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SUMMARY

The initial aim of this research was to investigate the application of Expert Systems, or
Knowledge Base Systems technology to the automated synthesis of Hazard and
Operability Studies (HAZOP). Due to the generic nature of fault analysis problems and
the way in which Knowledge Base Systems work, this goal has evolved into a
consideration of automated support for fault analysis in general, covering HAZOP, Fault
Tree Analysis, FMEA and Fault Diagnosis in the process industries.

This thesis describes a proposed architecture for such an Expert System. The purpose
of the system is to produce a descriptive model of faults and fault propagation from a
description of the physical structure of the plant. From these descriptive models, the
desired fault analysis may be produced.

The way in which this is done reflects the complexity of the problem which, in
principle, encompasses the whole of the discipline of process engineering. An attempt is
made to incorporate the perceived method that an expert uses to solve the problem;
keywords, heuristics and guidelines from techniques such as HAZOP and Fault Tree
Synthesis are used.

In a truly Expert System, the performance of the system is strongly dependent on the
high quality of the knowledge that is incorporated. This expert knowledge often takes the
form of heuristics or rules of thumb which are used in problem solving. This research
has shown that, for the application of fault analysis heuristics, it is also necessary to have
a representation of the details of fault propagation within a process. This depth of
knowledge helps to ensure the robustness of the system - a gradual rather than abrupt
degradation at the boundaries of the domain.

Keywords : Expert Systems, Knowledge Base Systems, Fault Analysis, HAZOP, Fault
Tree Synthesis
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CHAPTER ONE

INTRODUCTION

1.1 RESEARCH AIMS

This research arose from the possibility of using rules for assistance in Hazard and
Operability Studies (HAZOP) recorded using logical equations [Lihou 1982d]. The
initially defined goal of the research was to attempt to produce these equations
automatically, using a Knowledge Base System (KBS), sometimes referred to as an
Expert System. For a number of reasons, involving both the problems of HAZOP
synthesis and the way in which KBS operate, this initial goal has evolved into a
consideration of Knowledge Base System support for fault analysis in general. This
involves the computerised provision of assistance for Fault Tree Synthesis, HAZOP, Fault
Diagnosis and other similar techniques from a physical description of the chemical

process under consideration.

1.2 FAULT ANALYSIS AND KNOWLEDGE BASE SYSTEMS

1.2.1 Fault Analysis

As chemical plant has become larger and more complex, handling increasingly
dangerous materials, the potential hazards have increased correspondingly. The problems
of maintaining safety and reliability of both technology and its human factor have also
become crucial to the success of the nuclear, military, electronics and aerospace industries.
Essentially the problem has become one of Risk Assessment - determining the causes and
likelihood of mission or system failure and combining this with a measure of the
consequences, be they hazards or operational problems. Central to Risk Assessment.
therefore, is the understanding of the propagation of faults within a system, for
identification or causal assessment of undesirable incidents. Fault propagation is also
central to Fault Diagnosis, Alarm Analysis and control of equipment or operations.
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Analysis techniques such as HAZOP or Fault Tree Analysis require a large expert
manpower investment; this implies that any automated assistance to the analysis could
prove economically valuable. Fault Diagnosis or the analysis of alarms in hazardous
installations such as nuclear power stations is obviously a critical task; any Decision
Support System capable of assisting in the rapid and accurate diagnosis and mitigation of
faults is of clear value.

1.2.2 Knowledge Base Systems

The initial conception of Artificial Intelligence (Al) in the late 1950s was as a means of
understanding intelligence by attempting to reproduce it. These attempts involve the
emulation of human activities such as natural language understanding and synthesis,
visual perception, problem solving and game playing.

Central to most Al work is the use of symbol structures rather than conventional data
structures; symbolic processing languages such as LISP are used rather than data
processing languages such as FORTRAN. Some Al work involves the explicit symbolic
representation of human knowledge. It became apparent, around 1970, that the more
successful problem solving systems could be characterised largely by the high quality of
the knowledge that they explicitly represented.

