190 lines
5.4 KiB
TeX
190 lines
5.4 KiB
TeX
|
|
\documentclass[a4paper,10pt]{article}
|
|
\usepackage[utf8x]{inputenc}
|
|
\usepackage{graphicx}
|
|
\usepackage{fancyhdr}
|
|
\usepackage{lastpage}
|
|
\usepackage{color}
|
|
\definecolor{Blue}{rgb}{0.0,0.0,0.7}
|
|
\definecolor{Red}{rgb}{0.7,0.0,0.0}
|
|
\definecolor{Green}{rgb}{0.0,0.5,0.0}
|
|
\usepackage{hyperref}
|
|
\usepackage{ifthen}
|
|
\usepackage{algorithm}
|
|
\usepackage{algorithmic}
|
|
\usepackage{multirow}
|
|
\usepackage{textcomp}
|
|
|
|
%opening
|
|
\title{Capacitive Mains Inputs; choosing capacitor and resistor combinations for 120 V a.c. 240 V a.c and 50 and 60Hz}
|
|
\author{R.P. clark}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\begin{abstract}
|
|
Calculations to work out capacitance values to drive an opto-coupler to detect mains voltage
|
|
for 50 to 60 Hz.
|
|
\end{abstract}
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics[width=200pt]{./images_sw_doc/opto.jpg}
|
|
% opto.jpg: 854x388 pixel, 72dpi, 30.13x13.69 cm, bb=0 0 854 388
|
|
\caption{Opto-coupled mains input circuit}
|
|
\label{fig:opto}
|
|
\end{figure}
|
|
|
|
\section{Opto coupler circuit}
|
|
|
|
This circuit is used to detect mains voltage via a capacitor and a resistor
|
|
forming a potential divider so that a lower voltage can be used to drive an opto-isolator
|
|
that protects the processor reading the signal.
|
|
|
|
|
|
|
|
\section{Calculations}
|
|
|
|
A potential divider using a capacitor and a resistor is used to lower mains voltage
|
|
to levels that can drive a typical opto-coupler input ($\approx 2V$).
|
|
|
|
A potential divider using a capacitor and resistor means
|
|
using the complex identity for the capacitors reactance, $X$.
|
|
|
|
$$ X = \frac{-j}{\omega C } $$
|
|
|
|
The ${\omega C }$ term is dependent on frequency and is equivalent to $2.\pi.f$ .
|
|
|
|
Using a potential divider to determine the voltage over the resistor gives:
|
|
|
|
$$ V_{out} = V_{in} \times \frac{R}{R-\frac{j}{2.\pi.f.C}} $$
|
|
|
|
|
|
The equation above leaves a complex divisor.
|
|
To get a complex number as the numerator, the denominator and numerator must be multiplied by
|
|
the conjugate of the denominator, thus:
|
|
$$\frac{R}{R-\frac{j}{2.\pi.f.C}} \equiv \frac{R \times \Big({R+\frac{j}{2.\pi.f.C}}\Big) }{\Big({R-\frac{j}{2.\pi.f.C}}\Big) \times \Big({R+\frac{j}{2.\pi.f.C}}\Big) } $$
|
|
|
|
This leaves a real number as the denominator, i.e. $ R^2 + {\frac{1}{2.\pi.f.C}}^2$.
|
|
The resulting complex number, $X$,
|
|
$$X = \frac{R \times \Big({R+\frac{j}{2.\pi.f.C}}\Big) }{R^2 + {\frac{1}{2.\pi.f.C}}^2}$$
|
|
or,
|
|
\begin{equation}
|
|
X =\frac{R^2 + \Big({R\frac{j}{2.\pi.f.C}}\Big) }{R^2 + {\frac{1}{2.\pi.f.C}}^2}
|
|
\label{eqn:genpotdivcapres}
|
|
\end{equation}
|
|
|
|
can now be evaluated for phase and magnitude. Equation~\ref{eqn:genpotdivcapres} can be generally applied to potential dividers
|
|
in figure~\ref{fig:opto}.
|
|
|
|
|
|
\subsection{Example calculation}
|
|
|
|
|
|
At 50Hz with 240 V a.c. applied, with R at 1000 Ohms and C at 47 nF
|
|
|
|
$$\frac{1000^2 + \Big({1000\frac{j}{2.\pi.50.47e-9}}\Big) }{R^2 + {\frac{1}{2.\pi.50.47e-9}}^2}$$
|
|
$$\frac{1000^2 + \Big({1000 \times 67726j}\Big) }{1000^2 + {67726}^2}$$
|
|
$$\frac{1000^2 + \Big({67726000j}\Big) }{4.5877 \times 10^9}$$
|
|
|
|
This gives a complex number $$ \frac{1000^2 + {67726000j} }{4.5877 \times 10^9}$$ i.e. $$(216 \times 10^{-6} + 14.76\times 10^{-3} j ) \;.$$
|
|
This complex number has a magnitude of 0.0147 and an argument of 89.15 degrees (which is expected as most of the reactance comes from the capacitor).
