/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2023 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "bme680.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define AMBIENT_TEMP_GUESS 19.0 #define HEATER_TARGET 300.0 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ SPI_HandleTypeDef hspi2; TIM_HandleTypeDef htim6; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ double gBase = 8000; // 02NOV2023 //358714.656; // 27OCT2023 avg taken from clean room double hBase = 40.0; double tAmbient = 25.0*100.0; // was the integer value times 100 oC ? double humidityScore; double hWeight = 0.5; double iaqPercent; double iaqScore; double eCO2Value; double calc_air_q (double hRead, double tRead, double gRes) { double humidityScore = 0; double gasScore = 0; double humidityOffset = hRead - hBase; // Calculate the humidity offset from the baseline setting double ambTemp = (tAmbient / 100); double temperatureOffset = tRead - ambTemp; // Calculate the temperature offset from the ambient temperature double humidityRatio = ((humidityOffset / hBase) + 1); double temperatureRatio = (temperatureOffset / ambTemp); // IAQ Calculations if (humidityOffset > 0) { // Different paths for calculating the humidity score depending on whether the offset is greater than 0 humidityScore = (100 - hRead) / (100 - hBase); } else { humidityScore = hRead / hBase; } humidityScore = humidityScore * hWeight * 100; double gasRatio = (gRes / gBase); if ( gasRatio > 1.0 ) { asm("nop"); // problem the gas resistance should not be this high. This mean the // gBase is too low! gBase = gRes; gasRatio = (gRes / gBase); // heuristic for now learning how this works } if ((gBase - gRes) > 0) { // Different paths for calculating the gas score depending on whether the offset is greater than 0 gasScore = gasRatio * (100 * (1 - hWeight)); } else { // Make sure that when the gas offset and humidityOffset are 0, iaqPercent is 95% - leaves room for cleaner air to be identified gasScore = (double)((int)((70 + (5 * (gasRatio - 1))+0.5))); if (gasScore > 75) { gasScore = 75; } } iaqPercent = (humidityScore + gasScore); // Air quality percentage is the sum of the humidity (25% weighting) and gas (75% weighting) scores iaqScore = (100 - iaqPercent) * 5 ; // Final air quality score is in range 0 - 500 (see BME688 datasheet page 11 for details) // eCO2 Calculations //eCO2Value = 250 * pow(2.718 /*Math.E*/, (0.012 * iaqScore)); // Exponential curve equation to calculate the eCO2 from an iaqScore input // Adjust eCO2Value for humidity and/or temperature greater than the baseline values // if (humidityOffset > 0) { // if (temperatureOffset > 0) { // eCO2Value = eCO2Value * (humidityRatio + temperatureRatio); // } // else { // eCO2Value = eCO2Value * humidityRatio; // } //} // else if (temperatureOffset > 0) { // eCO2Value = eCO2Value * (temperatureRatio + 1); //} // // If measurements are taking place rapidly, breath detection is possible due to the sudden increase in humidity (~7-10%) // If this increase happens within a 5s time window, 1200ppm is added to the eCO2 value // (These values were based on 'breath-testing' with another eCO2 sensor with algorithms built-in) //if ((measTime - measTimePrev) <= 5000) { // if ((hRead - hPrev) >= 3) { // eCO2Value = eCO2Value + 1500; // } //} // eCO2Value = Math.trunc(eCO2Value); if (iaqScore < 0) asm ("nop"); return iaqScore; } /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART2_UART_Init(void); static void MX_SPI2_Init(void); static void MX_TIM6_Init(void); /* USER CODE BEGIN PFP */ // Assumes TIMER6 is set to count every 1uS and that it wraps around (or counts up to 65535) // and that it counts UP. void delay_micro_seconds(uint32_t period) { int16_t a,then,now = *&htim6.Instance->CNT; asm(" nop"); do { then = *&htim6.Instance->CNT; } while ( (a=(then - now)) < period ); // hows about all that then. asm(" nop"); } int BME680init() { return 0; } int BME680deinit() { return 0; } int BME680_read_spi(uint8_t reg, uint8_t *dst, uint32_t size){ uint8_t Tx[2]; Tx[0] = reg | 0x80; Tx[1] = 0; HAL_GPIO_WritePin(GPIOC, GPIO_PIN_3, GPIO_PIN_RESET); // NSS low //HAL_SPI_TransmitReceive(&hspi2, Tx, dst, size, 1000); // timeout 1000msec; HAL_SPI_Transmit(&hspi2, ®, 1, 1000); HAL_SPI_Receive(&hspi2, dst, size, 1000); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_3, GPIO_PIN_SET); // NSS high return 0; } int BME680_write_spi(uint8_t reg, uint8_t value) { int8_t Tx[2],Rx[2]; int32_t hal_status; Tx[0] = reg & 0x7F; Tx[1] = value; HAL_GPIO_WritePin(GPIOC, GPIO_PIN_3, GPIO_PIN_RESET); // NSS low hal_status = HAL_SPI_Transmit(&hspi2, Tx, 2, 1000); while(&hspi2.State == HAL_SPI_STATE_BUSY); // wait for xmission complete HAL_GPIO_WritePin(GPIOC, GPIO_PIN_3, GPIO_PIN_SET); // NSS high return 0; } /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ bme680_t bme680; uint8_t mode; int i; int error = 0; /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART2_UART_Init(); MX_SPI2_Init(); MX_TIM6_Init(); /* USER CODE BEGIN 2 */ // start TIM6 used for sleeping HAL_TIM_Base_Start(&htim6); bme680.dev.init = BME680init; bme680.dev.read = BME680_read_spi; bme680.dev.write = BME680_write_spi; bme680.dev.deinit = BME680deinit; bme680.dev.sleep = delay_micro_seconds; /* 2. set the device mode */ mode = BME680_MODE_FLOAT | BME680_SPI | BME680_ENABLE_GAS; /* BME680_MODE_INT | BME680_I2C; */ /* 3. initialise dev func's, and check device id */ if (bme680_init(&bme680, mode) != 0) { asm("nop"); error = 1; } /* 4. reset device */ bme680_reset(&bme680); /* 5. read calibration parameters from the device and store in memory */ if (bme680_calibrate(&bme680) != 0) { bme680_deinit(&bme680); asm("nop"); error = 2; } /* debug */ bme680_print_calibration(&bme680); /* 6. set up device config */ bme680.cfg.osrs_t = BME680_OVERSAMPLE_X16; bme680.cfg.osrs_p = BME680_OVERSAMPLE_X16; bme680.cfg.osrs_h = BME680_OVERSAMPLE_X8; bme680.cfg.filter = BME680_IIR_COEFF_127; /* configuring gas sensor. */ /* NB: mode |= BME680_ENABLE_GAS; */ /* there are 10 possible heater setpoints */ /* they can be thought of as frames that define one single gas-resistance measurement */ /* they do not carry over or affect each other in any way. */ for(i=0; i<10; i++) { /* calculate a resistance target, based on desired temp, and ambient temp */ bme680.cfg.res_heat[i] = bme680_calc_target(&bme680, HEATER_TARGET, AMBIENT_TEMP_GUESS); /* initial heating current for the setpoint. Could be useful in cold places or short gas_wait durations */ /* 7-bit word. Each step/lsb is equiv. to 1/8 mA; so max 16 mA */ /* a value of 20 would be equal to 2.5 mA */ /* this s.p. field is allowed to be left as 0 if no preload is required. */ bme680.cfg.idac_heat[i] = BME680_IDAC(100); /* define the time between the start of heating and start of resistance sensing in this s.p.*/ /* Bosch datasheet suggests ~30 - 40ms is usually all that is required to get up to temp. */ /* ^ probably with a good idac_heat current but doesn't mention it. */ /* 25 * X4 = 100 ms wait before sampling resistance starts. */ /* the first value is 6-bit (0...63) with 1 ms step size. */ bme680.cfg.gas_wait[i] = BME680_GAS_WAIT(25, BME680_GAS_WAIT_X4); } /* The BME680 does not cycle between setpoints. They have to be manually set. */ /* After each "run", the setpoint has to be changed. */ /* the func bme680_write_setpoint_index() will write this field to the dev, without having to reconfigure */ bme680.setpoint = 0; /* 0 thru 9 */ /* 7. write config to device */ if (bme680_configure(&bme680) != 0) { bme680_deinit(&bme680); error = 3; } int counter = 0; /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* 8. Start forced measurement*. After it finishes, it should remember the previous config. */ /* * = bosch speak for one single T, P, H, GasRes measuring cycle. */ if (bme680_start(&bme680) != 0) { error = 4; bme680_deinit(&bme680); } /* 9. poll the meas_status register until all scheduled conversions are done */ /* this step can be skipped with SPI interrupt (3 wire SPI only. See 5.3.1.1 in datasheet; pg 29) */ if (bme680_poll(&bme680) != 0) { error = 5; bme680_deinit(&bme680); } /* 10. read the ADC's and perform a conversion */ if (bme680_read(&bme680) != 0) { error = 6; bme680_deinit(&bme680); } double airq = calc_air_q(bme680.fcomp.hum, bme680.fcomp.temp, bme680.fcomp.gas_res); if (counter++ > 100) { counter = 0; asm("nop"); } /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 2; RCC_OscInitStruct.PLL.PLLR = 2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief SPI2 Initialization Function * @param None * @retval None */ static void MX_SPI2_Init(void) { /* USER CODE BEGIN SPI2_Init 0 */ /* USER CODE END SPI2_Init 0 */ /* USER CODE BEGIN SPI2_Init 1 */ /* USER CODE END SPI2_Init 1 */ /* SPI2 parameter configuration*/ hspi2.Instance = SPI2; hspi2.Init.Mode = SPI_MODE_MASTER; hspi2.Init.Direction = SPI_DIRECTION_2LINES; hspi2.Init.DataSize = SPI_DATASIZE_8BIT; hspi2.Init.CLKPolarity = SPI_POLARITY_LOW; hspi2.Init.CLKPhase = SPI_PHASE_1EDGE; hspi2.Init.NSS = SPI_NSS_SOFT; hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi2.Init.TIMode = SPI_TIMODE_DISABLE; hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi2.Init.CRCPolynomial = 10; if (HAL_SPI_Init(&hspi2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI2_Init 2 */ /* USER CODE END SPI2_Init 2 */ } /** * @brief TIM6 Initialization Function * @param None * @retval None */ static void MX_TIM6_Init(void) { /* USER CODE BEGIN TIM6_Init 0 */ /* USER CODE END TIM6_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM6_Init 1 */ /* USER CODE END TIM6_Init 1 */ htim6.Instance = TIM6; htim6.Init.Prescaler = 84-1; htim6.Init.CounterMode = TIM_COUNTERMODE_UP; htim6.Init.Period = 65535; htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim6) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM6_Init 2 */ /* USER CODE END TIM6_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_3, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : B1_Pin */ GPIO_InitStruct.Pin = B1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : PC3 */ GPIO_InitStruct.Pin = GPIO_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pin : LD2_Pin */ GPIO_InitStruct.Pin = LD2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */