
400 Commonwealth Drive, Warrendale, PA 15096-0001 U.S.A. Tel: (724) 776-4841 Fax: (724) 776-5760 Web: www.sae.org

2005-01-0785

Effective Application of Software
Safety Techniques for Automotive

Embedded Control Systems

Barbara J. Czerny, Joseph G. D’Ambrosio, Brian T. Murray
and Padma Sundaram

Delphi Corporation

Reprinted From: Occupant Safety, Safety-Critical Systems,
and Crashworthiness

(SP-1923)

2005 SAE World Congress
Detroit, Michigan
April 11-14, 2005

SAE TECHNICAL
PAPER SERIES

The Engineering Meetings Board has approved this paper for publication. It has successfully completed
SAE’s peer review process under the supervision of the session organizer. This process requires a
minimum of three (3) reviews by industry experts.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of SAE.

For permission and licensing requests contact:

SAE Permissions
400 Commonwealth Drive
Warrendale, PA 15096-0001-USA
Email: permissions@sae.org
Tel: 724-772-4028
Fax: 724-772-4891

For multiple print copies contact:

SAE Customer Service
Tel: 877-606-7323 (inside USA and Canada)
Tel: 724-776-4970 (outside USA)
Fax: 724-776-1615
Email: CustomerService@sae.org

ISSN 0148-7191
Copyright © 2005 SAE International

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE.
The author is solely responsible for the content of the paper. A process is available by which discussions
will be printed with the paper if it is published in SAE Transactions.

Persons wishing to submit papers to be considered for presentation or publication by SAE should send the
manuscript or a 300 word abstract to Secretary, Engineering Meetings Board, SAE.

Printed in USA

ABSTRACT

Execution of a software safety program is an accepted
best practice to help verify that potential software
hazards are identified and their associated risks are
mitigated. Successful execution of a software safety
program involves selecting and applying effective
analysis methods and tasks that are appropriate for the
specific needs of the development project and that
satisfy software safety program requirements. This
paper describes the effective application of a set of
software safety methods and tasks that satisfy software
safety program requirements for many applications. A
key element of this approach is a tightly coupled fault
tree analysis and failure modes and effects analysis.
The approach has been successfully applied to several
automotive embedded control systems with positive
results.

INTRODUCTION

The last decade has seen rapid growth of automotive
safety-critical systems controlled by embedded
software. Embedded processors are used to achieve
enhancements in vehicle comfort, feel, fuel efficiency,
and safety. In these new embedded systems, software is
increasingly controlling essential vehicle functions such
as steering and braking independently of the driver.
Although many of these systems help provide significant
improvements in vehicle safety, unexpected interactions
among the software, the hardware, and the environment
may lead to potentially hazardous situations. As part of
an overall system safety program, system safety
analysis techniques can be applied to help verify that
potential system hazards are identified and mitigated.

During the execution of a system safety program,
developers of embedded control systems recognize the
need to protect against potential software failures.
Unlike mechanical or electrical/electronic hardware,
software does not wear out over time, and it can be
argued that software does not fail. However, software is
stored and executed by electronic hardware, and the
intended system functionality that is specified by the
software may not be provided by an embedded system

if potential electronic hardware failures occur or if the
software is incorrect.

In this paper, we define a software failure as any
deviation from the intended behavior of the software of
a system. There are three main categories of potential
causes of software failure modes: hardware failures,
software logic errors, and support software (e.g.
compiler) errors.

Typical sources of potential hardware failures, which can
be either internal or external to the controller the
software executes on, include:

 Memory failures in either the code space or variable
space,

 CPU failures (ALU, registers), and
 Peripheral failures (I/O ports, A/D, CAN, SPI,

watchdog, interrupt manager, timers).

For example, memory cell failures can cause conditions
where the software inadvertently jumps to the end of a
routine or into the middle of another routine. Interrupt
failure modes, such as return of incorrect priority or
failure to return (thereby blocking lower priority
interrupts), can also be caused by memory corruption.

Software logic errors may arise due to incomplete or
inconsistent requirements, errors in software design, or
errors in code implementation. Software logic errors can
lead to failure conditions such as infinite loops, incorrect
calculations, abrupt returns, taking a longer time to
complete routine execution, etc. In addition, software
stored in an embedded system may not be correct if the
tools necessary to configure, compile and download the
software do not function as expected.

Similar to the effective best-practice approach applied
to help prevent potential system hazards due to
hardware failures, embedded system developers can
apply system safety engineering methods to protect
against software failures. However, the unique potential
failure modes and the overall complexity of software
warrant that additional software-specific analysis
methods and tasks be included in the overall system
safety program. To address this need, the system safety

2005-01-0785

Effective Application of Software Safety Techniques for
Automotive Embedded Control Systems

Barbara J. Czerny, Joseph G. D’Ambrosio, Brian T. Murray and Padma Sundaram
Delphi Corporation

Copyright © 2005 SAE International

program should include a software safety component as
well. A software safety program involves the execution
of a number of software-related tasks intended to help
identify and mitigate potential software failures.

Although requirements for an automotive software
safety program can be derived from existing software
safety guidelines and published sources [1,2,3,4],
efficient methods and tasks for satisfying these
requirements, that are appropriate for the automotive
domain, are still needed. In this paper, we present a set
of methods and tasks that we have effectively applied to
several automotive embedded control systems to satisfy
automotive software safety program requirements. First,
we describe a generic software life cycle and its relation
to a software safety process proposed by Delphi [5].
Next, we provide details on specific analysis methods
and tasks that we applied for each of the major steps in
the life cycle. Finally, we present our conclusions.

SOFTWARE SAFETY LIFE CYCLE OVERVIEW

Table 1 shows the typical software development life
cycle phases and corresponding software safety tasks
performed during each phase. The tasks shown satisfy
the requirements of a proposed Delphi software safety
program procedure [5]. Note that the Conceptual Design
phase is actually part of the system development
process, but is included here for completeness. In
general, there may be more than one set of methods
that can be applied to satisfy the required tasks. The
specific set of methods selected depends on the target
product’s stage of development and on any unique
aspects of the product.

Table 1: Relation Between Software Development
Phases and Software Safety Tasks.

Software Development Phase Typical Software Safety Tasks

Conceptual Design Preliminary Hazard Analysis and
SW Safety Planning

SW Requirements Analysis SW Safety Requirements
Analysis

SW Architecture Design SW Safety Architecture Design
Analysis

SW Detailed Design and Coding SW Safety Detailed Analysis and
SW Safety Code Analysis

SW Verification and Validation SW Safety Testing, SW Safety
Test Analysis, SW Safety Case

Figure 1 shows the six primary software life-cycle
phases, where each phase has associated detailed
software safety inputs, outputs, and tasks. These inputs,
outputs, and tasks satisfy Delphi’s proposed software
safety program requirements for advanced automotive
safety-critical systems and are consistent with part 3 of
the IEC 61508 [2] standard that addresses software
safety. The methods and tasks shown represent a
tailored subset of those suggested by the Delphi
software safety program requirements and by IEC

61508. Given that individual projects have unique
aspects to them, the selected set of methods and tasks
described in this paper may not be appropriate for all
projects. In the following sections, we provide details of
the specific software safety methods that we applied
during the different software development phases of
several of our automotive embedded control systems.

Detailed Software Design

SW
Production
& Deploy

Production Ready Software Design

Production Software
Production Observed
Design Discrepancies

Conceptual
Design

SW
Architecture

Design

SW
Verification
& Validation

System Concept
•Preliminary Hazard Analysis
•Safety Program Plan

SW Detailed
Design

Software Design

Software Design
Corrections

Software Design
Corrections

Software
Requirements
Changes

Concept
Changes •Software Hazard Analysis

•Hazard Testing
•Safety Requirements Review

•Software System FMEA/FTA

•Software Detailed FMEA/FTA

•Software Safety Validation
•Software Safety Case

SW
Requirements

Analysis

Softw
are Safety Tasks

Software Requirement Specification

Detailed Software Design

SW
Production
& Deploy

Production Ready Software Design

Production Software
Production Observed
Design Discrepancies

Conceptual
Design

SW
Architecture

Design

SW
Verification
& Validation

System Concept
•Preliminary Hazard Analysis
•Safety Program Plan

SW Detailed
Design

Software Design

Software Design
Corrections

Software Design
Corrections

Software
Requirements
Changes

Concept
Changes •Software Hazard Analysis

•Hazard Testing
•Safety Requirements Review

•Software System FMEA/FTA

•Software Detailed FMEA/FTA

•Software Safety Validation
•Software Safety Case

SW
Requirements

Analysis

Softw
are Safety Tasks

Software Requirement Specification

Figure 1: Software Life Cycle with Associated
Software Safety Tasks.

CONCEPT DESIGN PHASE

During this phase of system and software development,
project leaders must determine if a system safety
program is required for the product concept. This
decision is typically made based on past product
knowledge or based on the results of a preliminary
hazard analysis (PHA). Regardless of how the decision
is made, a preliminary hazard analysis and system
safety program plan are typically completed if a system
safety program is required. If the preliminary hazard
analysis identifies any potential hazards that may arise
due to potential software failures, then a software safety
program plan is developed as well.

 PRELIMINARY HAZARD ANALYSIS

The goal of PHA is to identify potential high-level
system hazards and to determine the criticality of
potential mishaps that may arise. PHA is performed in
the early stages of system development so that safety
requirements for controlling the identified hazards can
be determined and incorporated into the design early on.
The PHA tends to quickly focus the design team’s
attention on the true potential safety issues of a product
concept. The basic steps for performing a PHA are:

1. Perform brainstorming or review existing potential
hazard lists to identify potential hazards associated
with the system,

2. Provide a description of the potential hazards and
potential mishap scenarios associated with them,

3. Identify potential causes of the potential hazards,
4. Determine the risk of the potential hazards and

mishap scenarios, and

5. Determine if system hazard-avoidance requirements
need to be added to the system specification to
eliminate or mitigate the potential risks.

If time is a factor for a potential hazard or potential
mishap occurrence, then the timing constraints that the
potential hazard places on the design may be
investigated as well.

Consider the hypothetical control system shown in
Figure 2. A sensor provides the needed input signal to
the system ECU. The system ECU then computes the
actuator command satisfying the system function.

ECU ActuatorSensor

Figure 2: Example Control System.

