||||||
|
|
||||||
|
|
||||||
|
bib:
|
||||||
|
bibtex paper
|
833
millivoltamp/millivoltamp.tex
Normal file
833
millivoltamp/millivoltamp.tex
Normal file
@ -0,0 +1,833 @@
|
|||||||
|
%
|
||||||
|
% Make the revision and doc number macro's then they are defined in one place
|
||||||
|
\ifthenelse {\boolean{paper}}
|
||||||
|
{
|
||||||
|
\begin{abstract}
|
||||||
|
\paragraph{NOT WRITTEN YET USES PT100 DOC AS FRAME WORK: DO NOT READ}
|
||||||
|
This paper analyses the example ciruit with an added safety component, given in the introduction chapter.
|
||||||
|
|
||||||
|
The analysis is performed using Propositional Logic
|
||||||
|
diagrams to assist the reasoning process.
|
||||||
|
This chapter describes taking
|
||||||
|
the failure modes of the components, analysing the circuit using FMEA
|
||||||
|
and producing a failure mode model for the circuit as a whole.
|
||||||
|
Thus after the analysis the Milli Volt Amplifier circuit, may be viewed
|
||||||
|
from an FMEA perspective as a component itself, with a set of known failure modes.
|
||||||
|
|
||||||
|
\end{abstract}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
\section{Overview}
|
||||||
|
|
||||||
|
\paragraph{NOT WRITTEN YET USES PT100 DOC AS FRAME WORK: DO NOT READ}
|
||||||
|
The analysis is performed using Propositional Logic
|
||||||
|
diagrams to assist the reasoning process.
|
||||||
|
This chapter describes taking
|
||||||
|
the failure modes of the components, analysing the circuit using FMEA
|
||||||
|
and producing a failure mode model for the circuit as a whole.
|
||||||
|
Thus after the analysis the Milli Volt Amplifier circuit, may be viewed
|
||||||
|
from an FMEA perspective as a component itself, with a set of known failure modes.
|
||||||
|
}
|
||||||
|
|
||||||
|
%\begin{figure}[h]
|
||||||
|
% \centering
|
||||||
|
% \includegraphics[width=400pt,bb=0 0 714 180,keepaspectratio=true]{./milli volt amplifier/milli volt amplifier.jpg}
|
||||||
|
% % milli volt amplifier.jpg: 714x180 pixel, 72dpi, 25.19x6.35 cm, bb=0 0 714 180
|
||||||
|
% \caption{Milli Volt Amplifier four wire circuit}
|
||||||
|
% \label{fig:milli volt amplifier}
|
||||||
|
%\end{figure}
|
||||||
|
%
|
||||||
|
|
||||||
|
\section{General Description of Milli Volt Amplifier four wire circuit}
|
||||||
|
|
||||||
|
The Milli Volt Amplifier four wire circuit uses two wires to supply small electrical current,
|
||||||
|
and returns two sense volages by the other two.
|
||||||
|
By measuring voltages
|
||||||
|
from sections of this circuit forming potential dividers, we can determine the
|
||||||
|
resistance of the platinum wire sensor. The resistance
|
||||||
|
of this is directly related to temperature, and may be determined by
|
||||||
|
look-up tables or a suitable polynomial expression.
|
||||||
|
|
||||||
|
|
||||||
|
%\begin{figure}[h]
|
||||||
|
% \centering
|
||||||
|
% \includegraphics[width=150pt,bb=0 0 273 483,keepaspectratio=true]{./milli volt amplifier/vrange.jpg}
|
||||||
|
% % milli volt amplifier.jpg: 714x180 pixel, 72dpi, 25.19x6.35 cm, bb=0 0 714 180
|
||||||
|
% \caption{Milli Volt Amplifier expected voltage ranges}
|
||||||
|
% \label{fig:milli volt amplifiervrange}
|
||||||
|
%\end{figure}
|
||||||
|
%
|
||||||
|
|
||||||
|
The voltage ranges we expect from this three stage potential divider\footnote{
|
||||||
|
two stages are required for validation, a third stage is used to measure the current flowing
|
||||||
|
through the circuit to obtain accurate temperature readings}
|
||||||
|
are shown in figure \ref{fig:milli volt amplifiervrange}. Note that there is
|
||||||
|
an expected range for each reading, for a given temperature span.
|
||||||
|
Note that the low reading goes down as temperature increases, and the higher reading goes up.
|
||||||
|
For this reason the low reading will be referred to as {\em sense-}
|
||||||
|
and the higher as {\em sense+}.
|
||||||
|
|
||||||
|
\subsection{Accuracy despite variable \\ resistance in cables}
|
||||||
|
|
||||||
|
For electronic and accuracy reasons a four wire circuit is preferred
|
||||||
|
because of resistance in the cables. Resistance from the supply
|
||||||
|
causes a slight voltage
|
||||||
|
drop in the supply to the Milli Volt Amplifier. As no significant current
|
||||||
|
is carried by the two `sense' lines, the resistance back to the ADC
|
||||||
|
causes only a negligible voltage drop, and thus the four wire
|
||||||
|
configuration is more accurate\footnote{The increased accuracy is because the voltage measured, is the voltage across
|
||||||
|
the thermistor and not the voltage across the thermistor and current supply wire resistance.}.
|
||||||
|
|
||||||
|
\subsection{Calculating Temperature from \\ the sense line voltages}
|
||||||
|
|
||||||
|
The current flowing though the
|
||||||
|
whole circuit can be measured on the PCB by reading a third
|
||||||
|
sense voltage from one of the load resistors. Knowing the current flowing
|
||||||
|
through the circuit
|
||||||
|
and knowing the voltage drop over the Milli Volt Amplifier, we can calculate its
|
||||||
|
resistance by Ohms law $V=I.R$, $R=\frac{V}{I}$.
|
||||||
|
Thus a little loss of supply current due to resistance in the cables
|
||||||
|
does not impinge on accuracy.
|
||||||
|
The resistance to temperature conversion is achieved
|
||||||
|
through the published Milli Volt Amplifier tables\cite{eurothermtables}.
|
||||||
|
The standard voltage divider equations (see figure \ref{fig:vd} and
|
||||||
|
equation \ref{eqn:vd}) can be used to calculate
|
||||||
|
expected voltages for failure mode and temperature reading purposes.
|
||||||
|
|
||||||
|
%\begin{figure}[h]
|
||||||
|
% \centering
|
||||||
|
% \includegraphics[width=100pt,bb=0 0 183 170,keepaspectratio=true]{./milli volt amplifier/voltage_divider.png}
|
||||||
|
% % voltage_divider.png: 183x170 pixel, 72dpi, 6.46x6.00 cm, bb=0 0 183 170
|
||||||
|
% \caption{Voltage Divider}
|
||||||
|
% \label{fig:vd}
|
||||||
|
%\end{figure}
|
||||||
|
%%The looking at figure \ref{fig:vd} the standard voltage divider formula (equation \ref{eqn:vd}) is used.
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\label{eqn:vd}
|
||||||
|
V_{out} = V_{in}.\frac{Z2}{Z2+Z1}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\section{Safety case for 4 wire circuit}
|
||||||
|
|
||||||
|
This sub-section looks at the behaviour of the Milli Volt Amplifier four wire circuit
|
||||||
|
for the effects of component failures.
|
||||||
|
All components have a set of known `failure modes'.
|
||||||
|
In other words we know that a given component can fail in several distinct ways.
|
||||||
|
Studies have been published which list common component types
|
||||||
|
and their sets of failure modes, often with MTTF statistics \cite{mil1991}.
|
||||||
|
Thus for each component, an analysis is made for each of its failure modes,
|
||||||
|
with respect to its effect on the
|
||||||
|
circuit. Each one of these scenarios is termed a `test case'.
|
||||||
|
The resultant circuit behaviour for each of these test cases is noted.
|
||||||
|
The worst case for this type of
|
||||||
|
analysis would be a fault that we cannot detect.
|
||||||
|
Where this occurs a circuit re-design is probably the only sensible course of action.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Single Fault FMEA Analysis \\ of Milli Volt Amplifier Four wire circuit}
|
||||||
|
|
||||||
|
\label{fmea}
|
||||||
|
This circuit simply consists of three resistors.
|
||||||
|
Resistors according to the DOD Electronic component fault handbook
|
||||||
|
1991, fail by either going OPEN or SHORT circuit \cite{mil1991}.
|
||||||
|
%Should wires become disconnected these will have the same effect as
|
||||||
|
%given resistors going open.
|
||||||
|
For the purpose of this analyis;
|
||||||
|
$R_{1}$ is the \ohms{2k2} from 5V to the thermistor,
|
||||||
|
$R_3$ is the Milli Volt Amplifier thermistor and $R_{2}$ connects the thermistor to ground.