This concentration on the symbolic representation of knowledge led to Knowledge
Base or "Expert" Systems as they are known today. There are currently a number of
highly successful KBS and a plethora of smaller applications in areas as diverse as
medicine, mineral prospecting, economic modelling, law, tax evasion, engineering design
and mycology.

1.2.3 Fault Analysis Using Knowledge Base Systems

In the 1970s considerable efforts were devoted to computer programs for the
automated synthesis of fault trees, but none of these have found widespread application.
In more recent years there has been considerable interest in systems for the automated
provision of decision support for Fault Diagnosis, but most of these systems rely on an

15



existing fault analysis conducted in the usual manner. There is clearly a need for
producing fault analyses from a structural description of the analysed system.

In conventional HAZOP, analysts make use of key words or symbols. The results of
techniques such as Fault Tree Analysis are readily expressed and qualitatively analysed
using symbol-structures. For both these techniques, workers have developed structured
procedures, rules and guidelines to help produce understandable and correct analyses.
Fault Analysis and Diagnosis is often the province of experts who reason using heuristics
or rules of thumb in preference to underlying theoretical principles.

These characteristics of the task of fault analysis, principally its symbolic nature, and
the apparent lack of success of conventional approaches suggested the application of
KBS to the problem. However, reliance on automated synthesis is unlikely to be seen in

the near future. There are a number of reasons for this, not the least of which are the
complexity of the problem to be solved and the need for a high degree of confidence in
safety matters.

1.3 RESEARCH METHOD

Development of an Expert, or Knowledge Base, System is often characterised by an
iterative process of refinement or, in some cases, starting over. The initial aim of the
iterative process is to develop a prototype KBS which is capable of solving a particular
representative problem of the area of application - the domain. This prototype will then
hopefully embody an appropriate means of representing and manipulating domain
knowledge and will include concepts and ontologies which characterise the knowledge.
The next step is the generalization of the prototype to the domain as a whole; the success
or failure of this extension determines whether another iteration is necessary.

This is the research methodology which has been adopted here. A case study was
selected and the body of the research was concerned with the development of a prototype
system that would solve the case study and also provide a suitable architecture for a full
application system. It did not prove possible to obtain the necessary facilities for the
development of a fully operational system. Key elements of the design were evaluated
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using, principally, COMMON LISP implemented on an IBM PC/AT and later on a
University mainframe computer.

1.4 THESIS OVERVIEW

This thesis is concerned with two disciplines, that of fault analysis as a part of chemical
process safety and reliability, and that of Intelligent Knowledge Base Systems (IKBS) - a
technology arising from Artificial Intelligence (AI) research. The thesis commences,
therefore, with literature reviews dealing with these disciplines.

The first literature review discusses safety and reliability. It begins with an historical
perspective and an overview of the context of fault analysis within loss prevention and risk
assessment. A hierarchical classification of pertinent literature is presented. The bulk of
the review is concerned with three principal areas of fault propagation: HAZOP, Fault
Tree Analysis and Fault Diagnosis, and focuses on synthesis procedures and research
within these areas. The chapter closes with a brief review of future prospects.

The second literature review commences with a brief discussion of the history of Al
and the emergence of Knowledge Base, or Expert, Systems technology. A hierarchical
classification of pertinent literature is presented. Knowledge Base Systems involve
unconventional computer systems which operate using symbol manipulation rather than
data processing; the hardware and software requirements and options for these systems
are described. The bulk of the review is concerned with techniques for the representation
and application of knowledge by computer. A section on Artificial Intelligence discusses
the research which underpins the technology of IKBS, focusing on that which is
concerned with the modelling of problem solving in physical systems. The chapter
concludes with a brief discussion of the application of IKBS and the future prospects.

The central topic of the thesis is the design of an IKBS for assistance in Fault
Analysis. Chapter Four discusses the method behind the design whilst Chapters Five and
Six discuss the evolution of the design and the design itself.

17



Chapter Five covers the research and experimentation that contributed to the design.
This involves the detailed consideration of fault analysis knowledge and procedures in an
attempt to structure this information to facilitate symbolic representation and reasoning.
The representation, in a computer, of the process plant under consideration is clearly of
major importance and a key section is devoted to this topic.

