Still to do. Tidy the Pt100 analysis Make a table of CC for all chapter 5 examples other stuiff
97 lines
3.4 KiB
TeX
97 lines
3.4 KiB
TeX
% %%%% FORMAL DEFINITIONS %%%% THESE MIGHT BE MOVED TO AN APPENDIX
|
|
%
|
|
%
|
|
%
|
|
% \chapter{Formal Definitions}
|
|
% \label{sec:formalfmmd}
|
|
% \section{An algebraic notation for identifying FMMD enitities}
|
|
% Consider all `components' to exist as
|
|
% members of a set $\mathcal{C}$.
|
|
% %
|
|
% Each component $c$ has an associated set of failure modes.
|
|
% We can define a function $fm$ that returns a
|
|
% set of failure modes $F$, for the component $c$.
|
|
%
|
|
% Let the set of all possible components be $\mathcal{C}$
|
|
% and let the set of all possible failure modes be $\mathcal{F}$.
|
|
%
|
|
% We now define the function $fm$
|
|
% as
|
|
% \begin{equation}
|
|
% \label{eqn:fm}
|
|
% fm : \mathcal{C} \rightarrow \mathcal{P}\mathcal{F}.
|
|
% \end{equation}
|
|
% This is defined by, where $c$ is a component and $F$ is a set of failure modes,
|
|
% $ fm ( c ) = F. $
|
|
%
|
|
% We can use the variable name $\FG$ to represent a {\fg}. A {\fg} is a collection
|
|
% of components.
|
|
% %We thus define $FG$ as a set of chosen components defining
|
|
% %a {\fg}; all functional groups
|
|
% We can state that
|
|
% {\FG} is a member of the power set of all components, $ \FG \in \mathcal{P} \mathcal{C}. $
|
|
%
|
|
% We can overload the $fm$ function for a functional group {\FG}
|
|
% where it will return all the failure modes of the components in {\FG}
|
|
%
|
|
%
|
|
% given by
|
|
%
|
|
% $$ fm ({\FG}) = F. $$
|
|
%
|
|
% Generally, where $\mathcal{{\FG}}$ is the set of all functional groups,
|
|
%
|
|
% \begin{equation}
|
|
% fm : \mathcal{{\FG}} \rightarrow \mathcal{P}\mathcal{F}.
|
|
% \end{equation}
|
|
% \section{Relationships between functional~groups and failure modes}
|
|
%
|
|
% Let the set of all possible components be $\mathcal{C}$
|
|
% and let the set of all possible failure modes be $\mathcal{F}$, and $\mathcal{PF}$
|
|
% is the power-set of $\mathcal{F}$.
|
|
%
|
|
% In order to analyse failure mode effects we need to be able to determine the
|
|
% failure modes of a component. We define a function $fm$ to perform this (see equation~\ref{eqn:fmset}).
|
|
% \label{fmdef}
|
|
%
|
|
% \begin{equation}
|
|
% fm : \mathcal{C} \rightarrow \mathcal{P}\mathcal{F}
|
|
% \label{eqn:fmset}
|
|
% \end{equation}
|
|
%
|
|
% %%
|
|
% % Above def gives below anyway
|
|
% %
|
|
% %The is defined by equation \ref{eqn:fminstance}, where C is a component and F is a set of failure modes.
|
|
% %
|
|
% %\begin{equation}
|
|
% % fm ( C ) = F
|
|
% % \label{eqn:fminstance}
|
|
% %\end{equation}
|
|
%
|
|
% \paragraph{Finding all failure modes within the functional group.}
|
|
%
|
|
% For FMMD failure mode analysis %we need to consider the failure modes
|
|
% from all the components in a functional~group.
|
|
% In a functional group we have a collection of Components
|
|
% which have associated failure mode sets.
|
|
% we need to collect failure mode sets from the components and place them all
|
|
% %modes
|
|
% into a single set; this can be termed flattening the set of sets.
|
|
% %%Consider the components in a functional group to be $C_1...C_N$.
|
|
% The flat set of failure modes $FSF$ we are after can be found by applying function $fm$ to all the components
|
|
% in the functional~group and taking the union of them thus:
|
|
%
|
|
% %%$$ FSF = \bigcup_{j=1}^{N} fm(C_j) $$
|
|
% $$ FSF = \bigcup_{c \in FG} fm(c) \; .$$
|
|
%
|
|
% We can actually overload the notation for the function $fm$ % FM
|
|
% and define it for the set components within a functional group $\mathcal{FG}$ (i.e. where $\mathcal{FG} \subset \mathcal{C} $)
|
|
% in equation \ref{eqn:fmoverload}.
|
|
%
|
|
% \begin{equation}
|
|
% fm : \mathcal{FG} \rightarrow \mathcal{F}
|
|
% \label{eqn:fmoverload}
|
|
% \end{equation}
|
|
|