
Software M E A Techniques
Peter L. Goddard Raytheon 0 Troy

Key Words: Software FMEA, FMEA, Software Safety, Software Reliability, Software Failure Modes

SUMMARY AND CONCLUSIONS

Assessing the safety characteristics of software driven safety
critical systems is problematic. Methods to allow assessment
of the behavior of processing systems have appeared in the
literature, but provide incomplete system safety evaluation.
Assessing the safety characteristics of small embedded
processing platforms performing control functions has been
particularly difficult. The use of fault tolerant, diverse,
processing platforms has been one approach taken to
compensate for the lack of assurance of safe operation of
single embedded processing platforms. This approach raises
cost and, in at least some cases where a safe state can be
demonstrated, is unnecessary. Over the past decade, the
author has performed software FMEA on embedded
automotive platforms for brakes, throttle, and steering with
promising results. Use of software FMEA at a system and a
detailed level has allowed visibility of software and
hardware architectural approaches which assure safety of
operation while minimizing the cost of safety critical
embedded processor designs.

Software FMEA has been referred to in the
technical literature for more than fifteen years. Additionally,
software FMEA has been recommended for evaluating
critical systems in some standards, notably draft IEC 61508.
Software FMEA is also provided for in the current drafts of
SAE ARP 5580. However, techniques for applying software
FMEA to systems during their design have been largely
missing from the literature. Software FMEA has been
applied to the assessment of safety critical real-time control
systems embedded in military and automotive products over
the last decade. The paper is a follow on to and provides
significant expansion to the software M E A techniques
originally described in the 1993 RAMS paper “Validating
The Safety Of Real-Time Control Systems Using FMEA”.

1. INTRODUCTION

Failure Modes and Effects Analysis, FMEA, is a traditional
reliability and safety analysis techniques which has enjoyed
extensive application to diverse products over several
decades. Application of -FMEA to software has been
somewhat problematic and is less common than hardware
and system FMEAs. Software FMEA has appeared in the
literature as early as 1983. However, the number of papers
dedicated to software FMEA has remained small and the
number of those which provide descriptions of the exact
methodology to be employed have been few. This paper
provides a summary overview of two types of software

FMEA which have been used in the assessment of embedded
control systems for the past decade: system software FMEA
and detailed software FMEA. The techniques discussed are
an expansion and refinement of those presented in reference
1 . System level software FMEA, which was not discussed in
reference 1 , can be used to evaluate the effectiveness of the
software architecture in ensuring safe operation without the
large labor requirements of detailed software FMEA
analysis. The FMEA techniques described in this paper are
consistent with the recommendations of SAE ARP 5580,
reference 2.

2. SOFTWARE FMEA

2.1 Software FMEA Application

Software FMEA can be applied to diverse system designs,
allowing the analysis to identify potential design weaknesses
and allowing design improvements to be recommended.
System level software FMEAs can be performed early in the
software design process, allowing safety assessment of the
chosen software architecture at a time when changes to the
software architecture can be made cost effectively. System
level software FMEA is based on the top level software
design: the functional partitioning of the software design into
CSCIs, CSCs, and modules. Detailed software FMEA is
applied late in the design process, once at least pseudo code
for the software modules is available. Detailed software
FMEA is used to verify that the protection which was
intended in the top level design and assessed using system
level software FMEA has been achieved. Both system and
detailed software FMEAs evaluate the effectiveness of the
designed in software protections in preventing hazardous
system behavior under conditions of failure. Software
failure can be the result of errors in software design being
expressed due to the specific environmental exposure of the
software or of transient or permanent hardware failures. The
exact cause of the failure is comparatively unimportant to the
analysis results. Software FMEA assesses the ability of the
system design, as expressed through its software design, to
react in a predictable manner to ensure system safety.

The techniques of system and detailed software
FMEA have been used extensively on embedded control
systems. Specific applications have included braking,
throttle, and steering for automotive applications. Each of
these systems has the potential for safety critical failures
occurrences. These systems have also had defined safe states
which the control system was driven to in cases of failures.
However, application of software FMEA techniques,

118
0-7803-5848-1/00/$10.00 0 2000 IEEE

2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

~

2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

particularly system level software FMEA techniques, does
not appear to be limited to systems with safe states. The
methodology can be applied to redundant systems to assess
the ability of the software and hardware to achieve a known
state under conditions. of hardware and software failure,
allowing redundant elements to effect system recovery.
Detailed FMEA may also be required for fault tolerant
control processing depending on the hardware protection
provided.