One potential hazard of such a system is an unintended
system function. Unintended system function can result
in undesirable system behavior that could potentially be
hazardous. Some of the causes of unintended system
function would include potential ECU failures or sensor
failures.

Table 2: Example Control System PHA.

Pot. Hazard
Pot.

Hazard
Risk

Pot.
Causes

Safety
Strategy

Revised
Pot.

Hazard
Risk

Unintended
System
function

High

Sensor
Fault;
ECU Fault;
Motor driver
fault;
Actuator
fault;

High integrity
sensor signals
High Integrity
ECU Operation;
High Integrity
Mechanical
Actuator

Low

Table 2 shows a portion of the PHA for this example.
For the system without a safety strategy implemented,
the potential risk is high, because an unintended event
may occur. However, once appropriate safety features
are incorporated as specified by the safety strategy, the
revised potential risk is low. In this example, high
integrity sensor, ECU, and actuator design strategies will
be implemented to help ensure potential failures are
detected and handled appropriately. For example, one
method to provide a high integrity-sensor signal value is
to use two sensors and compare the output of the
sensors for consistency. A sensor fault is detected if the
values from the sensors do not agree within some
tolerance, and when this occurs, the system transitions
to a fail-safe state (e.g., controlled shutdown of the
system).

To achieve high integrity ECU operation, the design
team must consider the potential for unintended system
function due to software failures. As previously
described, software failures may occur if hardware faults
exist.

SOFTWARE SAFETY PROGRAM PLAN

A software safety program plan is the plan for carrying
out the software safety program for a project. This plan
typically includes the software safety activities deemed
necessary for the project and the resources and timing
associated with the activities. In effect, this plan defines
the software safety life cycle for the project. The plan
typically evolves during the software safety life cycle to
reflect newly identified needs.

SOFTWARE REQUIREMENTS ANALYSIS
PHASE

In this phase of software development, the goals of the
software safety program include identifying software
safety requirements to eliminate, mitigate, or control
potential hazards related to potential software failures.
Software safety requirements may also stem from
government regulations, applicable
national/international standards, customer requirements,
or internal corporate requirements. A matrix identifying
software safety requirements may be initiated to track
the requirements throughout the development process.

Methods used to satisfy the software safety goals
include:

1. Software Hazard Analysis,
2. Hazard Testing, and
3. Software Safety Requirements Review.

Software hazard analysis identifies possible software
states that may lead to the potential hazards identified
during the PHA. Using the link established between
software states and potential hazards, software hazard-
avoidance requirements are developed and included in
the software safety requirements specification. To help
quantify these hazard-avoidance requirements, hazard
testing identifies specific fault response times that must
be provided by the software functionality to help ensure
that potential hazards are avoided. In general, all of
these activities are tightly coupled, with interim results
from one activity feeding into the others. Finally,
software safety requirements review helps ensure that
safety requirements are complete and consistent. The
following sections provide more detailed descriptions of
the software safety analysis methods that may be
applied to satisfy the goals of the software safety
program during this software development phase.

SOFTWARE HAZARD ANALYSIS

Software hazard analysis consists of identifying the
potential software failures that may lead to potential
system hazards. For each potential system hazard,
possible software states leading to the potential hazard
are identified. Based on the link established between the
potential hazards of the system and the potential
software causes, any identified system hazard-
avoidance requirements are translated into
corresponding software hazard-avoidance requirements.

The most common technique applied to accomplish this
task is fault tree analysis, which is a top-down
(deductive) analysis method that identifies potential
causes for some top-level undesired event. The
immediate causes for the top-level event are identified,
and the process is repeated, such that the causes are
considered events, and their associated causes are
identified. The analysis continues until a base set of
causes is identified. For system-level software hazard
analysis, these base causes are software states. It is
important to note that at this point a software
architecture or detailed design does not exist, so the
software states identified in the FTA are anticipated. As
described later, the analysis must be updated to reflect
the actual software architecture and detailed design.

UNINTENDED FUNCTION

Unintended
system function

due to SW failure

SENSOR

Failure in
acquiring

sensor signal

I E

r=0

COMMAND

Failure in
calculating
command

I E

r=0

OUTPUT DRIVER

Failure in delivery
of command to

actuator

I E

r=0

UNINTENDED FUNCTION

Unintended
system function

due to SW failure

SENSOR

Failure in
acquiring

sensor signal

I E

r=0

COMMAND

Failure in
calculating
command

I E

r=0

OUTPUT DRIVER

Failure in delivery
of command to

actuator

I E

r=0

Figure 3: System-Level Fault Tree for the Example
Control System.

For the example control system, the unintended system
function fault tree in Figure 3 shows the identified
potential software failures. For each of these potential
software failures, high-level software safety
requirements are specified (Table 3).

HAZARD TESTING

During hazard testing, requirements to test the actual
behavior of the system under the potential hazard
conditions are developed. The results of this testing
provide the fault response times and signal deviation
levels required by the system to avoid a potential hazard
before it occurs. The fault response times drive the
design of the software diagnostics. This timing is very
critical in designing the software tasks schedule and
may also give some insight into whether the chosen
controller has enough processing power and throughput
to handle the various tasks within the given time.
Although these tests may initially be performed using
simulation models or bench setups, the identified fault
response times should be confirmed by testing the
actual system in a vehicle if possible.