|
||||||
|
|
||||||
|
We can define the terms `High Fault' and `Low Fault' here, with reference to figure
|
||||||
|
\ref{fig:milli volt amplifiervrange}. Should we get a reading outside the safe green zone
|
||||||
|
in the diagram we can consider this a fault.
|
||||||
|
Should the reading be above its expected range this is a `High Fault'
|
||||||
|
and if below a `Low Fault'.
|
||||||
|
|
||||||
|
Table \ref{ptfmea} plays through the scenarios of each of the resistors failing
|
||||||
|
in both SHORT and OPEN failure modes, and hypothesises an error condition in the readings.
|
||||||
|
The range {0\oc} to {300\oc} will be analysed using potential divider equations to
|
||||||
|
determine out of range voltage limits in section \ref{ptbounds}.
|
||||||
|
|
||||||
|
\begin{table}[ht]
|
||||||
|
\caption{Milli Volt Amplifier FMEA Single Faults} % title of Table
|
||||||
|
\centering % used for centering table
|
||||||
|
\begin{tabular}{||l|c|c|l|l||}
|
||||||
|
\hline \hline
|
||||||
|
\textbf{Test} & \textbf{Result} & \textbf{Result } & \textbf{General} \\
|
||||||
|
\textbf{Case} & \textbf{sense +} & \textbf{sense -} & \textbf{Symtom Description} \\
|
||||||
|
% R & wire & res + & res - & description
|
||||||
|
\hline
|
||||||
|
\hline
|
||||||
|
$R_1$ SHORT & High Fault & - & Value Out of Range Value \\ \hline
|
||||||
|
$R_1$ OPEN & Low Fault & Low Fault & Both values out of range \\ \hline
|
||||||
|
\hline
|
||||||
|
$R_3$ SHORT & Low Fault & High Fault & Both values out of range \\ \hline
|
||||||
|
$R_3$ OPEN & High Fault & Low Fault & Both values out of range \\ \hline
|
||||||
|
\hline
|
||||||
|
$R_2$ SHORT & - & Low Fault & Value Out of Range Value \\
|
||||||
|
$R_2$ OPEN & High Fault & High Fault & Both values out of range \\ \hline
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\label{ptfmea}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
From table \ref{ptfmea} it can be seen that any component failure in the circuit
|
||||||
|
should cause a common symptom, that of one or more of the values being `out of range'.
|
||||||
|
Temperature range calculations and detailed calculations
|
||||||
|
on the effects of each test case are found in section \ref{milli volt amplifierrange}
|
||||||
|
and \ref{milli volt amplifiertemp}.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Range and Amplifier Calculations}
|
||||||
|
\label{milli volt amplifiertemp}
|
||||||
|
Milli Volt Amplifier resistors are designed to
|
||||||
|
have a resistance of \ohms{100} at {0\oc} \cite{aoe},\cite{eurothermtables}.
|
||||||
|
A suitable `wider than to be expected range' was considered to be {0\oc} to {300\oc}
|
||||||
|
for a given application.
|
||||||
|
According to the Eurotherm Milli Volt Amplifier
|
||||||
|
tables \cite{eurothermtables}, this corresponded to the resistances \ohms{100}
|
||||||
|
and \ohms{212.02} respectively. From this the potential divider circuit can be
|
||||||
|
analysed and the maximum and minimum acceptable voltages determined.
|
||||||
|
These can be used as bounds results to apply the findings from the
|
||||||
|
Milli Volt Amplifier FMEA analysis in section \ref{fmea}.
|
||||||
|
|
||||||
|
As the Milli Volt Amplifier forms a potential divider with the \ohms{2k2} load resistors,
|
||||||
|
the upper and lower readings can be calculated thus:
|
||||||
|
|
||||||
|
|
||||||
|
$$ highreading = 5V.\frac{2k2+milli volt amplifier}{2k2+2k2+milli volt amplifier} $$
|
||||||
|
$$ lowreading = 5V.\frac{2k2}{2k2+2k2+milli volt amplifier} $$
|
||||||
|
So by defining an acceptable measurement/temperature range,
|
||||||
|
and ensuring the
|
||||||
|
values are always within these bounds we can be confident that none of the
|
||||||
|
resistors in this circuit has failed.
|
||||||
|
|
||||||
|
To convert these to twelve bit ADC (\adctw) counts:
|
||||||
|
|
||||||
|
$$ highreading = 2^{12}.\frac{2k2+milli volt amplifier}{2k2+2k2+milli volt amplifier} $$
|
||||||
|
$$ lowreading = 2^{12}.\frac{2k2}{2k2+2k2+milli volt amplifier} $$
|
||||||
|
|
||||||
|
|
||||||
|
\begin{table}[ht]
|
||||||
|
\caption{Milli Volt Amplifier Maximum and Minimum Values} % title of Table
|
||||||
|
\centering % used for centering table
|
||||||
|
\begin{tabular}{||c|c|c|l|l||}
|
||||||
|
\hline \hline
|
||||||
|
\textbf{Temperature} & \textbf{Milli Volt Amplifier resistance} &
|
||||||
|
\textbf{Lower} & \textbf{Higher} & \textbf{Description} \\
|
||||||
|
\hline
|
||||||
|
% {-100 \oc} & {\ohms{68.28}} & 2.46V & 2.53V & Boundary of \\
|
||||||
|
% & & 2017\adctw & 2079\adctw & out of range LOW \\ \hline
|
||||||
|
{0 \oc} & {\ohms{100}} & 2.44V & 2.56V & Boundary of \\
|
||||||
|
& & 2002\adctw & 2094\adctw & out of range LOW \\ \hline
|
||||||
|
{+300 \oc} & {\ohms{212.02}} & 2.38V & 2.62V & Boundary of \\
|
||||||
|
& & 1954\adctw & 2142\adctw & out of range HIGH \\ \hline
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\label{ptbounds}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
Table \ref{ptbounds} gives ranges that determine correct operation. In fact it can be shown that
|
||||||
|
for any single error (short or opening of any resistor) this bounds check
|
||||||
|
will detect it.
|
||||||
|
|
||||||
|
|
||||||
|
\section{Single Fault FMEA Analysis \\ of Milli Volt Amplifier Four wire circuit}
|
||||||
|
|
||||||
|
\subsection{Single Fault Modes as PLD}
|
||||||
|
|
||||||
|
The component~failure~modes in table \ref{ptfmea} can be represented as contours
|
||||||
|
on a PLD diagram.
|
||||||
|
Each test case, is defined by the contours that enclose
|
||||||
|
it. The test cases here deal with single faults only
|
||||||
|
and are thus enclosed by one contour each.
|
||||||
|
|
||||||
|
|
||||||
|
%\begin{figure}[h]
|
||||||
|
% \centering
|
||||||
|
% \includegraphics[width=400pt,bb=0 0 518 365,keepaspectratio=true]{./milli volt amplifier/milli volt amplifier_tc.jpg}
|
||||||
|
% % milli volt amplifier_tc.jpg: 518x365 pixel, 72dpi, 18.27x12.88 cm, bb=0 0 518 365
|
||||||
|
% \caption{Milli Volt Amplifier Component Failure Modes}
|
||||||
|
% \label{fig:milli volt amplifier_tc}
|
||||||
|
%\end{figure}
|
||||||
|
%
|
||||||
|
%ating input Fault
|
||||||
|
This circuit supplies two results, the {\em sense+} and {\em sense-} voltage readings.
|
||||||
|
To establish the valid voltage ranges for these, and knowing our
|
||||||
|
valid temperature range for this example ({0\oc} .. {300\oc}) we can calculate
|
||||||
|
valid voltage reading ranges by using the standard voltage divider equation \ref{eqn:vd}
|
||||||
|
for the circuit shown in figure \ref{fig:vd}.
|
||||||
|
|
||||||
|
%
|
||||||
|
%\begin{figure}[h]
|
||||||
|
% \centering
|
||||||
|
% \includegraphics[width=100pt,bb=0 0 183 170,keepaspectratio=true]{./milli volt amplifier/voltage_divider.png}
|
||||||
|
% % voltage_divider.png: 183x170 pixel, 72dpi, 6.46x6.00 cm, bb=0 0 183 170
|
||||||
|
% \caption{Voltage Divider}
|
||||||
|
% \label{fig:vd}
|
||||||
|
%\end{figure}
|
||||||
|
%%The looking at figure \ref{fig:vd} the standard voltage divider formula (equation \ref{eqn:vd}) is used.