2.2 Architectural Considerations

The software FMEA techniques described in the remainder
of this paper were developed in response to a need to
validate hardware and software designs for embedded
control platforms. These embedded control platforms have
several unique characteristics which help make software
FMEA a valued technique for assessing effectiveness of their
safety design.

A typical, and much simplified, hardware
architecture for an embedded control system is shown in
Figure 1, below. The basic hardware architecture provides
for input from a variety of sensors and output of control
signals to various control elements such as motors, valves,
etc. In modern embedded control systems, the physical
hardware is often simplified through the use of highly
integrated controllers which include a microprocessor, A to
D and D to A conversion capability, multiplexing, and
specialized control and communications circuitry on board a
single integrated circuit. This can result in the peripheral
circuits being limited to those needed to buffer incoming
signals to protect the microcontroller and amplifying and
providing current sources for output control signals. These
highly integrated microcontroller integrated circuits typically
have minimal or no memory, internal communications, or
processor integrity protection. Thus, analysis methods which
assess hardware and software failure effects must include the
effects of memory, processing integrity, and communications
failures.

MICRO-
CONTROLLER

MICRO.
PROCESSOR

MW.

ROM

.
Figure 1 . Hardware Architecture.

As shown in the non-italicized pseudo code of
Figure 2, embedded control system software follows a
straightforward architecture: read sensors, calculate control
values, output control signals to actuators. The read-
calculate-output loop is repeated endlessly for the control
being exercised. Failures of the software or the supporting
hardware can result in either incorrect control values, the
result of which is detected by the system user, or no system
output due to a sufficiently incorrect fault response (e.g.
execute no-ops to the end of memory). For safety critical
systems, the response of the system to plausible hardware
and software failures must be able to be determined prior to
failure occurrence. The design must leave the system in as
safe a state as is plausible given the occurrence of failure.
The requirement for deterministic behavior under failure
conditions results in a software architecture which more
closely approximates the complete pseudo code of Figure 2:
perform self checks, read sensors, validate sensor values,
calculate control values, validate control values, validate
output hardware condition, enable hardware outputs if output
hardware correct, output control to actuators if all checks
pass else return to safe state. The technique of continually
validating the correctness of the supporting hardware, along
with checks to ensure that software has executed the
expected routines in the correct order is the minimum
necessary for embedded safety critical control systems. ,

Additionally, functional redundancy, implemented in the
software through the use of diverse control calculation
algorithms and variables is sometimes needed.

Program Control
begin
sys-valid:=test-all-control-hw();
initialize;
done:=false;
while ((not done) and sys-valid)
begin

read-sensors() ;
sys-valid: = sys-valid and valiahte-sensor-values();
calculate-control-values();
sys-valid: =sys-valid and validate-control-values();
sys-valid: =sys-valid and validate-output-hardware();
if(sys-valid)

enable-output-hard ware();
output-control-signals();

sys-valid: =sys-valid and test-critical-hardware();
end;
set-system-to-safe-state();

end.

Figure 2. Control System Software Architecture

2.3 Software Hazard Analysis

Unlike hardware and system FMEAs, a software FMEA
cannot easily be used to identify system level hazards. Since
software is a logical construct, instead of a physical entity,
hazards must be identified and translated into software terms
prior to the analysis. Prior to beginning the development of a

119

software FMEA, a system preliminary hazard analysis
(PHA) for the system should exist. The PHA needs to
include all the hazards which can have software as a
potential cause. The first step in developing a software
FMEA is to translate potential system hazards with possible
software causes into an equivalent set of system and software
states through the process of software hazard analysis. To
perform a software hazard analysis, the analyst begins with
each hazard identified in the PHA and performs a fault tree
analysis of the potential causes of the hazard. For each
potential hazard and potential hazard cause which could be
the result of software failures, the analyst must extend the
fault trees through the system hardware and software until a
sensible set of software input and output variable values is
identified. The value set associated with each hazard cause is
then identified as a software hazard. Figure 3 shows the form
of the output table which results from the software hazard
analysis and which is used to determine the criticality of the
result of any software failures.