Table 3: Example Software Safety Requirements.

Req. No.
Software Safety

Requirement

SW-SAFETY-1

Software sensor diagnostics
shall detect deviations of
actual vs. measured sensor
signal.

SW-SAFETY-2
Software shall detect
deviations of computed
actuator command.

SW-SAFETY-3

Software shall detect actuator
control errors resulting in a
deviation of delivered vs.
computed command

For the example control system, hazard testing using
simulation and vehicle testing might lead to the
hypothetical requirement that the undesired behavior
produced in the vehicle due to failures shall not exceed
a specific amount within a specific amount of time.
Although the software does not yet exist, it may be
possible to use this quantitative vehicle level
requirement to quantify the software safety requirements
based on the vehicle and system simulation model. In
this paper, we assume that the vehicle requirement
corresponds to the following ECU requirement: the ECU
output command delivered to the actuator shall not
deviate from the desired value by X amount for more
than Y ms.

SOFTWARE SAFETY REQUIREMENTS REVIEW

Software safety requirements review examines the
software safety requirements identified by software
hazard analysis, to help ensure they are complete and
consistent. Early identification of missing, incorrect or
inconsistent software safety requirements allows the
requirements to be modified with little or no impact to
program schedule or cost. Late identification of software
safety requirements deficiencies can result in
expensive, schedule impacting changes to the overall

design. The software safety requirements analysis
process also evaluates the software functional
requirements for their impact on safety. The end product
of this task is a set of software safety requirements for
the software design. These requirements will be based
on the earlier developed system level safety
requirements and the results of the hazard analyses and
hazard tests. The requirements also may include
general software safety coding guidelines and industry,
government, or international coding standards that must
be followed by the software development team.

Table 4: Revised Software Safety Requirements.

Req. No. Requirement

SW-SAFETY-1

Software sensor diagnostics shall
detect deviations of actual vs.
measured sensor signals of TBD
amount within TBD ms.

SW-SAFETY-2

Software command diagnostics
shall detect deviations of computed
Actuator command of X amount
within Y ms.

SW-SAFETY-3
Software communication/driver
diagnostics shall detect actuator
communication errors within Y ms

SW-SAFETY-4

Software failure management
routine shall initiate controlled
shutdown of the system
immediately after a diagnostic
detects a failure.

SW-SAFETY-5 All software shall conform to the
MISRA C coding guidelines

For the example control system, the safety analysis
results & requirements shown in Table 2, Figure 3, and
Table 3 are reviewed for consistency and completeness.
Table 4 above shows the updated requirements. The
existing SW-SAFETY-2 requirement is revised based on
the ECU integrity requirements obtained from hazard
testing, with the specific limit values being directly
assigned. The SW-SAFETY-1 requirement is revised to
reflect that a TBD level and TBD detection time will be
specified once the relationship between the sensor
signal and command output is better defined. Since a
communication error could result in a bad command
being delivered to the actuator, SW-SAFETY-3
requirement is revised to reflect the detection time
determined by hazard testing. At this point, there are no
requirements on what should happen after a fault is
detected. To address this, another requirement, SW-
SAFETY-4 is added to specify system behavior once a
fault is detected. It is also common to identify existing
external or internal corporate standards that will be
followed. Finally, a fifth requirement, SW-SAFETY-5, is
added indicating that the software shall adhere to the
MISRA coding guidelines [3] to help ensure best
practice coding techniques are followed.

SOFTWARE ARCHITECTURE DESIGN PHASE

In this phase of software development, the goals of the
software safety program include identifying the safety-
critical software components and functions, and
applying appropriate high-level analysis methods to
these components and functions to help ensure potential
hazards are avoided or mitigated. The software
development team specifies the software components
and functions that are needed to create a functional
system that satisfy identified software requirements
(including software safety requirements). From the
existing software hazard analysis, an integrity or
criticality level can be assessed for each software
component or function. The criticality level depends on
the potential hazards that could arise from a malfunction
of the software component or function. The higher the
criticality, the greater the level of analysis required.
There are various schemes for quantifying criticality or
integrity, with the simplest being to label software
components or functions as either safety critical (if they
can lead to a potential hazard) or non-safety critical (if
they cannot lead to a potential hazard).

To satisfy these goals, the existing fault tree analysis is
extended to identify the specific software components or
functions that produce software states that may lead to
potential hazards, and a system-level software Failure
Modes and Effects Analysis (FMEA) is performed to
provide broad coverage of potential failures. Software
component or function criticality is assigned based on
the highest risk potential hazard that is linked to
potential software causes in the developed fault trees.

INIT:
PowerUpTest();

MAIN_LOOP:
DetermineSystemMode();
AcquireSensorInput();
DiagnoseSensorInput();
ComputeOutput();
Check&SendOutput();

BACKGROUND_LOOP:
ECUDiagnostics();

SHUTDOWN:
Shutdown();

Figure 4: Example Control System Software
Architecture.

To help understand the analysis methods presented in
this section, a software architecture for the example
control system is shown in Figure 4. This software
architecture must accommodate identified safety
requirements (Table 4), and in some cases specific
software modules need to be included (e.g.,
DiagnoseSensorInput()). The architecture includes an
initialization task, which is run at power up, a main loop
and a low priority background loop, both of which are
run during normal execution (after the initialization task
is complete), and a shutdown task that is executed

based on the results of the DetermineSystemMode()
function.