Chapter Six presents an overview of the proposed IKBS Design and then discusses
each of the stages of the fault analysis process as the design is put into practice: the
representation of process plant structure; the production of cause-effect knowledge from
the plant structure; and the production of the fault analysis. Expert Systems are usually
designed using a representative case study and here all facets of the design are described
as they relate to the selected case study - an Ammonia Let-Down System HAZOP.

Chapter Seven discusses the proposed design and its evaluation and discusses how the
principles of the design might be used in a fully fledged application system with a view to
solving a range of problems. Chapter Eight summarises the key parts and conclusions of
the thesis and presents a suggested future research plan.

18



CHAPTER 2

LITERATURE REVIEW - SAFETY AND RELIABILITY

2.1 INTRODUCTION

This literature review discusses the state of the art with respect to the synthesis of fault
analysis using Intelligent Knowledge Based Systems. This is the generic problem area
which encompasses the original aim of this research: IKBS synthesis of Hazard and
Operability Studies. The discussion is presented in the context of system safety and
reliability as a whole and focuses on the techniques of HAZOP, Fault Tree Analysis and
Fault Diagnosis. The Chapter opens with an historical review of Safety and Reliability
Assessment.

2.2 SYSTEM RELIABILITY - AN HISTORICAL PERSPECTIVE

2.2.1 Introduction

Reliability has played a part in people's lives since the dawn of technology in the stone
age. In the art of stone-tool making it was soon recognised that flint gave a sharper
cutting edge than other available materials. Some veins of flint produced longer-lasting
edges than others. The relative longevity of flint tools implies a higher degree of
reliability according to the reliability engineer's definition [Green 1976]:

""That characteristic of an item expressed by the probability that it
will perform its required function in the desired manner under all the
relevant conditions and on the occasions or during the time intervals
when it is required so to perform."

It is interesting to consider the process of the selection of flint above other materials.
The selection was made entirely on the basis of experience; experimenting with different
rocks revealed the best choice. This is the essence of empiricism - qualitative assessments
founded on experience and observation.
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The empirical method sustained technological development through the industrial
revolution and up to the beginning of the present century. Medieval cathedrals were built
according to the principles established in tried and tested designs, the most reliable of
which were indicated by the longest lasting structures; few structural analysis techniques
were available. In pre-20th century construction, one device used to ensure reliability or
longevity is sometimes immediately apparent - overdesign. The massive ironworks of
Tower Bridge in London, for example, are surely not entirely necessary for structural
integrity. This practice of overdesign to ensure the ability to meet the intended purpose
(or to cater for unanticipated requirements) continues to the present day; process vessels
are commonly oversized by 10-20%.

The scientific revolution that stemmed from the Renaissance brought a new approach
to industry: the application of analysis and the development of scientific theories to
explain the physical world. The sheer complexity of machinery wrought in the industrial
revolution demanded some ability to predict the behaviour of theoretical systems in order
to assess their suitability for their intended purpose.

The rapidity of industrial development in the early 20th century, particularly in the
military sphere, produced machine systems whose successful operation depended on a
large number of failure-susceptible components. This required the ability to optimise the
longevity of the intended purpose i.e. the reliability of the system. The qualitative or
empirical approach was no longer economically or environmentally acceptable. An
unreliable design was revealed by operating problems or as a result of hazardous
incidents, the "every dog gets one bite" approach. Processing of petrochemicals and
toxic materials on a large scale meant that the bites of the dogs were becoming very
serious indeed. The problem of prevention of "dog bites" is particularly pertinent in the
nuclear, aerospace and military spheres.

The requirement to be able to predict systems reliability in a quantitative manner gave
rise to reliability analysis as it is known today. Analytical techniques are used to express
reliability either relatively, or in terms of temporal probabilities. These data may then be

used to express the availability of a system or the risk associated with a particular
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enterprise, the process providing valuable insights into the operability and reliability
implications of a given design.

The evolution of reliability assessment, then, can be seen to parallel that of technology
as a whole: the gradual transition from a largely empirical art to a largely analytic science.