|
|
So with 240 V a.c. applied (RMS) the opto would see a signal with $0.0147*240 = 3.54V (RMS)$
|
|
\clearpage
|
|
\section{ploting the voltage at the opto-coupler}
|
|
|
|
\begin{figure}[h]
|
|
\centering
|
|
\includegraphics[width=400pt]{./RMS_volts_to_opto.png}
|
|
% RMS_volts_to_opto.png: 640x480 pixel, 72dpi, 22.58x16.93 cm, bb=0 0 640 480
|
|
\caption{RMS voltage seen at opto-coupler for 50 to 60 Hz range}
|
|
\label{fig:rmstoopto}
|
|
\end{figure}
|
|
|
|
|
|
\clearpage
|
|
|
|
\subsection{plotting the voltage at the opto-coupler: gnuplot scripts}
|
|
|
|
{ \tiny
|
|
\begin{verbatim}
|
|
########################################################
|
|
#
|
|
p=3.14159265358979323844
|
|
#
|
|
# 47nF
|
|
C=47e-9
|
|
#
|
|
# 1k Ohms
|
|
R=1000
|
|
|
|
# define complex operator
|
|
j={0,1}
|
|
|
|
set xlabel "Hertz"
|
|
set ylabel "Resistance"
|
|
|
|
# x is the frequency
|
|
set xrange[50:60]
|
|
|
|
# z(x) is the reactance
|
|
z(x)=(j/(2*p*x*C))
|
|
|
|
# denominator
|
|
d(x)=(R*R+z(x)*z(x))
|
|
|
|
# numerator
|
|
n(x)=(R*R+R*z(x))
|
|
|
|
plot abs(z(x)) title "reactance over capacitor"
|
|
!sleep 4
|
|
|
|
set ylabel "denominator value (abs)"
|
|
plot abs(d(x))
|
|
!sleep 4
|
|
|
|
set ylabel "numerator value (abs)"
|
|
plot abs(n(x))
|
|
!sleep 4
|
|
|
|
v(x)=abs((n(x))/(d(x)))
|
|
|
|
# gives large numbers h(x)=arg((n(x))/(d(x)))
|
|
|
|
set ylabel "voltage to opto-coupler (RMS)"
|
|
plot 240*v(x) title "240 V a.c", 120*v(x) title "120 V a.c"
|
|
!sleep 4
|
|
|
|
set terminal png
|
|
set output "RMS_volts_to_opto.png"
|
|
plot 240*v(x) title "240 V a.c", 120*v(x) title "120 V a.c"
|
|
|
|
#set angles degrees
|
|
#set label "phase change in mains over opto"
|
|
#plot 240*h(x) title "240 V a.c", 120*h(x) title "120 V a.c"
|
|
#!sleep 4
|
|
#
|
|
\end{verbatim}
|
|
|
|
|
|
}
|
|
%
|
|
%
|
|
% Putting some numbers in this, 47nF for the capacitor, 1k for R and 50 Hz at 240V, means ${2.\pi.f.C} = 14.765 \times 10^{-6}$.
|
|
%
|
|
% $$ V_{out} = 240 \times \frac{1000}{ 1000 - \frac{j}{14.765 \times 10^{-6}} } $$
|
|
% or
|
|
% % $$ V_{out} = 240 \times \frac{1000}{1000 - j \times 67.726 \times 10^3 }$$
|
|
% % %
|
|
% % To get a complex number as the numerator, the denominator and numerator must be multiplied by
|
|
% % its conjugate, thus:
|
|
% % %
|
|
% % $$\frac{1000}{1000 - {j} \times 67.726 \times 10^3 } $$
|
|
% % % $$
|
|
% % %
|
|
% % \equiv \frac{ 1000 \times (1000 + {j} \times 67.726 \times 10^3) }{ (1000 - {j} \times 67.726 \times 10^3) \times (1000 + {j} \times 67.726 \times 10^3)} $$
|
|
% % $$
|
|
%
|
|
typeset in {\Huge \LaTeX} \today.
|
|
\end{document}
|