FAULT TREE ANALYSIS

At this stage of development, the existing fault tree is
revised such that specific software modules are included
in the fault tree. This typically involves replacing the
existing software portion of the fault tree, which to this
point has been developed based on knowledge of the
necessary software function but not on the software
structure, with a new software sub-tree based on a
structured analysis of the software architecture. The
newly developed software sub-tree is compared to the
old sub-tree to be sure no knowledge is lost.

For the example control system, the software portion of
the fault tree shown in Figure 3, is replaced with a tree
developed by identifying the immediate causes of the
quantified top software event. The tree is created by
stepping through the software architecture shown in
Figure 4 to identify relevant software failures of the
software components. Event descriptions in the tree are
quantified based on the requirements in Table 4. A
portion of the revised tree is given in Figure 5

UNINTENDED FUNCTION

Command delivered
to actuator deviates
by X amount for Y

ms

UNDETECTED BAD CMD

Command delivered
to actuator deviates

by X amount for Y ms
and not detected

DETERMINE MODE FLT

DetermineSystemMode()
fails to initiate shutdown

when fault detected

I E

r=0

COMM DIAGNOSTIC

Failure to detect fault in
actuator

communications within
Y ms by

Check&SendOutput

I E

r=0

CHECK & SEND OUTPUT FLT

Incorrect command
delivered to actuator by
Check&SendOutput()

for Y ms

I E

r=0

UNDETECTED COMM FLT

Check&SendOutput fails
to detect corrupted

transmission of
command to actuator

within Y ms

COMMAND FLT

Command input to
Check&SendOutput
deviates from desire

value by Y amount for X
ms

Page 2

UNINTENDED FUNCTION

Command delivered
to actuator deviates
by X amount for Y

ms

UNDETECTED BAD CMD

Command delivered
to actuator deviates

by X amount for Y ms
and not detected

DETERMINE MODE FLT

DetermineSystemMode()
fails to initiate shutdown

when fault detected

I E

r=0

COMM DIAGNOSTIC

Failure to detect fault in
actuator

communications within
Y ms by

Check&SendOutput

I E

r=0

CHECK & SEND OUTPUT FLT

Incorrect command
delivered to actuator by
Check&SendOutput()

for Y ms

I E

r=0

UNDETECTED COMM FLT

Check&SendOutput fails
to detect corrupted

transmission of
command to actuator

within Y ms

COMMAND FLT

Command input to
Check&SendOutput
deviates from desire

value by Y amount for X
ms

Page 2

Figure 5: Revised Software System-Level Fault Tree.

Two immediate causes of delivery of a bad command to
the actuator are identified:

1. Command delivered to actuator deviates by X
amount for Y ms and is not detected, and

2. DetermineSystemMode() fails to initiate
shutdown when fault detected.

The branch of the fault tree for the first cause includes
potential failures of each of the software modules
needed to produce and deliver the command to the
actuator, and potential failures in the associated
diagnostics intended to detect deviations in the desired
command. Including the diagnostics in the tree results in
the introduction of AND gates in this branch. The branch
of the fault tree for the second cause includes the failure
of the software module that initiates system shutdown if
a fault is detected. This branch does not contain any
AND gates because there are no identified diagnostics
as of yet to detect this type of failure.

Potential failures of all of the software modules in the
MAIN LOOP in Figure 4 appear in the fault tree, so all of
these modules can be considered safety critical software
modules. However, the only single point failure that may
cause the top software event is failure of the
DetermineSystemMode() module, so this module is
assigned a higher criticality level than the others. During
the detailed design phase, this software module will be
analyzed in more detail due to its higher criticality.

SYSTEM LEVEL SOFTWARE FMEA

Software FMEA aids in identifying structural
weaknesses in the software design and also helps
reveal weak or missing requirements and latent software
non-conformances. A software FMEA can be performed
at different design phases to match the system design
process. The goal of the software FMEA performed
during the software safety architecture analysis is to
examine the structure and basic protection design of the
system. The PHA and the hazard testing results are key
inputs to the system-level software FMEA. The FMEA
techniques described in this paper are consistent with
the recommendations of SAE ARP 5580 [6]. In contrast
to SAE J-1739 [7], SAE ARP 5580 provides specific
guidance for software FMEAs.

Analysis of the software components and functions
assumes that a high-level design description of the
software architecture is available. The analyst
performing the software FMEA needs to have a
complete understanding of the software design, the
underlying hardware structure, interfaces between the
software and hardware elements, the software language
to be used and specifics of the software tools being
used. If possible, the system development program
should use compilers that are certified to a standard for
the language to be used. Thus, early involvement in the
software design FMEA will allow needed compiler and

language restrictions to be imposed on the design
process at a cost-effective time [8].

System-level software FMEA uses inductive reasoning
to examine the effect on the system of a software
component or function failing to perform its intended
behavior in a particular mode. Generic failure modes
(guide words) are applied to the top-level software
components and the impacts are analyzed. In an
approach consistent with SAE ARP 5580 there are four
failure modes for all components and two additional
failure modes for interrupt service routines (ISRs). The
four common failure modes are:

 Failure to execute,
 Executes incompletely,
 Executes with incorrect timing which includes

incorrect activation and execution time (including
endless loop), and

 Erroneous execution.