|
||||||
|
%
|
||||||
|
%\begin{equation}
|
||||||
|
%\label{eqn:vd}
|
||||||
|
% V_{out} = V_{in}.\frac{Z2}{Z2+Z1}
|
||||||
|
%\end{equation}
|
||||||
|
%
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Proof of Out of Range \\ Values for Failures}
|
||||||
|
\label{pt110range}
|
||||||
|
Using the temperature ranges defined above we can compare the voltages
|
||||||
|
we would get from the resistor failures to prove that they are
|
||||||
|
`out of range'. There are six test cases and each will be examined in turn.
|
||||||
|
|
||||||
|
\subsubsection{ TC 1 : Voltages $R_1$ SHORT }
|
||||||
|
With milli volt amplifier at 0\oc
|
||||||
|
$$ highreading = 5V $$
|
||||||
|
Since the highreading or sense+ is directly connected to the 5V rail,
|
||||||
|
both temperature readings will be 5V..
|
||||||
|
$$ lowreading = 5V.\frac{2k2}{2k2+100\Omega} = 4.78V$$
|
||||||
|
With milli volt amplifier at the high end of the temperature range 300\oc.
|
||||||
|
$$ highreading = 5V $$
|
||||||
|
$$ lowreading = 5V.\frac{2k2}{2k2+212.02\Omega} = 4.56V$$
|
||||||
|
|
||||||
|
Thus with $R_1$ shorted both readings are outside the
|
||||||
|
proscribed range in table \ref{ptbounds}.
|
||||||
|
|
||||||
|
\subsubsection{ TC 2 : Voltages $R_1$ OPEN }
|
||||||
|
|
||||||
|
In this case the 5V rail is disconnected. All voltages read are 0V, and
|
||||||
|
therefore both readings are outside the
|
||||||
|
proscribed range in table \ref{ptbounds}.
|
||||||
|
|
||||||
|
|
||||||
|
\subsubsection{ TC 3 : Voltages $R_2$ SHORT }
|
||||||
|
|
||||||
|
With milli volt amplifier at 0\oc
|
||||||
|
$$ lowreading = 0V $$
|
||||||
|
Since the lowreading or sense- is directly connected to the 0V rail,
|
||||||
|
both temperature readings will be 0V.
|
||||||
|
$$ lowreading = 5V.\frac{100\Omega}{2k2+100\Omega} = 0.218V$$
|
||||||
|
With milli volt amplifier at the high end of the temperature range 300\oc.
|
||||||
|
$$ highreading = 5V.\frac{212.02\Omega}{2k2+212.02\Omega} = 0.44V$$
|
||||||
|
|
||||||
|
Thus with $R_2$ shorted both readings are outside the
|
||||||
|
proscribed range in table \ref{ptbounds}.
|
||||||
|
|
||||||
|
\subsubsection{ TC 4 : Voltages $R_2$ OPEN }
|
||||||
|
Here there is no potential divider operating and both sense lines
|
||||||
|
will read 5V, outside of the proscribed range.
|
||||||
|
|
||||||
|
|
||||||
|
\subsubsection{ TC 5 : Voltages $R_3$ SHORT }
|
||||||
|
|
||||||
|
Here the potential divider is simply between
|
||||||
|
the two 2k2 load resistors. Thus it will read a nominal;
|
||||||
|
2.5V.
|
||||||
|
|
||||||
|
Assuming the load resistors are
|
||||||
|
precision components, and then taking an absolute worst case of 1\% either way.
|
||||||
|
|
||||||
|
$$ 5V.\frac{2k2*0.99}{2k2*1.01+2k2*0.99} = 2.475V $$
|
||||||
|
|
||||||
|
$$ 5V.\frac{2k2*1.01}{2k2*1.01+2k2*0.99} = 2.525V $$
|
||||||
|
|
||||||
|
These readings both lie outside the proscribed range.
|
||||||
|
Also the sense+ and sense- readings would have the same value.
|
||||||
|
|
||||||
|
\subsubsection{ TC 6 : Voltages $R_3$ OPEN }
|
||||||
|
|
||||||
|
Here the potential divider is broken. The sense- will read 0V and the sense+ will
|
||||||
|
read 5V. Both readings are outside the proscribed range.
|
||||||
|
|
||||||
|
\subsection{Summary of Analysis}
|
||||||
|
|
||||||
|
All six test cases have been analysed and the results agree with the hypothesis
|
||||||
|
put in Table \ref{ptfmea}. The PLD diagram, can now be used to collect the
|
||||||
|
symptoms. In this case there is a common and easily detected symptom for all these single
|
||||||
|
resistor faults : Voltage out of range.
|
||||||
|
|
||||||
|
A spider can be drawn on the PLD diagram to this effect.
|
||||||
|
|
||||||
|
In practical use, by defining an acceptable measurement/temperature range,
|
||||||
|
and ensuring the
|
||||||
|
values are always within these bounds we can be confident that none of the
|
||||||
|
resistors in this circuit has failed.
|
||||||
|
|
||||||
|
|
||||||
|
%\begin{figure}[h]
|
||||||
|
% \centering
|
||||||
|
% \includegraphics[width=400pt,bb=0 0 518 365,keepaspectratio=true]{./milli volt amplifier/milli volt amplifier_tc_sp.jpg}
|
||||||
|
% % milli volt amplifier_tc.jpg: 518x365 pixel, 72dpi, 18.27x12.88 cm, bb=0 0 518 365
|
||||||
|
% \caption{Milli Volt Amplifier Component Failure Modes}
|
||||||
|
% \label{fig:milli volt amplifier_tc_sp}
|
||||||
|
%\end{figure}
|
||||||
|
%
|
||||||
|
|
||||||
|
\subsection{Derived Component : The Milli Volt Amplifier Circuit}
|
||||||
|
The Milli Volt Amplifier circuit can now be treated as a component in its own right, and has one failure mode,
|
||||||
|
{\textbf OUT\_OF\_RANGE}. It can now be represnted as a PLD see figure \ref{fig:milli volt amplifier_singlef}.
|
||||||
|
|
||||||
|
%\begin{figure}[h]
|
||||||
|
% \centering
|
||||||
|
% \includegraphics[width=100pt,bb=0 0 167 194,keepaspectratio=true]{./milli volt amplifier/milli volt amplifier_singlef.jpg}
|
||||||
|
% % milli volt amplifier_singlef.jpg: 167x194 pixel, 72dpi, 5.89x6.84 cm, bb=0 0 167 194
|
||||||
|
% \caption{Milli Volt Amplifier Circuit Failure Modes : From Single Faults Analysis}
|
||||||
|
% \label{fig:milli volt amplifier_singlef}
|
||||||
|
%\end{figure}
|
||||||
|
%
|
||||||
|
|
||||||
|
%From the single faults (cardinality constrained powerset of 1) analysis, we can now create
|
||||||
|
%a new derived component, the {\emmilli volt amplifiercircuit}. This has only \{ OUT\_OF\_RANGE \}
|
||||||
|
%as its single failure mode.
|
||||||
|
|
||||||
|
|
||||||
|
%Interestingly we can calculate the failure statistics for this circuit now.
|
||||||
|
%Mill 1991 gives resistor stats of ${10}^{11}$ times 6 (can we get special stats for milli volt amplifier) ???
|
||||||
|
\clearpage
|
||||||
|
\subsection{Mean Time to Failure}
|
||||||
|
|
||||||
|
Now that we have a model for the failure mode behaviour of the milli volt amplifier circuit
|
||||||
|
we can look at the statistics associated with each of the failure modes.
|
||||||
|
|
||||||
|
The DOD electronic reliability of components
|
||||||
|
document MIL-HDBK-217F\cite{mil1992} gives formulae for calculating
|
||||||
|
the
|
||||||
|
%$\frac{failures}{{10}^6}$
|
||||||
|
${failures}/{{10}^6}$ % looks better
|
||||||
|
in hours for a wide range of generic components
|
||||||
|
\footnote{These figures are based on components from the 1980's and MIL-HDBK-217F
|
||||||
|
can give conservative reliability figures when applied to
|
||||||
|
modern components}.
|
||||||
|
|
||||||
|
Using the MIL-HDBK-217F\cite{mil1992} specifications for resistor and thermistor
|
||||||
|
failure statistics we calculate the reliability of this circuit.
|
||||||
|
|
||||||
|
|
||||||
|
\subsubsection{Resistor FIT Calculations}
|
||||||
|
|
||||||
|
The formula for given in MIL-HDBK-217F\cite{mil1992}[9.2] for a generic fixed film non-power resistor
|
||||||
|
is reproduced in equation \ref{resistorfit}. The meanings
|
||||||
|
and values assigned to its co-efficients are described in table \ref{tab:resistor}.