1 . 1 . 1 . 1 . 1 I

~~

Figure 3. Software Hazard Analysis Results

2.4 Software Safety Requirements

One of the crucial elements of any safety program for a
software intensive system is the development of software
requirements to guide the design team in the creation of a
software architecture and implementation which includes all
the features needed to support safety critical processing. The
existence and understanding of these requirements by both
the safety and software design groups is crucial to achieving
a system design which is adequate for the intended
application and to allow ,the software design group to
understand the results of and recommendations from the
software FMEA. Safety requirements, appropriate for critical
software, can be found in several published sources (Refs. 3-
8). A compendium of requirements selected from these
sources and tailored for the specific application should be
released early in the software design process, ideally prior to
the start of top level software design. Discussions of FMEA

findings can then be organized to relate to achievement of
the previously identified requirements, significantly
simplifying the communications process between safety and
software engineering.

In addition to requirements imposed directly on the
software design, safety requirements will need to be imposed
on the software development and execution environments
and on development tools. The safety analyst needs to ensure
that requirements are imposed which ensure that the
behavior of the software is consistent with that expected by
the software developer and the analyst. One of the critical
elements of the software design which needs to be controlled
is the language which is used for software development and
the compiler for that language. Compilers which have been
carefully tested to the language specification and certified for
accuracy of the compiled code must be used in the
development of safety critical software if analysis based on
the high order language listings for the compiled code is to
have validity. Use of the language itself also needs to be
limited to those features which are fully defined by the
language specifications. Elements of a language whose
behavior has been left to the compiler designer to decide
should be avoided. A good discussion of the needed controls
for the language ‘C’ can be found in reference 9. The
software safety requirements. must also specify that
indeterminate behavior of the compiler be avoided. Features
such as optimization, which can produce indeterminate
results in the final object code, must be specified as being
disabled. Any operating system or scheduler intended for use
with safety critical software also needs to be carefully
selected. The executive functions provided by the operating
system or scheduler can significantly impact the ability of
the developed software to provide the intended level of
safety. Requirements which specify the use of a safety
certified executive as a part of the software are appropriate if
a software FMEA is to have validity.

2.5 System Software FMEA

System software FMEA should be performed as early in the
design process as possible to minimize the impact of design
recommendations resulting from the analysis. The analysis
may need to be updated periodically as the top level software
design progresses, with the final system software FMEA
update occurring during detailed design, in parallel with the
detailed software M E A . The organization performing the
system level software FMEA needs to balance the update
periodicity and expected benefits with the associated costs.
Labor costs for system level software FMEAs are modest
and allow identification of software improvements during a
cost effective part of the design process.

Once the software design team has developed an
initial architecture and has allocated functional requirements
to the software elements of the design, a system software
FMEA can be performed. The intent of the analysis is to
assess the ability of the software architecture to provide
protection from the effects of software and hardware failures.
The software elements are treated as black boxes which
contain unknown software code, but which implement the

120 2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

Element Failure
Modes

Fails to execute
Executes incompletely

Modes
System Failure

r

Output incorrect
Incorrect timing - too early, too
late, slow, etc
Input value incorrect (logically
complete set)
Output value corrupted
(logically complete set)
Blocked interrupt
Incorrect interrupt return
(priority, failure to return)
Priority errors
Resource conflict (logically
complete set)

Figure 4. System Level Software Failure Modes

To perform the system level software analysis, the
analyst assesses the effect of the four primary and any
appropriate additional failure modes for each element on the
software. The effect on the software outputs of the failure
mode is then compared to the previously performed software
hazard analysis to identify potentially hazardous outcomes.
If hazardous software failure events are identified, the
analyst then needs to identify the previously defined
software safety requirement which has not be adequately
implemented in the design. If the potentially hazardous
failure mode cannot be traced to an existing requirement, the
analyst needs to develop additional software requirements
which mandate the needed protection. In addition to the
failure modes for each software element, the analyst assesses
the effect of each of the system level software failure modes
on the software outputs and compares the effects against the
software hazards and software safety requirements.

The system level software FMEA should be
documented in a tabular format similar to that used for
hardware FMEAs. Tabular FMEA documentation techniques
are well developed in most organizations and familiar to the

design engineering staff. Tabular documentation techniques
also allow extensive, free form, commentary to be provided
as a part of the failure effect documentation. The ability to
provide extended commentary on the software design and
design requirements is crucial to allowing software engineers
to understand the FMEA results and the needed design
changes. In many organizations, software engineers can only
respond effectively to requirements based presentation of
results.