The two additional software failure modes for ISRs are:

 Failure to return, thus blocking lower priority
interrupts from executing, and

 Returns incorrect priority.

The failure to return failure mode for an ISR also
includes the condition where an ISR fails to complete,
and thus goes into an endless loop.

System-level software FMEA is performed by assessing
the effects of the relevant failure modes for each
functional subroutine. The effects of the failure modes
on the software outputs are analyzed to identify any
potentially hazardous outcomes. If potentially hazardous
software failure events are identified then either a
software safety requirement was not provided or a
safety requirement was not adequately translated into
the software design. In these cases, a software safety
requirement is added and the software design is
modified to accommodate this change. In order to
assess the changes made to the software, the system-
level software FMEA is updated when changes are
made.

For each component or function, failure mode
guidewords are applied and the local and system-level
impacts are analyzed, including assigning a severity.
This is documented in a tabular form.
Recommendations to improve the safety of the software
design are documented and passed on to the software
design team. Table 7 shows a portion of the system-
level software FMEA documented in a tabular form for
the example control system. Safety-related software
requirements identified by the FMEA are added to the
software safety requirements for the design. To maintain
consistency between the FMEA and FTA, specific
software failure modes and new diagnostics identified by
the FMEA can be included in the system fault tree.

SOFTWARE DETAILED DESIGN AND CODING
PHASE

In this phase of software development, the goals of the
software safety program include analyzing the detailed
software design, and analyzing the implemented
software to help ensure software safety requirements
are satisfied. Subsystem interfaces may be analyzed to
identify potential hazards related to subsystems. The
analysis may check for potentially unsafe states that
may be caused by I/O timing, out-of-sequence events,
adverse environments, etc. Two methods that may be
used to achieve the software safety program goals are
detailed software FTA and detailed software FMEA.

These activities can be performed in a coordinated
manner. The software hazard analysis that was
performed at a high-level using FTA during the
requirements and architecture phases, can be further
extended to decompose the identified potential hazards
into software variables and states. A detailed FMEA can
be applied to all or higher risk software modules by
tracing potential failures in input variables and
processing logic through the software to determine the
effect of the failure. These effects are then compared
against those that cause each of the potential hazards to
occur to determine if the individual potential failure can
lead to a potential hazard. Potential failures, which can
lead to one of the potential hazards, are identified along
with appropriate software design corrective actions.

Typically the level of analysis performed depends on the
criticality level (or potential risk) of individual software
modules, and the product design’s overall stage of
development (e.g., prototype vs. production). In the
following sections, the process for performing a
complete FTA and FMEA at the detailed design and
code level is described. In cases where less analysis is
required, a subset of the methods described in this
paper can be applied.

DetermineSystemMode(Boolean Flag1, Boolean Flag2)
{
Enumerated SystemState = (NORMAL,

FAILED);

SystemState = LookUpState(Flag1, Flag2);
If (SystemState == FAILED) Then

CallShutDownTask();
}

Figure 6: Example Code for Determining System
Mode.

To help understand the analysis methods presented in
this section, a hypothetical coded procedure for the
example control system is provided in Figure 6. This
software code for the DetermineSystemMode()
procedure looks up a system state based on diagnostic
flags that have been set by other routines. If a critical

failure has occurred, the system transitions to a safe
state (in our example system, the controller shuts down).

DETAILED SOFTWARE FAULT TREE ANALYSIS

From the software architecture phase, the existing fault
tree links top-level software components and functions
to the potential hazards. With the software detailed
design and code now available, the fault tree can be
extended to identify lower-level software components
that directly assign the output of the top-level
components already in the fault tree. These lower-level
software components can be tagged as safety critical
and any additional software hazard avoidance
requirements that are needed can be specified. As the
results from the detailed software FMEA technique
become available, the FTA and FMEA results can be
compared for consistency and completeness.

DETAILED SOFTWARE FMEA TECHNIQUE

Detailed software FMEA is a systematic examination of
the real time software of a product to determine the
effects of the potential failures in the individual variables
implemented in the software. The detailed FMEA allows
a more thorough assessment of the degree to which the
system design remains vulnerable to potential individual
failures, such as single point memory failures. In
addition, a detailed FMEA may be used to assess the
protection provided by the diagnostic approach to
potential dormant software non-conformances. This
detailed analysis is time consuming, and is typically only
applied to high criticality software components. For
distributed systems with redundant controllers, the need
for detailed software FMEA is reduced, because by
design, potential software failures due to hardware faults
typically do not lead to potential hazards.

Table 5: Example Variable Mapping.

Routines
Variable Acquire-

Sensor-
Input

Diagnose
Sensor-
Input

Compute-
Output

Check
& Send
Output

Deter.
System
Mode

Variable-1 Output Input

Varaible-2 Local

Variable-3 Output Input

… … … … … …

Variable-n Output Input

To support the FMEA, a variable mapping is developed
to map all the input, output, local, and global variables
of the software to their corresponding software routines.
Thus each variable, which is either an input or an
output, has a mapping. Each input variable is either a
hardware input or is an output of another routine. Table
5 shows a variable mapping for a portion of the example
control system.