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
% fixed comp resistor{\lambda}_p = {\lambda}_{b}{\pi}_{R}{\pi}_Q{\pi}_E
|
||||||
|
resistor{\lambda}_p = {\lambda}_{b}{\pi}_{R}{\pi}_Q{\pi}_E
|
||||||
|
\label{resistorfit}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{table}[ht]
|
||||||
|
\caption{Fixed film resistor Failure in time assessment} % title of Table
|
||||||
|
\centering % used for centering table
|
||||||
|
\begin{tabular}{||c|c|l||}
|
||||||
|
\hline \hline
|
||||||
|
\em{Parameter} & \em{Value} & \em{Comments} \\
|
||||||
|
& & \\ \hline \hline
|
||||||
|
${\lambda}_{b}$ & 0.00092 & stress/temp base failure rate $60^o$ C \\ \hline
|
||||||
|
%${\pi}_T$ & 4.2 & max temp of $60^o$ C\\ \hline
|
||||||
|
${\pi}_R$ & 1.0 & Resistance range $< 0.1M\Omega$\\ \hline
|
||||||
|
${\pi}_Q$ & 15.0 & Non-Mil spec component\\ \hline
|
||||||
|
${\pi}_E$ & 1.0 & benign ground environment\\ \hline
|
||||||
|
|
||||||
|
\hline \hline
|
||||||
|
\end{tabular}
|
||||||
|
\label{tab:resistor}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
Applying equation \ref{resistorfit} with the parameters from table \ref{tab:resistor}
|
||||||
|
give the following failures in ${10}^6$ hours:
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
0.00092 \times 1.0 \times 15.0 \times 1.0 = 0.0138 \;{failures}/{{10}^{6} Hours}
|
||||||
|
\label{eqn:resistor}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
While MIL-HDBK-217F gives MTTF for a wide range of common components,
|
||||||
|
it does not specify how the components will fail (in this case OPEN or SHORT). {Some standards, notably EN298 only consider resistors failing in OPEN mode}.
|
||||||
|
FMD-97 gives 27\% OPEN and 3\% SHORTED, for resistors under certain electrical and environmental stresses. This example
|
||||||
|
compromises and uses a 90:10 ratio, for resistor failure.
|
||||||
|
Thus for this example resistors are expected to fail OPEN in 90\% of cases and SHORTED
|
||||||
|
in the other 10\%.
|
||||||
|
A standard fixed film resistor, for use in a benign environment, non military spec at
|
||||||
|
temperatures up to 60\oc is given a probability of 13.8 failures per billion ($10^9$)
|
||||||
|
hours of operation (see equation \ref{eqn:resistor}).
|
||||||
|
This figure is referred to as a FIT\footnote{FIT values are measured as the number of
|
||||||
|
failures per Billion (${10}^9$) hours of operation, (roughly 114,000 years). The smaller the
|
||||||
|
FIT number the more reliable the fault~mode} Failure in time.
|
||||||
|
|
||||||
|
The formula given for a thermistor in MIL-HDBK-217F\cite{mil1992}[9.8] is reproduced in
|
||||||
|
equation \ref{thermistorfit}. The variable meanings and values are described in table \ref{tab:thermistor}.
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
% fixed comp resistor{\lambda}_p = {\lambda}_{b}{\pi}_{R}{\pi}_Q{\pi}_E
|
||||||
|
resistor{\lambda}_p = {\lambda}_{b}{\pi}_Q{\pi}_E
|
||||||
|
\label{thermistorfit}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{table}[ht]
|
||||||
|
\caption{Bead type Thermistor Failure in time assessment} % title of Table
|
||||||
|
\centering % used for centering table
|
||||||
|
\begin{tabular}{||c|c|l||}
|
||||||
|
\hline \hline
|
||||||
|
\em{Parameter} & \em{Value} & \em{Comments} \\
|
||||||
|
& & \\ \hline \hline
|
||||||
|
${\lambda}_{b}$ & 0.021 & stress/temp base failure rate bead thermistor \\ \hline
|
||||||
|
%${\pi}_T$ & 4.2 & max temp of $60^o$ C\\ \hline
|
||||||
|
%${\pi}_R$ & 1.0 & Resistance range $< 0.1M\Omega$\\ \hline
|
||||||
|
${\pi}_Q$ & 15.0 & Non-Mil spec component\\ \hline
|
||||||
|
${\pi}_E$ & 1.0 & benign ground environment\\ \hline
|
||||||
|
|
||||||
|
\hline \hline
|
||||||
|
\end{tabular}
|
||||||
|
\label{tab:thermistor}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
0.021 \times 1.0 \times 15.0 \times 1.0 = 0.315 \; {failures}/{{10}^{6} Hours}
|
||||||
|
\label{eqn:thermistor}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
|
Thus thermistor, bead type, non military spec is given a FIT of 315.0
|
||||||
|
|
||||||
|
Using the RIAC finding we can draw up the following table (table \ref{tab:stat_single}),
|
||||||
|
showing the FIT values for all faults considered.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{table}[h+]
|
||||||
|
\caption{Milli Volt Amplifier FMEA Single // Fault Statistics} % title of Table
|
||||||
|
\centering % used for centering table
|
||||||
|
\begin{tabular}{||l|c|c|l|l||}
|
||||||
|
\hline \hline
|
||||||
|
\textbf{Test} & \textbf{Result} & \textbf{Result } & \textbf{MTTF} \\
|
||||||
|
\textbf{Case} & \textbf{sense +} & \textbf{sense -} & \textbf{per $10^9$ hours of operation} \\
|
||||||
|
% R & wire & res + & res - & description
|
||||||
|
\hline
|
||||||
|
\hline
|
||||||
|
TC:1 $R_1$ SHORT & High Fault & - & 1.38 \\ \hline
|
||||||
|
TC:2 $R_1$ OPEN & Low Fault & Low Fault & 12.42\\ \hline
|
||||||
|
\hline
|
||||||
|
TC:3 $R_3$ SHORT & Low Fault & High Fault & 31.5 \\ \hline
|
||||||
|
TC:4 $R_3$ OPEN & High Fault & Low Fault & 283.5 \\ \hline
|
||||||
|
\hline
|
||||||
|
TC:5 $R_2$ SHORT & - & Low Fault & 1.38 \\
|
||||||
|
TC:6 $R_2$ OPEN & High Fault & High Fault & 12.42 \\ \hline
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\label{tab:stat_single}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
The FIT for the circuit as a whole is the sum of MTTF values for all the
|
||||||
|
test cases. The Milli Volt Amplifier circuit here has a FIT of 342.6. This is a MTTF of
|
||||||
|
about 360 years per circuit.
|
||||||
|
|
||||||
|
A Probablistic tree can now be drawn, with a FIT value for the Milli Volt Amplifier
|
||||||
|
circuit and FIT values for all the component fault modes that it was calculated from.
|
||||||
|
We can see from this that that the most likely fault is the thermistor going OPEN.
|
||||||
|
This circuit is around 10 times more likely to fail in this way than in any other.
|
||||||
|
Were we to need a more reliable temperature sensor this would probably
|
||||||
|
be the fault~mode we would scrutinise first.
|
||||||
|
|
||||||
|
|
||||||
|
%\begin{figure}[h+]
|
||||||
|
% \centering
|
||||||
|
% \includegraphics[width=400pt,bb=0 0 856 327,keepaspectratio=true]{./milli volt amplifier/stat_single.jpg}
|
||||||
|
% % stat_single.jpg: 856x327 pixel, 72dpi, 30.20x11.54 cm, bb=0 0 856 327
|
||||||
|
% \caption{Probablistic Fault Tree : Milli Volt Amplifier Single Faults}
|
||||||
|
% \label{fig:stat_single}
|
||||||
|
%\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
The Milli Volt Amplifier analysis presents a simple result for single faults.
|
||||||
|
The next analysis phase looks at how the circuit will behave under double simultaneous failure
|
||||||
|
conditions.