2.6 Detailed Software FMEA

Detailed software FMEA is used to validate that the as
implemented software design achieves the safety
requirements which have been specified for the design,
providing all needed system protection. Detailed software
FMEA is similar to component level hardware FMEA. The
analysis is lengthy and labor intensive. The results are not
available until late in the design process. Thus, detailed
software FMEAs are mostly appropriate for critical systems
with minimal or no hardware protection of memory,
processing results, or communications. For large systems
with hardware provided protection against memory, bus, and
processing errors detailed software FMEA may be difficult
to economically justify.

Detailed software FMEA requires that a software
design and an expression of that design in at least pseudo
code exist. Implicit in this requirement is the existence of
software requirements documentation, top level design
descriptions, and detailed design descriptions. Final
implemented code may not be necessary if the software
elements are described in pseudo code and the software
development process provides adequate assurance that the
implemented design matches the pseudo code description of
the detailed design documentation. To perform the analysis,
the analyst postulates failure modes for each variable and
each algorithm implemented in each software element. The
analyst then traces the effect of the postulated failure through
the code and to the output signals. The resultant software
state is then compared to the defined software hazards to
allow identification of potentially hazardous failures.

If the software hazard analysis has previously been
completed to support system level software FMEA, the first
step in the detailed software FMEA is development of a
variable mapping. The analyst will need to develop, or have
produced by automated software development tools, a
mapping which shows which variables are used by each
software module and whether the variable is an input
variable, an output variable, a local variable, or a global
variable. As a part of the variable mapping, the analyst needs
to clearly identify the source of each input variable and the
destination(s) of each output variable. This mapping will be
used to allow the analyst to trace postulated failures from the
originating location to the output variable set.

Once the variable map is complete, the analyst
should develop software ‘threads’ for the processing being
analyzed. The software threads are mappings from an input
set of variable through the various processing stages to the
system output variables. The software threads will assist the

2000 PROCEEDINGS Annual -RELIABILITY and MAINTAINABILITY Symposium 121

analyst in rapidly tracing postulated failures to system
variables and effects. Definition of the software ‘threads’
will often be available from the software design team
through existing design documentation or as a defined output
of the automated design tools being used by the design team.

To perform the detailed software FMEA, the
analyst next needs to develop failure modes for the
processing algorithms as they are implemented in each
module. The algorithm failure modes are unique to each
software development. A logically complete set of failure
modes for each of the variable types also needs to be
developed. Reference 1 provides a description of the
straightforward process used to develop variable failure
modes for simple variable types: Boolean, enumerated, real,
integer. Development of a logically complete set of variable
failure modes for more complex variables will need to be
done based on the specifics of the language in use and the
compiler implementation. Since the primary purpose of
postulating failure of each variable is to assess the impact of
memory failures in processing platforms which do not have
effective memory protection, a detailed knowledge of the
underlying storage scheme is required. For high order
languages, it may be necessary to obtain the needed
implementation details from the developer of the compiler
and from the language specification.

Once the variable and algorithm failure modes have
been developed, the analyst can perform the detailed
software M E A . For each module, algorithm failures are
postulated, the effect traced to the module outputs and in turn
to the software system output variables using the software
threads and the variable map. The system variable effects are
then compared against the software hazard analysis to
determine whether or not the postulated failure could lead to
a system hazard. The analyst then postulates failures for each
of the variables used in the module and traces the effects to
the system outputs and the defined software hazards in a
similar manner. The detailed software FMEA process is
analogous to the component level hardware FMEA process
except that variables and the variable map substitute for the
signals and signal paths of electronic hardware.

If the detailed FMEA identifies failure modes which
trace to the defined software hazards, the analyst needs to
assess which software safety requirements have not been
implemented correctly or if one or more requirements are
missing. Similar to system level software FMEA, the most
effective way to communicate software design deficiencies is
through identification of those requirements which have not
been met.

Documentation of the detailed software FMEA can
be either tabular or using the matrix documentation
recommended in reference 1. Matrix documentation provides
some desirable compactness for detailed software FMEA.
However, tabular documentation is more familiar to most
design groups and allows extensive commentary to be
included. The choice of documentation style can be left to
the preference of the individual analyst or analysis team.