Once the mapping is in place, failure modes are
developed both for the variables used and for the

software processing logic. The variable failure modes
for input variables and the failure effects for output
variables are based on the variable type.

Variable Failure Modes

Three basic variable types are recognized: Analog,
Enumerated, and Boolean. An analog type variable is
any variable that measures quantity in a continuous
manner. Enumerated variables are those, which can
have a limited number of discrete values, each with a
unique meaning. All variables with only two possible
values are treated as Boolean variables. Variables are
stored in memory locations, and if the memory
locations, buses, and data registers do not contain data
integrity protection (e.g. parity), any variable may be
corrupted during operation. Thus, the potential failure
modes for each variable type, shown in Table 6 below,
must be considered as possible input failure modes to
every routine that uses the variable. The following list
contains an example of potential variable failure modes
for a portion of a software routine
“DetermineSystemMode()” shown in Figure 6:

 Flag1 set to TRUE when it should be FALSE,
 Flag1 set to FALSE when it should be TRUE,
 Flag2 set to TRUE when it should be FALSE,
 Flag2 set to FALSE when it should be TRUE,
 SystemState set to FAILED when it should be

NORMAL, and
 SystemState set to NORMAL when it should be

FAILED.

Table 6: Failure Modes for Different Variable Type.

Variable Type Failure Modes
High

Analog
Low
True when False

Boolean
False when True
A when it should be B
A when it should be C
B when it should be C
B when it should be A
C when it should be A

Enumerated Example
Values: A, B, C

C when it should be B

Software Processing Logic Failure Modes

In addition to potential variable failure modes, potential
software processing logic failure modes may be
considered. This type of analysis involves examining the
operators (e.g., addition, subtraction, comparison) in the
code to determine possible negative effects that must
be addressed.

Integrating Results

Once an FMEA has been performed on each of the
software modules, the output variables are used to
provide a mapping between the modules. The failure
effect on an output of one module is traced to the

corresponding input variable failure modes at the
succeeding module. This variable failure mode/effect
tracing is repeated until the top level routines are
reached. To help support this activity, software threads
that link software modules and variables from data
acquisition to final output may be created. Once the set
of effects of a failure have been traced to the top-level
routines, the mapping of the failure to the hazards is
determined.

The detailed software FMEA is analogous to the
component level hardware FMEA process except that
variables are substituted for signals and signal paths of
the electronic hardware [8]. A portion of the detailed
software FMEA is given in Table 8 for the example
control system.

Finally, when the detailed FMEA is completed, a
mapping will exist from the top-level potential hazards to
the top-level critical variables. The top-level critical
variables are those variables that are necessary and
sufficient to enable a potentially hazardous software
state. Figure 7 provides an example of a set of top-
level critical variables identified by a detailed hazard
analysis.

Potential Hazard

Un-wanted
system

behavior

RELAY_ENABLE = ON

Actuator
gate enable

DIAG_STATUS = NO FLT

Status flag for
all the

diagnostics

SYS_STATE = NORMAL

Software
system state

OUT_HW_ENABLE = ON

Flag to enable
the output
hardware

INPUT SENSOR = 0

Input sensor
signal

OUT_CMD NON ZERO

Output
command to
the actuator

Potential Hazard

Un-wanted
system

behavior

RELAY_ENABLE = ON

Actuator
gate enable

DIAG_STATUS = NO FLT

Status flag for
all the

diagnostics

SYS_STATE = NORMAL

Software
system state

OUT_HW_ENABLE = ON

Flag to enable
the output
hardware

INPUT SENSOR = 0

Input sensor
signal

OUT_CMD NON ZERO

Output
command to
the actuator

Figure 7: Example Fault Tree.

If the detailed FMEA identifies potential failure modes
that trace to the identified hazards, then missing or
incorrectly implemented software safety requirements
are identified and corrected. Similar to the system-level
FMEA, the software design deficiencies must be
identified and the requirements documentation updated.
The safety test plan document is updated with additional
software safety testing requirements during the detailed
design and coding phase.

DEFENSIVE PROGRAMMING

In addition to FTA and FMEA methods applied during
this phase of software development, adopted or
developed coding guidelines (e.g., [3]) often recommend
that developers implement defensive programming
techniques. Critical functions may be separated from
non-critical functions in the code to reduce the likelihood
that non-critical potential faults can lead to potential

hazards. Using a logic “1” and “0” to denote states or
decision results for safety-critical functions is not
recommended due to bit-flip concerns. Software
engineers should consider implementing
reasonableness checks and sanity checks for critical
signals.

SOFTWARE VERIFICATION AND VALIDATION
PHASE

In this phase of software development, the goal of the
software safety program is to execute safety test plans
to help ensure that the software satisfies all software
safety requirements. This typically involves performing
unit testing and integration testing in any of the following
environments: simulation, bench, and in-vehicle. The
developed safety test plans demonstrate that fault
detection and fault handling capabilities (e.g., see Table
4) are functioning as expected. In addition, software
stress testing may be applied to help ensure the
software is robust to changing inputs. Finally,
compliance with any applicable government and
international standards or relevant guidelines is
assessed in this phase.

Although FTA and FMEA are primarily performed before
the verification phase of product development, the
detailed examination of requirements, design, and code
they afford can be a significant help in verifying that the
software satisfies specified requirements. FTA and
FMEA results should be compared to those of actual
testing during the verification phase to help ensure any
assumptions or conclusions made during these analyses
were correct.

SUMMARY AND DISCUSSION

In this paper, we have presented software safety
methods and techniques that we have successfully
applied to several advanced automotive systems. These
methods and techniques satisfy the task requirements of
a proposed Delphi software safety program procedure. A
key component of this methodology is an integrated
FTA/FMEA approach for investigating potential software
causes of system hazards. The chief difference between
the FMEA approach and the FTA approach is a matter
of depth. Wherein the FMEA looks at all failures and
their effects, the FTA is applied only to those effects that
are potentially safety related and that are of the highest
criticality [4]. The broad coverage provided by an
inductive FMEA is combined with a deductive FTA to
focus the analysis. Experience has shown that the
FTA/FMEA approach has been effective in identifying
and mitigating potential hazards. Initiating software
safety activities at the beginning of the product
development life cycle facilitates the implementation of
identified corrective actions such that the impact on
program timing and cost is minimized.

Since FTA and FMEA are static analysis techniques,
they have certain limitations. Although they may focus

attention on identified safety-critical modules, they
assume that the software provides desired behavior in
the absence of potential failures. Thus, design or code
reviews should be performed on safety-critical modules.
Software FTA and FMEA do not verify the correctness

or stability of control algorithms. For these evaluations,
appropriate modeling and simulation tools need to be
used to verify stability and correctness of control
algorithms.

Table 7: Example System-Level Software FMEA.

Software
Element

Failure
Mode

Local
Effect System Effect

P
o

te
n

ti
al

S

ev
er

it
y

Recommendation

P
ro

je
ct

ed

S
ev

er
it

y

ACQUIRE
SENSOR
INPUT

Fails to
execute

No
sensor
signals
are read

System will continue to use the last read sensor
signal value and output calculated based on that
value. Since the last read signals are within
range, DIAGNOSE INPUT function will not
detect the fault. If system is in Normal Operation
mode, this could potentially be hazardous if
desired output is different from the system
calculated output. If system is in startup mode,
then default values will be used. Potentially there
could be no output in that case.

10

A software execution monitor
that checks the execution of
this software element needs to
be employed

8

ACQUIRE
SENSOR
INPUT

Erroneous
Execution

Some or
all sensor
signals
incorrect

DIAGNOSE INPUT function will catch any out--
of-range signal values. However if the sensor
signals values are within range, system will
continue to use the erroneous sensor signal value
and hence output will be incorrect. Potentially
incorrect output command send to the output
hardware leading to unwanted behavior of the
system.

10

This could be caused due to
either erroneous behavior of
the A/D peripheral, sensor
failure or any memory byte
corruption. Need to have
checks that monitor the ADC
peripheral and the related
controller memory cells.

8

Table 8: Example Detailed Software FMEA.

Variables
Failure
Modes

Variabl
e Type

Software
Modules
Affected

Local Effect System Effect

P
o

te
n

ti
al

S

ev
er

it
y

Recommendation

P
ro

je
ct

ed

S
ev

er
it

y

Flag1
TRUE when
should be
FALSE

Input
Global

Determine
SystemMode

May cause
SystemState to be
FAILED when it

should be NORMAL,
resulting in unwanted

call to initiate
shutdown.

System will
shutdown thus
causing loss of

function

8 8

FALSE
when should

be TRUE

Input
Global

Determine
SystemMode

May cause
SystemState to be
NORMAL when it

should be FAILED,
resulting in no call to
shutdown when there

should be one

System may
provide incorrect

output
10

Replace Boolean flags
with enumerated data
type such that ‘00’ is
FALSE and ‘11’ is

TRUE;
Diverse programming of

diagnostic routines;
Comprehensive fault

injection testing to verify
diagnostics

8

REFERENCES

1. Leveson, N.G., Safeware: System Safety And
Computers, ISBN 0-201-11972-2, 1995.

2. IEC 61508-3, Functional Safety Of
Electrical/Electronic Programmable Electronic
Safety Related Systems – Part 3 Software
Requirements First Edition, 1998-12.

3. MISRA Guidelines For the Use Of The C Language
In Vehicle Based Software, April 1998.

4. FAA System Safety Handbook, Dec. 2000.
5. Czerny, B.J., et al., An Adaptable Software Safety

Process for Automotive Safety-Critical Systems,
SAE World Congress 2004.

6. SAE Aerospace Recommended Practice ARP-5580,
Recommended Failure Modes and Effects Analysis
(FMEA) for Non-Automobile Applications, SAE
International, July 2001.

7. SAE J1739, Potential Failure Modes and Effects
Analysis Reference Manual, SAE International, June
2000.

8. Goddard, P.L., “Software FMEA techniques,”
Proceedings of the Annual R&M Symposium 2000.

CONTACT

Padma Sundaram
Delphi Corporation
Innovation Center
12501 E. Grand River
Brighton, Michigan 48116-8326
Phone: 810-494-2453
Email: padma.sundaram@delphi.com