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\section{ Milli Volt Amplifier Double Simultaneous \\ Fault Analysis}
|
||||||
|
|
||||||
|
In this section we examine the failure mode behaviour for all single
|
||||||
|
faults and double simultaneous faults.
|
||||||
|
This corresponds to the cardinality constrained powerset of
|
||||||
|
the failure modes in the functional group.
|
||||||
|
All the single faults have already been proved in the last section.
|
||||||
|
For the next set of test cases, let us again hypothesise
|
||||||
|
the failure modes, and then examine each one in detail with
|
||||||
|
potential divider equation proofs.
|
||||||
|
|
||||||
|
Table \ref{tab:ptfmea2} lists all the combinations of double
|
||||||
|
faults and then hypothesises how the functional~group will react
|
||||||
|
under those conditions.
|
||||||
|
|
||||||
|
\begin{table}[ht]
|
||||||
|
\caption{Milli Volt Amplifier FMEA Double Faults} % title of Table
|
||||||
|
\centering % used for centering table
|
||||||
|
\begin{tabular}{||l|l|c|c|l|l||}
|
||||||
|
\hline \hline
|
||||||
|
\textbf{TC} &\textbf{Test} & \textbf{Result} & \textbf{Result } & \textbf{General} \\
|
||||||
|
\textbf{number} &\textbf{Case} & \textbf{sense +} & \textbf{sense -} & \textbf{Symtom Description} \\
|
||||||
|
% R & wire & res + & res - & description
|
||||||
|
\hline
|
||||||
|
\hline
|
||||||
|
TC 7: & $R_1$ OPEN $R_2$ OPEN & Floating input Fault & Floating input Fault & Unknown value readings \\ \hline
|
||||||
|
TC 8: & $R_1$ OPEN $R_2$ SHORT & low & low & Both out of range \\ \hline
|
||||||
|
\hline
|
||||||
|
TC 9: & $R_1$ OPEN $R_3$ OPEN & high & low & Both out of Range \\ \hline
|
||||||
|
TC 10: & $R_1$ OPEN $R_3$ SHORT & low & low & Both out of range \\ \hline
|
||||||
|
\hline
|
||||||
|
|
||||||
|
TC 11: & $R_1$ SHORT $R_2$ OPEN & high & high & Both out of range \\ \hline
|
||||||
|
TC 12: & $R_1$ SHORT $R_2$ SHORT & high & low & Both out of range \\ \hline
|
||||||
|
\hline
|
||||||
|
TC 13: & $R_1$ SHORT $R_3$ OPEN & high & low & Both out of Range \\ \hline
|
||||||
|
TC 14: & $R_1$ SHORT $R_3$ SHORT & high & high & Both out of range \\ \hline
|
||||||
|
|
||||||
|
\hline
|
||||||
|
TC 15: & $R_2$ OPEN $R_3$ SHORT & high & Floating input Fault & sense+ out of range \\ \hline
|
||||||
|
TC 16: & $R_2$ OPEN $R_3$ SHORT & high & high & Both out of Range \\ \hline
|
||||||
|
TC 17: & $R_2$ SHORT $R_3$ OPEN & high & low & Both out of Range \\ \hline
|
||||||
|
TC 18: & $R_2$ SHORT $R_3$ SHORT & low & low & Both out of Range \\ \hline
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\label{tab:ptfmea2}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
\subsection{Verifying complete coverage for a \\ cardinality constrained powerset of 2}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
It is important to check that we have covered all possible double fault combinations.
|
||||||
|
We can use the equation \ref{eqn:correctedccps2}
|
||||||
|
\ifthenelse {\boolean{paper}}
|
||||||
|
{
|
||||||
|
from the definitions paper
|
||||||
|
\ref{pap:compdef}
|
||||||
|
,
|
||||||
|
reproduced below to verify this.
|
||||||
|
|
||||||
|
\indent{
|
||||||
|
where:
|
||||||
|
\begin{itemize}
|
||||||
|
\item The set $SU$ represents the components in the functional~group, where all components are guaranteed to have unitary state failure modes.
|
||||||
|
\item The indexed set $C_j$ represents all components in set $SU$.
|
||||||
|
\item The function $FM$ takes a component as an argument and returns its set of failure modes.
|
||||||
|
\item $cc$ is the cardinality constraint, here 2 as we are interested in double and single faults.
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\begin{equation}
|
||||||
|
|{\mathcal{P}_{cc}SU}| = {\sum^{k}_{1..cc} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
||||||
|
- \sum^{p}_{2..cc}{{\sum^{j}_{j \in J} \frac{|FM({C_j})|!}{p!(|FM({C_j})| - p)!}} }
|
||||||
|
\label{eqn:correctedccps2}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
}
|
||||||
|
{
|
||||||
|
\begin{equation}
|
||||||
|
|{\mathcal{P}_{cc}SU}| = {\sum^{k}_{1..cc} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
||||||
|
- \sum^{p}_{2..cc}{{\sum^{j}_{j \in J} \frac{|FM({C_j})|!}{p!(|FM({C_j})| - p)!}} }
|
||||||
|
%\label{eqn:correctedccps2}
|
||||||
|
\end{equation}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
$|FM(C_j)|$ will always be 2 here, as all the components are resistors and have two failure modes.
|
||||||
|
|
||||||
|
%
|
||||||
|
% Factorial of zero is one ! You can only arrange an empty set one way !
|
||||||
|
|
||||||
|
Populating this equation with $|SU| = 6$ and $|FM(C_j)|$ = 2.
|
||||||
|
%is always 2 for this circuit, as all the components are resistors and have two failure modes.
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
|{\mathcal{P}_{2}SU}| = {\sum^{k}_{1..2} \frac{6!}{k!(6 - k)!}}
|
||||||
|
- \sum^{p}_{2..2}{{\sum^{j}_{1..3} \frac{2!}{p!(2 - p)!}} }
|
||||||
|
%\label{eqn:correctedccps2}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
$|{\mathcal{P}_{2}SU}|$ is the number of valid combinations of faults to check
|
||||||
|
under the conditions of unitary state failure modes for the components (a resistor cannot fail by being shorted and open at the same time).
|
||||||
|
|
||||||
|
Expanding the sumations
|
||||||
|
|
||||||
|
|
||||||
|
$$ NoOfTestCasesToCheck = \frac{6!}{1!(6-1)!} + \frac{6!}{2!(6-2)!} - \Big( \frac{2!}{2!(2 - 2)!} + \frac{2!}{2!(2 - 2)!} + \frac{2!}{2!(2 - 2)!} \Big) $$
|
||||||
|
|
||||||
|
$$ NoOfTestCasesToCheck = 6 + 15 - ( 1 + 1 + 1 ) = 18 $$
|
||||||
|
|
||||||
|
As the test case are all different and are of the correct cardinalities (6 single faults and (15-3) double)
|
||||||
|
we can be confident that we have looked at all `double combinations', of the possible faults
|
||||||
|
in the milli volt amplifier circuit. The next task is to investigate
|
||||||
|
these test cases in more detail to prove the failure mode hypothesis set out in table \ref{tab:ptfmea2}.
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Proof of Double Faults Hypothesis }
|
||||||
|
|
||||||
|
\subsubsection{ TC 7 : Voltages $R_1$ OPEN $R_2$ OPEN }
|
||||||
|
\label{milli volt amplifier:bothfloating}
|
||||||
|
This double fault mode produces an interesting symptom.
|
||||||
|
Both sense lines are floating.
|
||||||
|
We cannot know what the {\adctw} readings on them will be.
|
||||||
|
In practise these would probably float to low values
|
||||||
|
but for the purpose of a safety critical analysis
|
||||||
|
all we can say is the values are `floating' and `unknown'.
|
||||||
|
This is an interesting case, because it is, at this stage an undetectable
|
||||||
|
fault that must be handled.
|
||||||
|
|
||||||
|
|
||||||
|
\subsubsection{ TC 8 : Voltages $R_1$ OPEN $R_2$ SHORT }
|
||||||
|
|
||||||
|
This cuts the supply from Vcc. Both sense lines will be at zero.
|
||||||
|
Thus both values will be out of range.
|
||||||
|
|
||||||
|
|
||||||
|
\subsubsection{ TC 9 : Voltages $R_1$ OPEN $R_3$ OPEN }
|
||||||
|
|
||||||
|
Sense- will be floating.
|
||||||
|
Sense+ will be tied to Vcc and will thus be out of range.
|
||||||
|
|
||||||
|
\subsubsection{ TC 10 : Voltages $R_1$ OPEN $R_3$ SHORT }
|
||||||
|
|
||||||
|
This shorts ground to the
|
||||||
|
both of the sense lines.
|
||||||
|
Both values thuis out of range.
|
||||||
|
|
||||||
|
\subsubsection{ TC 11 : Voltages $R_1$ SHORT $R_2$ OPEN }
|
||||||
|
|
||||||
|
This shorts both sense lines to Vcc.
|
||||||
|
Both values will be out of range.
|
||||||
|
|
||||||
|
|
||||||
|
\subsubsection{ TC 12 : Voltages $R_1$ SHORT $R_2$ SHORT }
|
||||||
|
|
||||||
|
This shorts the sense+ to Vcc and the sense- to ground.
|
||||||
|
Both values will be out of range.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsubsection{ TC 13 : Voltages $R_1$ SHORT $R_3$ OPEN }
|
||||||
|
|
||||||
|
This shorts the sense+ to Vcc and the sense- to ground.
|
||||||
|
Both values will be out of range.
|
||||||
|
|
||||||
|
\subsubsection{ TC 14 : Voltages $R_1$ SHORT $R_3$ SHORT }
|
||||||
|
|
||||||
|
This shorts the sense+ and sense- to Vcc.
|
||||||
|
Both values will be out of range.
|
||||||
|
|
||||||
|
\subsubsection{ TC 15 : Voltages $R_2$ OPEN $R_3$ OPEN }
|
||||||
|
|
||||||
|
This shorts the sense+ to Vcc and causes sense- to float.
|
||||||
|
The sense+ value will be out of range.
|
||||||
|
|
||||||
|
|
||||||
|
\subsubsection{ TC 16 : Voltages $R_2$ OPEN $R_3$ SHORT }
|
||||||
|
|
||||||
|
This shorts the sense+ and sense- to Vcc.
|
||||||
|
Both values will be out of range.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsubsection{ TC 17 : Voltages $R_2$ SHORT $R_3$ OPEN }
|
||||||
|
|
||||||
|
This shorts the sense- to Ground.
|
||||||
|
The sense- value will be out of range.
|
||||||
|
|
||||||
|
|
||||||
|
\subsubsection{ TC 18 : Voltages $R_2$ SHORT $R_3$ SHORT }
|
||||||
|
|
||||||
|
This shorts the sense+ and sense- to Vcc.
|
||||||
|
Both values will be out of range.
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection{Double Faults Represented on a PLD Diagram}
|
||||||
|
|
||||||
|
We can show the test cases on a diagram with the double faults residing on regions
|
||||||
|
corresponding to overlapping contours see figure \ref{fig:plddouble}.
|
||||||
|
Thus $TC\_18$ will be enclosed by the $R2\_SHORT$ contour and the $R3\_SHORT$ contour.
|
||||||
|
|
||||||
|
|
||||||
|
%\begin{figure}[h]
|
||||||
|
% \centering
|
||||||
|
% \includegraphics[width=450pt,bb=0 0 730 641,keepaspectratio=true]{milli volt amplifier/plddouble.jpg}
|
||||||
|
% % plddouble.jpg: 730x641 pixel, 72dpi, 25.75x22.61 cm, bb=0 0 730 641
|
||||||
|
% \caption{Milli Volt Amplifier Double Simultaneous Faults}
|
||||||
|
% \label{fig:plddouble}
|
||||||
|
%\end{figure}
|
||||||
|
|
||||||
|
The usefulnes of equation \ref{eqn:correctedccps2} is apparent. From the diagram it is easy to verify
|
||||||
|
the number of failure modes considered for each test case, but complete coverage for
|
||||||
|
a given cardinality constraint is not visually obvious.
|
||||||
|
|
||||||
|
\subsubsection{Symptom Extraction}
|
||||||
|
|
||||||
|
We can now examine the results of the test case analysis and apply symptom abstraction.
|
||||||
|
In all the test case results we have at least one an out of range value, except for
|
||||||
|
$TC\_7$
|
||||||
|
which has two unknown values/floating readings. We can collect all the faults, except $TC\_7$,
|
||||||
|
into the symptom $OUT\_OF\_RANGE$.
|
||||||
|
As a symptom $TC\_7$ could be described as $FLOATING$. We can thus draw a PLD diagram representing the
|
||||||
|
failure modes of this functional~group, the milli volt amplifier circuit from the perspective of double simultaneous failures,
|
||||||
|
in figure \ref{fig:dubsim}.
|
||||||
|
|
||||||
|
|
||||||
|
%\begin{figure}[h]
|
||||||
|
% \centering
|
||||||
|
% \includegraphics[width=450pt,bb=0 0 730 641,keepaspectratio=true]{milli volt amplifier/plddoublesymptom.jpg}
|
||||||
|
% % plddouble.jpg: 730x641 pixel, 72dpi, 25.75x22.61 cm, bb=0 0 730 641
|
||||||
|
% \caption{Milli Volt Amplifier Double Simultaneous Faults}
|
||||||
|
% \label{fig:plddoublesymptom}
|
||||||
|
%\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection{Derived Component : The Milli Volt Amplifier Circuit}
|
||||||
|
The Milli Volt Amplifier circuit again, can now be treated as a component in its own right, and has two failure modes,
|
||||||
|
{\textbf{OUT\_OF\_RANGE}} and {\textbf{FLOATING}}.
|
||||||
|
It can now be represented as a PLD see figure \ref{fig:milli volt amplifier_doublef}.
|
||||||
|
|
||||||
|
%\begin{figure}[h]
|
||||||
|
% \centering
|
||||||
|
% \includegraphics[width=100pt,bb=0 0 167 194,keepaspectratio=true]{./milli volt amplifier/milli volt amplifier_doublef.jpg}
|
||||||
|
% % milli volt amplifier_singlef.jpg: 167x194 pixel, 72dpi, 5.89x6.84 cm, bb=0 0 167 194
|
||||||
|
% \caption{Milli Volt Amplifier Circuit Failure Modes : From Double Faults Analysis}
|
||||||
|
% \label{fig:milli volt amplifier_doublef}
|
||||||
|
%\end{figure}
|
||||||
|
|
||||||
|
\subsection{Statistics}
|
||||||
|
|
||||||
|
%%
|
||||||
|
%% Need to talk abou the `detection time'
|
||||||
|
%% or `Safety Relevant Validation Time' ref can book
|
||||||
|
%% EN61508 gives detection calculations to reduce
|
||||||
|
%% statistical impacts of failures.
|
||||||
|
%%
|
||||||
|
|
||||||
|
If we consider the failure modes to be statistically independent we can calculate
|
||||||
|
the FIT values for all the failures. The failure mode of concern, the undetectable {\textbf{FLOATING}} condition
|
||||||
|
requires that resistors $R_1$ and $R_2$ fail. We can multiply the MTTF
|
||||||
|
together and find an MTTF for both failing. The FIT value of 12.42 corresponds to
|
||||||
|
$12.42 \times {10}^{-9}$ failures per hour. Squaring this gives $ 154.3 \times {10}^{-18} $.
|
||||||
|
This is an astronomically small MTTF, and so small that it would
|
||||||
|
probably fall below a threshold to sensibly consider.
|
||||||
|
However, it is very interesting from a failure analysis perspective,
|
||||||
|
because here we have found a fault that we cannot detect at this
|
||||||
|
level. This means that should we wish to cope with
|
||||||
|
this fault, we need to devise a way of detecting this
|
||||||
|
condition in higher levels of the system.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\vspace{20pt}
|
||||||
|
|
||||||
|
%typeset in {\Huge \LaTeX} \today
|
34
millivoltamp/paper.tex
Normal file
34
millivoltamp/paper.tex
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
|
||||||
|
\documentclass[a4paper,10pt]{article}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usepackage{fancyhdr}
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usepackage{amsfonts,amsmath,amsthm}
|
||||||
|
|
||||||
|
\usepackage{ifthen}
|
||||||
|
\newboolean{paper}
|
||||||
|
\setboolean{paper}{true} % boolvar=true or false
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\input{../style}
|
||||||
|
|
||||||
|
%\newtheorem{definition}{Definition:}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\pagestyle{fancy}
|
||||||
|
|
||||||
|
%\outerhead{{\small\bf PT100 FMMD analysis}}
|
||||||
|
%\innerfoot{{\small\bf R.P. Clark } }
|
||||||
|
% numbers at outer edges
|
||||||
|
\pagenumbering{arabic} % Arabic page numbers hereafter
|
||||||
|
\author{R.P.Clark}
|
||||||
|
\title{Milli-Volt Amplifier FMMD analysis}
|
||||||
|
\maketitle
|
||||||
|
\input{millivoltamp_paper}
|
||||||
|
|
||||||
|
\bibliographystyle{plain}
|
||||||
|
\bibliography{../vmgbibliography,../mybib}
|
||||||
|
|
||||||
|
\today
|
||||||
|
\end{document}
|
274
mybib.bib
274
mybib.bib
@ -182,3 +182,277 @@
|
|||||||
year = "2000"
|
year = "2000"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@Manual{tlp181,
|
||||||
|
title = {TLP 181 Datasheet},
|
||||||
|
key = {TOSHIBA Photocoupler GaAs Ired and Photo−Transistor},
|
||||||
|
author = {Toshiba inc.},
|
||||||
|
OPTorganization = {},
|
||||||
|
address = {http://www.toshiba.com/taec/components2/Datasheet\_Sync//206/4191.pdf},
|
||||||
|
OPTedition = {},
|
||||||
|
OPTmonth = {},
|
||||||
|
year = {2009},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstract = {},
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@Manual{pic18f2523,
|
||||||
|
title = {PIC18F2523 Datasheet},
|
||||||
|
OPTkey = {},
|
||||||
|
author = {Microchip inc},
|
||||||
|
OPTorganization = {},
|
||||||
|
address = {http://ww1.microchip.com/downloads/en/DeviceDoc/39755c.pdf},
|
||||||
|
OPTedition = {},
|
||||||
|
OPTmonth = {},
|
||||||
|
year = {2009},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstract = {},
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@Book{wt,
|
||||||
|