122

2.7 Analysis Limitations

Software FMEA can provide insight into the behavior of
safety critical software intensive systems, particularly
embedded control systems. However, as with all FMEAs, the
analysis cannot provide complete system safety certification.
Software FMEA examines the behavior of the system being
analyzed under conditions of software single point failure. In
many cases, the assumption of single point failures may be
difficult to fully justify. Many software failures can be
induced by failures in the underlying hardware. For systems
with minimal memory protection, failures in the memory
hardware can appear as errors in variable storage values
which can propagate errors through the software into the
output variables and subsequently to system behavior. Single
point memory failure assumptions can be appropriate for
processing memory which has been carefully architected to
preclude multiple errors, but may not be safe to generally
assume unless the implementation of the storage is known.
The implementation details for memory circuitry for highly
integrated microprocessors and microcontrollers is likely to
be proprietary to the device manufacturer and unknown to
the analyst.

Software FMEA does not provide evaluation of the
behavior of a software intensive system under conditions of
unfailed operation. For many control systems, the stability of
the control loop is a crucial parameter in determining safety
of operation. Simulation and modeling are appropriate tools
for evaluating control stability. FMEA cannot provide the
needed evaluation of control loop stability under either
normal or failed operation. Similarly, software FMEA
provides limited insight into the safety risks associated with
changes in timing due to either software or hardware
failures. Timing and sizing analysis for worst case interrupt
arrivals and resource demands may be needed to provide
insight into the effects of some failures postulated during the
software FMEA.

3. CONCLUSIONS

Software FMEA has been applied to a series of both military
and automotive embedded control systems with positive
results. Potential hazards have been uncovered which were
not able to be identified by any other analytical approach,
allowing design corrections to be implemented. Additionally,
system level software FMEA can be applied early in the
design process, allowing cost effective design corrections to
be developed. System software FMEA appears to be
valuable for both small embedded systems and large
software designs, and should be cost effective so long as a
mature software design process - one which can provide
needed software design information in a timely manner - is
in use. Detailed software FMEA is appropriate for systems
with limited hardware integrity, but may not be cost effective
for systems with adequate hardware protections. For designs
with limited hardware integrity, detailed software FMEA
provides an effective analysis tool for verifying the integrity
of the software safety design.

2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium

4. REFERENCES

1. Goddard, P. L., “Validating The Safety Of Real Time
Control Systems Using FMEA’, Proceedings of the
Annual Reliability and Maintainability Symposium,
January 1993.

2. . S A E Aerospace Recommended Practice ARP-5580,
Recommended Practices For FMEA, Draft Version,
June 1999.

3. Underwriters Laboratory Standard UL-1998, Standard
For Safety: Safety Related Software, First Edition,
January 1994.

4. NATO Standardization Agreement STANAG 4404,
Safety Design Requirements And Guidelines For
Munition Related Safety Critical Computing Systems,
Edition I

5. United States Air Force System Safety Handbook
SSH1-1, Software System Safety, 5 September 1985

6. Electronic Industries Association Bulletin SEB6-A,
System Safety Engineering In Software Development,
April 1990

5 . BIOGRAPHY
Peter L. Goddard
Raytheon Systems Company
1650 Research Drive, Suite 100
Troy, Michigan 48083, USA

Pete Goddard is currently employed as a Senior Principal
Engineer with the Raytheon Consulting Group in Troy,
Michigan. He holds a bachelors degree in Mathematics from
the University of Laverne, and a masters degree in
Computer Science from West Coast University. Mr. Goddard
has published papers in the proceedings of the Annual
International Logistics Symposium, the RAMS Symposium,
the AIAA Computers in Aerospace Symposium, and the
INCOSE Symposium. He was the principle investigator for
the 1984 Rome Labs sponsored “Automated FMEA
Techniques” research study and was program manager and
part of the research team for the 1991 Rome Labs sponsored
“Reliability Techniques For Combined Hardware And
Software Systems” research study. He is a co-author of
“Reliability Techniques for Software Intensive Systems”.
Mr. Goddard is an active member of the SAE G-1 1 Division
and is part of the subcommittee on FMEA in the G-1 1. He is
a member of IEEE and an ASQ member and CRE.

7. Leveson, N. G. , Safewure: System Safety And
Computers, ISBN 0-201-1 1972-2, 1995

8. Deutsch, M. and Willis, R., Software Quality
Engineering, ISBN 0- 13-823204-0, 1988

9. Hatton, L., Safer C, ISBN 0-07-707640-0, 1994

2000 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium 123

