Z plane analysis in C

use

make fa
This commit is contained in:
Robin. P. Clark 2019-09-16 13:01:05 +01:00
parent 1e18e1f850
commit 211544b0b8
3 changed files with 186 additions and 0 deletions

View File

@ -5,3 +5,10 @@ two_pole:
./tp > tp.dat
vi tp.dat
gnuplot < tp.gpt
fa: freq_analysis.c
gcc freq_analysis.c -o fa -lm
./fa > fa.dat
vi fa.dat
gnuplot < fa.gpt

8
fa.gpt Normal file
View File

@ -0,0 +1,8 @@
plot "fa.dat" using 1:8
!sleep 10
!sleep 10
!sleep 10

171
freq_analysis.c Normal file
View File

@ -0,0 +1,171 @@
#include <stdio.h>
#include <math.h>
double xz[10]; // = {0.0}; // Z transform numerator or zeros Z^0 + Z^1 + Z^2 etc.
double yp[10]; // = {0.0}; // Z transform denominator or poles Z^0 + Z^1 + Z^2 etc.
typedef struct complex_number {
double real;
double imaginary;
} COMPLEX;
#define NYQUIST 1000
#define PI 3.14159265358979323844
double arg ( COMPLEX x) {
return atan2(x.imaginary, x.real);
}
double mag ( COMPLEX x ) {
return sqrt ( x.real * x.real + x.imaginary * x.imaginary );
}
// add x1 and x2 result in x1
void complex_add ( COMPLEX * x1, COMPLEX x2 ) {
x1->real = x1->real + x2.real;
x1->imaginary = x1->imaginary + x2.imaginary;
}
void complex_print ( COMPLEX x ) {
printf("x.r = %f x.i = %f ",x.real,x.imaginary);
}
void complex_scalar_mul ( double m, COMPLEX * x) {
x->real = m * x->real;
x->imaginary = m * x->imaginary;
}
void complex_pow ( double p, COMPLEX * x ) {
double r = arg(*x) + PI * 2.0;
double m = mag(*x);
r *= p;
while (r>360.0) r -= 360.0; // r %= ( PI * 2.0);
m = pow(m,p);
x->real = cos(r) * m;
x->imaginary = sin(r) * m;
}
COMPLEX complex_mul ( COMPLEX a, COMPLEX b ) {
COMPLEX ans;
ans.real = a.real * b.real - a.imaginary * b.imaginary;
ans.imaginary = a.real * b.imaginary + b.real * a.imaginary;
return ans;
}
COMPLEX complex_div ( COMPLEX n, COMPLEX d ) {
COMPLEX ans;
// find overall divisor
//
double oad;
oad = d.real * d.real + d.imaginary * d.imaginary;
oad = 1.0/oad;
//printf("\noad == %f numerator ",oad);
//complex_print (n);
//printf("denominator ",oad);
//complex_print (d);
d.imaginary = - d.imaginary; // conjugate
ans = complex_mul ( n, d );
complex_scalar_mul ( oad, &ans);
//printf("ans ");
//complex_print (ans);
//printf("\n");
return ans;
}
main () {
COMPLEX x,x_num,x_den, x_ans_den, x_ans_num, ccc;
int i,j,k; // counters
double r; // angle in radians
for (k=0;k<10;k++) { // zero all the Z parameters
xz[k] = 0.0;
yp[k] = 0.0;
}
// simple lag filter
// xz[0] = 0.125;
// yp[0] = 1.0;
// yp[1] = -0.875;
//
//
//simple 7/8th lag filter squared
xz[0] = (0.125*0.125);
yp[0] = 1.0;
yp[1] = -(2.0*0.875);
yp[2] = (0.875*0.875);
for (i=0;i<NYQUIST;i++) {
r = (double)i/NYQUIST * PI;
x.real = cos(r);
x.imaginary = sin(r);
x_ans_num.real = x_ans_num.imaginary = 0.0;
x_ans_den.real = x_ans_den.imaginary = 0.0;
// now take all the z transforms to their powers and multiple by coeffecients
// to get the denominator and numerator for the frequency under inspection
for (j=0;j<10;j++) {
x_num = x;
complex_pow((double)-j,&x_num);
complex_scalar_mul(xz[j],&x_num);
complex_add ( &x_ans_num, x_num);
x_den = x;
complex_pow((double)-j,&x_den);
complex_scalar_mul(yp[j],&x_den);
complex_add ( &x_ans_den, x_den);
}
// OK now perform the division to obtain the frequency response
//
ccc = complex_div ( x_ans_num, x_ans_den) ;
//ccc = x;
//complex_pow(2.0,&ccc);
printf(" %d arg = %f mag %f maglog10 %f\n", i, arg(ccc), mag(ccc), log(mag(ccc))*10.0 );
}
//----------------------------------------------------------------------------------------------------------
// Test pow and scalar multiply
/*
x.imaginary = 0.0;
x.real = 2.0;
complex_pow(3.0,&x);
printf(" x.r %f x.i %f\n", x.real, x.imaginary);
complex_scalar_mul(2.1,&x);
printf(" x.r %f x.i %f\n", x.real, x.imaginary);
printf(" after scalar * 2.1 x.r %f x.i %f\n", x.real, x.imaginary);
x.imaginary = 1.0;
x.real = 0.0;
complex_pow(3.0,&x);
printf(" x.r %f x.i %f\n", x.real, x.imaginary);
complex_scalar_mul(-2.1,&x);
printf(" after scalar * -2.1 x.r %f x.i %f\n", x.real, x.imaginary);
*/
//----------------------------------------------------------------------------------------------------------
//
x_ans_num.real = 1.0; x_ans_num.imaginary = 10.0;
x_ans_den.real = 2.0; x_ans_den.imaginary = 80.0;
x = complex_div ( x_ans_num, x_ans_den );
printf(" after divide x.r %f x.i %f\n", x.real, x.imaginary);
}