title = {Water Treatment Essentials for Boiler Plant Operation},
|
||||||
|
publisher = {Mc Graw Hill ISBN 0-07-048291-5},
|
||||||
|
year = {1997},
|
||||||
|
author = {Robert G Nunn},
|
||||||
|
ALTALTeditor = {},
|
||||||
|
OPTkey = {},
|
||||||
|
OPTvolume = {},
|
||||||
|
OPTnumber = {},
|
||||||
|
OPTseries = {},
|
||||||
|
OPTaddress = {},
|
||||||
|
OPTedition = {},
|
||||||
|
OPTmonth = {},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {ISBN 0-07-048291-5},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstracts = {},
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@TechReport{spiraxsarco,
|
||||||
|
author = {Spirax Sarco},
|
||||||
|
title = {http://www.spiraxsarco.com/resources/steam-engineering-tutorials.asp},
|
||||||
|
institution = {Spirax Sarco},
|
||||||
|
year = {2010},
|
||||||
|
OPTkey = {},
|
||||||
|
OPTtype = {},
|
||||||
|
OPTnumber = {},
|
||||||
|
OPTaddress = {},
|
||||||
|
OPTmonth = {},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstract = {},
|
||||||
|
}
|
||||||
|
|
||||||
|
@Book{aoe,
|
||||||
|
title = {The Art of Electronics},
|
||||||
|
publisher = {Cambridge},
|
||||||
|
year = {1989},
|
||||||
|
author = {Paul Horowitz, Winfield Hill},
|
||||||
|
OPTkey = {},
|
||||||
|
OPTvolume = {},
|
||||||
|
OPTnumber = {},
|
||||||
|
OPTseries = {},
|
||||||
|
OPTaddress = {},
|
||||||
|
OPTedition = {2nd},
|
||||||
|
OPTmonth = {},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {ISBN 0-521-37095-7},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstracts = {},
|
||||||
|
}
|
||||||
|
|
||||||
|
@TechReport{eurothermtables,
|
||||||
|
author = {Alan Brown},
|
||||||
|
title = {Thermocouple Emf TABLES and PLATINUM 100 RESISTANCE THERMOMETER TABLES},
|
||||||
|
institution = {Eurotherm, UK},
|
||||||
|
year = {1973},
|
||||||
|
OPTkey = {},
|
||||||
|
OPTtype = {},
|
||||||
|
OPTnumber = {},
|
||||||
|
OPTaddress = {},
|
||||||
|
OPTmonth = {June},
|
||||||
|
OPTnote = {Bulletin TT-1},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstract = {},
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@Book{ldd,
|
||||||
|
author = {Jonathon Corbet},
|
||||||
|
ALTeditor = {Alessandro Rubini},
|
||||||
|
ALTeditor = {Greg Kroah-Hartman},
|
||||||
|
title = {Linux Device Drivers},
|
||||||
|
publisher = {O'Reilly ISBN 0-596-00590-3},
|
||||||
|
year = {1998},
|
||||||
|
OPTkey = {ISBN 0-596-00590-3},
|
||||||
|
OPTvolume = {},
|
||||||
|
OPTnumber = {},
|
||||||
|
OPTseries = {linux},
|
||||||
|
OPTaddress = {},
|
||||||
|
OPTedition = {3rd},
|
||||||
|
OPTmonth = {},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {www.oreilly.com},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstract = {}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
@Book{bash,
|
||||||
|
author = {Carl Albing},
|
||||||
|
title = {Bash Cookbook},
|
||||||
|
publisher = {O'Reilly ISBN 0-596-52678-4},
|
||||||
|
year = {2007},
|
||||||
|
OPTkey = {ISBN 0-596-52678-4},
|
||||||
|
OPTvolume = {},
|
||||||
|
OPTnumber = {},
|
||||||
|
OPTseries = {unix/linux},
|
||||||
|
OPTaddress = {},
|
||||||
|
OPTedition = {},
|
||||||
|
OPTmonth = {},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {www.oreilly.com},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstract = {}
|
||||||
|
};
|
||||||
|
|
||||||
|
@Book{sedawk,
|
||||||
|
author = {Dale Dougherty, Arnold Robbins},
|
||||||
|
title = {Sed and Awk},
|
||||||
|
publisher = {O'Reilly ISBN 1-56592-225-5},
|
||||||
|
year = {1997},
|
||||||
|
OPTkey = {ISBN 1-56592-225-5},
|
||||||
|
OPTvolume = {},
|
||||||
|
OPTnumber = {},
|
||||||
|
OPTseries = {unix/linux},
|
||||||
|
OPTaddress = {},
|
||||||
|
OPTedition = {},
|
||||||
|
OPTmonth = {},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {www.oreilly.com},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstract = {}
|
||||||
|
};
|
||||||
|
|
||||||
|
@Book{bels,
|
||||||
|
author = {Karim Yaghmour},
|
||||||
|
title = {Building Embedded LINUX systems},
|
||||||
|
publisher = {O'Reilly ISBN ISBN 0-596-00222-X},
|
||||||
|
year = {2003},
|
||||||
|
OPTkey = {ISBN 0-596-00222-X},
|
||||||
|
OPTvolume = {},
|
||||||
|
OPTnumber = {},
|
||||||
|
OPTseries = {linux},
|
||||||
|
OPTaddress = {},
|
||||||
|
OPTedition = {3rd},
|
||||||
|
OPTmonth = {},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {www.oreilly.com},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstract = {}
|
||||||
|
};
|
||||||
|
|
||||||
|
@Book{can,
|
||||||
|
author = {Olaf Pfeiffer},
|
||||||
|
ALTeditor = {Andrew Ayre},
|
||||||
|
ALTeditor = {Christian Keydel},
|
||||||
|
title = {Embedded networking with CAN and CANopen},
|
||||||
|
publisher = {RTC ISBN 0-929392-78-7},
|
||||||
|
year = {2003},
|
||||||
|
OPTkey = { },
|
||||||
|
OPTvolume = {},
|
||||||
|
OPTnumber = {},
|
||||||
|
OPTseries = {Embedded Systems},
|
||||||
|
OPTaddress = {},
|
||||||
|
OPTedition = {1st},
|
||||||
|
OPTmonth = {},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {www.rtcbooks.com},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstract = {}
|
||||||
|
};
|
||||||
|
|
||||||
|
@Article{article,
|
||||||
|
author = {dd},
|
||||||
|
title = {dd},
|
||||||
|
journal = {dd},
|
||||||
|
year = {2008},
|
||||||
|
OPTkey = {},
|
||||||
|
OPTvolume = {},
|
||||||
|
OPTnumber = {},
|
||||||
|
OPTpages = {1,2},
|
||||||
|
OPTmonth = {JAN},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstract = {}
|
||||||
|
};
|
||||||
|
|
||||||
|
@Book{sqlite,
|
||||||
|
author = {Micheal Owens},
|
||||||
|
title = {The definitive guide to SQLite},
|
||||||
|
publisher = {Apres ISBN 1-59059-673-0},
|
||||||
|
year = {2006},
|
||||||
|
OPTkey = {},
|
||||||
|
OPTvolume = {},
|
||||||
|
OPTnumber = {},
|
||||||
|
OPTseries = {Databases/SQLite},
|
||||||
|
OPTaddress = {},
|
||||||
|
OPTedition = {},
|
||||||
|
OPTmonth = {},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstract = {}
|
||||||
|
};
|
||||||
|
|
||||||
|
@ -16,3 +16,7 @@ paper: paper.tex pt100_paper.tex
|
|||||||
#
|
#
|
||||||
pt100_paper.tex: pt100.tex
|
pt100_paper.tex: pt100.tex
|
||||||
cat pt100.tex | sed 's/pt100\///' > pt100_paper.tex
|
cat pt100.tex | sed 's/pt100\///' > pt100_paper.tex
|
||||||
|
|
||||||
|
|
||||||
|
bib:
|
||||||
|
bibtex paper
|
||||||
|
@ -1,27 +1,3 @@
|
|||||||
%
|
|
||||||
%
|
|
||||||
% $Id: mybib.bib,v 1.5 2008/12/18 17:05:23 robin Exp $
|
|
||||||
%
|
|
||||||
%
|
|
||||||
|
|
||||||
@TechReport{db,
|
|
||||||
author = {R Clark, D Legge},
|
|
||||||
title = {ETC6000 Daughterboard Design notes},
|
|
||||||
institution = {ETC HR221850},
|
|
||||||
year = {2004},
|
|
||||||
key = {},
|
|
||||||
OPTtype = {},
|
|
||||||
OPTnumber = {},
|
|
||||||
OPTaddress = {},
|
|
||||||
OPTmonth = {},
|
|
||||||
OPTnote = {},
|
|
||||||
OPTannote = {},
|
|
||||||
OPTurl = {},
