Robin_PHD/submission_thesis/appendixes/formal.tex
Robin Clark 7bcf4601db Big move around... me no like....
Still to do.
Tidy the Pt100 analysis
Make a table of CC for all chapter 5 examples
other stuiff
2013-01-31 15:42:18 +00:00

97 lines
3.4 KiB
TeX

% %%%% FORMAL DEFINITIONS %%%% THESE MIGHT BE MOVED TO AN APPENDIX
%
%
%
% \chapter{Formal Definitions}
% \label{sec:formalfmmd}
% \section{An algebraic notation for identifying FMMD enitities}
% Consider all `components' to exist as
% members of a set $\mathcal{C}$.
% %
% Each component $c$ has an associated set of failure modes.
% We can define a function $fm$ that returns a
% set of failure modes $F$, for the component $c$.
%
% Let the set of all possible components be $\mathcal{C}$
% and let the set of all possible failure modes be $\mathcal{F}$.
%
% We now define the function $fm$
% as
% \begin{equation}
% \label{eqn:fm}
% fm : \mathcal{C} \rightarrow \mathcal{P}\mathcal{F}.
% \end{equation}
% This is defined by, where $c$ is a component and $F$ is a set of failure modes,
% $ fm ( c ) = F. $
%
% We can use the variable name $\FG$ to represent a {\fg}. A {\fg} is a collection
% of components.
% %We thus define $FG$ as a set of chosen components defining
% %a {\fg}; all functional groups
% We can state that
% {\FG} is a member of the power set of all components, $ \FG \in \mathcal{P} \mathcal{C}. $
%
% We can overload the $fm$ function for a functional group {\FG}
% where it will return all the failure modes of the components in {\FG}
%
%
% given by
%
% $$ fm ({\FG}) = F. $$
%
% Generally, where $\mathcal{{\FG}}$ is the set of all functional groups,
%
% \begin{equation}
% fm : \mathcal{{\FG}} \rightarrow \mathcal{P}\mathcal{F}.
% \end{equation}
% \section{Relationships between functional~groups and failure modes}
%
% Let the set of all possible components be $\mathcal{C}$
% and let the set of all possible failure modes be $\mathcal{F}$, and $\mathcal{PF}$
% is the power-set of $\mathcal{F}$.
%
% In order to analyse failure mode effects we need to be able to determine the
% failure modes of a component. We define a function $fm$ to perform this (see equation~\ref{eqn:fmset}).
% \label{fmdef}
%
% \begin{equation}
% fm : \mathcal{C} \rightarrow \mathcal{P}\mathcal{F}
% \label{eqn:fmset}
% \end{equation}
%
% %%
% % Above def gives below anyway
% %
% %The is defined by equation \ref{eqn:fminstance}, where C is a component and F is a set of failure modes.
% %
% %\begin{equation}
% % fm ( C ) = F
% % \label{eqn:fminstance}
% %\end{equation}
%
% \paragraph{Finding all failure modes within the functional group.}
%
% For FMMD failure mode analysis %we need to consider the failure modes
% from all the components in a functional~group.
% In a functional group we have a collection of Components
% which have associated failure mode sets.
% we need to collect failure mode sets from the components and place them all
% %modes
% into a single set; this can be termed flattening the set of sets.
% %%Consider the components in a functional group to be $C_1...C_N$.
% The flat set of failure modes $FSF$ we are after can be found by applying function $fm$ to all the components
% in the functional~group and taking the union of them thus:
%
% %%$$ FSF = \bigcup_{j=1}^{N} fm(C_j) $$
% $$ FSF = \bigcup_{c \in FG} fm(c) \; .$$
%
% We can actually overload the notation for the function $fm$ % FM
% and define it for the set components within a functional group $\mathcal{FG}$ (i.e. where $\mathcal{FG} \subset \mathcal{C} $)
% in equation \ref{eqn:fmoverload}.
%
% \begin{equation}
% fm : \mathcal{FG} \rightarrow \mathcal{F}
% \label{eqn:fmoverload}
% \end{equation}