|
|
||||||
OPTdoi = {},
|
|
||||||
issn = {HR221850},
|
|
||||||
OPTlocalfile = {},
|
|
||||||
OPTabstract = {},
|
|
||||||
}
|
|
||||||
|
|
||||||
@TechReport{mil1991,
|
@TechReport{mil1991,
|
||||||
author = {U.S. Department of Defence},
|
author = {U.S. Department of Defence},
|
||||||
@ -104,24 +80,6 @@ OPTissn = {},
|
|||||||
OPTabstracts = {},
|
OPTabstracts = {},
|
||||||
}
|
}
|
||||||
|
|
||||||
@TechReport{pcbAI222562,
|
|
||||||
author = {C Talmay},
|
|
||||||
title = {Circuit Schematic TDS Daughterboard AI222562},
|
|
||||||
institution = {ETC},
|
|
||||||
year = {2010},
|
|
||||||
OPTkey = {},
|
|
||||||
OPTtype = {},
|
|
||||||
OPTnumber = {AI222562},
|
|
||||||
OPTaddress = {},
|
|
||||||
OPTmonth = {},
|
|
||||||
OPTnote = {},
|
|
||||||
OPTannote = {},
|
|
||||||
OPTurl = {},
|
|
||||||
OPTdoi = {},
|
|
||||||
OPTissn = {},
|
|
||||||
OPTlocalfile = {},
|
|
||||||
OPTabstract = {},
|
|
||||||
}
|
|
||||||
|
|
||||||
@TechReport{spiraxsarco,
|
@TechReport{spiraxsarco,
|
||||||
author = {Spirax Sarco},
|
author = {Spirax Sarco},
|
||||||
@ -147,7 +105,6 @@ OPTissn = {},
|
|||||||
publisher = {Cambridge},
|
publisher = {Cambridge},
|
||||||
year = {1989},
|
year = {1989},
|
||||||
author = {Paul Horowitz, Winfield Hill},
|
author = {Paul Horowitz, Winfield Hill},
|
||||||
%author = {},
|
|
||||||
OPTkey = {},
|
OPTkey = {},
|
||||||
OPTvolume = {},
|
OPTvolume = {},
|
||||||
OPTnumber = {},
|
OPTnumber = {},
|
||||||
@ -218,31 +175,6 @@ http://www.xfree86.org/
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@misc{ touchscreenprod,
|
|
||||||
author = "M. Thirsk",
|
|
||||||
title = "Touchscreen Production Procedure : HR~222165",
|
|
||||||
howpublished = "Internal ETC Document",
|
|
||||||
year = "2008" };
|
|
||||||
|
|
||||||
|
|
||||||
@misc{ touchscreensoftware,
|
|
||||||
author = "ETC Software Dept.",
|
|
||||||
title = "Touchscreen Software released to Production : HR~222162",
|
|
||||||
howpublished = "Internal ETC Software (medium: 2 MMC cards)",
|
|
||||||
year = "2008" };
|
|
||||||
|
|
||||||
@misc{ touchscreengui,
|
|
||||||
author = "D.J. Legge, R.P.Clark",
|
|
||||||
title = "Touchscreen GUI Design Document : HR~222163",
|
|
||||||
howpublished = "Internal ETC Document",
|
|
||||||
year = "2008" };
|
|
||||||
|
|
||||||
|
|
||||||
@misc{ gumstix,
|
|
||||||
author = "Gumstix Inc",
|
|
||||||
title = "Gumstix Home Page",
|
|
||||||
howpublished = "WEB http://www.gumstix.com/",
|
|
||||||
year = "2008" };
|
|
||||||
|
|
||||||
|
|
||||||
@misc{ fltk,
|
@misc{ fltk,
|
||||||
|
@ -28,7 +28,7 @@
|
|||||||
\input{pt100_paper}
|
\input{pt100_paper}
|
||||||
|
|
||||||
\bibliographystyle{plain}
|
\bibliographystyle{plain}
|
||||||
\bibliography{vmgbibliography,mybib}
|
\bibliography{../vmgbibliography,../mybib}
|
||||||
|
|
||||||
\today
|
\today
|
||||||
\end{document}
|
\end{document}
|
||||||
|
@ -408,7 +408,7 @@ Now that we have a model for the failure mode behaviour of the pt100 circuit
|
|||||||
we can look at the statistics associated with each of the failure modes.
|
we can look at the statistics associated with each of the failure modes.
|
||||||
|
|
||||||
The DOD electronic reliability of components
|
The DOD electronic reliability of components
|
||||||
document MIL-HDBK-217F\cite{mil1992} gives formulae for calculating
|
document MIL-HDBK-217F\cite{mil1991} gives formulae for calculating
|
||||||
the
|
the
|
||||||
%$\frac{failures}{{10}^6}$
|
%$\frac{failures}{{10}^6}$
|
||||||
${failures}/{{10}^6}$ % looks better
|
${failures}/{{10}^6}$ % looks better
|
||||||
@ -417,13 +417,13 @@ in hours for a wide range of generic components
|
|||||||
can give conservative reliability figures when applied to
|
can give conservative reliability figures when applied to
|
||||||
modern components}.
|
modern components}.
|
||||||
|
|
||||||
Using the MIL-HDBK-217F\cite{mil1992} specifications for resistor and thermistor
|
Using the MIL-HDBK-217F\cite{mil1991} specifications for resistor and thermistor
|
||||||
failure statistics we calculate the reliability of this circuit.
|
failure statistics we calculate the reliability of this circuit.
|
||||||
|
|
||||||
|
|
||||||
\subsubsection{Resistor FIT Calculations}
|
\subsubsection{Resistor FIT Calculations}
|
||||||
|
|
||||||
The formula for given in MIL-HDBK-217F\cite{mil1992}[9.2] for a generic fixed film non-power resistor
|
The formula for given in MIL-HDBK-217F\cite{mil1991}[9.2] for a generic fixed film non-power resistor
|
||||||
is reproduced in equation \ref{resistorfit}. The meanings
|
is reproduced in equation \ref{resistorfit}. The meanings
|
||||||
and values assigned to its co-efficients are described in table \ref{tab:resistor}.
|
and values assigned to its co-efficients are described in table \ref{tab:resistor}.
|
||||||
|
|
||||||
@ -472,7 +472,7 @@ This figure is referred to as a FIT\footnote{FIT values are measured as the numb
|
|||||||
failures per Billion (${10}^9$) hours of operation, (roughly 114,000 years). The smaller the
|
failures per Billion (${10}^9$) hours of operation, (roughly 114,000 years). The smaller the
|
||||||
FIT number the more reliable the fault~mode} Failure in time.
|
FIT number the more reliable the fault~mode} Failure in time.
|
||||||
|
|
||||||
The formula given for a thermistor in MIL-HDBK-217F\cite{mil1992}[9.8] is reproduced in
|
The formula given for a thermistor in MIL-HDBK-217F\cite{mil1991}[9.8] is reproduced in
|
||||||
equation \ref{thermistorfit}. The variable meanings and values are described in table \ref{tab:thermistor}.
|
equation \ref{thermistorfit}. The variable meanings and values are described in table \ref{tab:thermistor}.
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
@ -10,8 +10,7 @@
|
|||||||
\newboolean{paper}
|
\newboolean{paper}
|
||||||
\setboolean{paper}{false} % boolvar=true or false
|
\setboolean{paper}{false} % boolvar=true or false
|
||||||
\input{style}
|
\input{style}
|
||||||
|
\usepackage{hyperref}
|
||||||
%\usepackage{hyperref}
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
\pagestyle{fancy}
|
\pagestyle{fancy}
|
||||||
|
|
||||||
@ -137,6 +136,9 @@ Software documentation for fmmd tool.
|
|||||||
\chapter{Algorithms and Mathematical Relationships Discovered}
|
\chapter{Algorithms and Mathematical Relationships Discovered}
|
||||||
\input{fzd/fzd}
|
\input{fzd/fzd}
|
||||||
|
|
||||||
|
\chapter{Milli Volt Amp with Safety Resistor}
|
||||||
|
\input{millivoltamp/millivoltamp}
|
||||||
|
|
||||||
\chapter{A detailed look at the safety systems required by industrial burner controller}
|
\chapter{A detailed look at the safety systems required by industrial burner controller}
|
||||||
\input{burner/burner}
|
\input{burner/burner}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user