2.2.2 Systems Reliability in the Twentieth Century

The modern chemical processing industry has its roots in the 19th century alkali
manufacturers who served the booming UK textile industry. Production of small scale,
high purity chemicals, particularly dyestuffs, gave rise to the fine chemicals industries
which, in the early 20th century, served the major protagonists in World War I.  With the
discovery and exploitation of crude oil, and the subsequent development of large-scale
refining came the concept of Unit Operations in the US in the 20s; a means of structuring
processing operations. At this time process control was entirely manual, large buffers
and surge tanks were used to regulate process fluctuations.

The military necessities of World War II produced rapid technological advances. The
ingenuity of German engineering produced military machines of great potential
effectiveness but unfortunate complexity and poor reliability. This contrasted sharply
with the Soviet strategy of producing large numbers of cheap, simple, reliable and easily
maintained machines - evidenced by the success of the T-34 tank. (This military contrast
can be seen today, although to a lesser extent: Western sophistication and expense versus
Soviet simplicity, cheapness and large numbers.)

Servicing and maintaining military machinery gave rise to severe logistics problems.
Particularly in the US, efforts were made to tackle these problems by emphasizing the
requirement for components of maximum performance requiring minimum aftercare.
The failure of the Wehrmacht to learn this lesson culminated in the failure of the
Ardennes offensive in 1944, when tank divisions ground to a halt for want of logistic

support.
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The intense scientific activity surrounding the V1 missile programme, however, brought
together engineering judgement and statistics to produce the Lusser product law of
reliability [Henley 1981]:

Rsystem=Rl *Rp*R3...

Where Ri are the reliabilities of subsystems each of which is necessary for overall
success.

The implication that a single weak link could be more reliable than a number of relatively
strong links led to great improvements in the mission success rate of the V1.

2.2.3 Post - WWII

After the war the US Army continued economic studies of the operation and
maintenance of military vehicles; the Army and subsequently the automobile industry
were able to use these studies in defining optimum maintenance and replacement intervals.
It was during this period that the discipline of ergonomics was born out of the necessity
to design military systems according to the needs and parameters of the human operators.
The embryo electronics industry was beginning to consider the reliability of thermionic
valve systems with a view to establishing acceptable standards, whilst at the same time
considering the implications of the discovery of the transistor in 1947. Following the
deployment of nuclear weapons at the end of World War Il, nuclear power programmes
were instigated in the context of the enormous destructive potential inherent in nuclear
materials. The horrific consequences of human exposure to nuclear radiation at Nagasaki
and Hiroshima were becoming known, although they were suppressed for political
reasons to allow atmospheric nuclear testing in conditions which, with hindsight, can be
seen to have had serious consequences.

1950

In the early 1950s these hazards raised an awareness of the need to be able to predict
the likelihood and the consequences of nuclear accidents. In 1957 the first published
study of such matters was produced as WASH-740. This report concentrated on the
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"worst credible incident" (WCI) that could occur as a result of a specific accident
sequence. The WCI was accepted to be a large loss-of-coolant-accident (LOCA) leading
to core degradation and meltdown, breach of containment and contamination of the
environment by nuclear material. Although there was some discussion of incident
likelihood and of acceptable upper bounds for the frequency of occurrence, no attempt
was made to produce quantification for any specific accident scenario. This raised the
question of the "how" of the specific "what" postulated.

The result of the failure of consequence limiting equipment was made clear by the
release of nuclear material at Windscale in 1957 which necessitated the disposal of large
quantities of local milk followed by an extensive clean-up programme.

In the process industries, economics and the realities of competition became the driving
force in improving the efficiency of increasingly complex operations. Basic feedback
loops were evolving into complex automatic control and safety systems. The availability
of data relating to the inherent hazards of process materials (combustibility, toxicity etc)
enabled the Dow Chemical Company to produce its first Fire and Explosion Index in
1956 [Dow 1981]. This provided a means of Hazard Ranking according to materials
quantity and quality along with simple operational parameters. The resulting numerical
index could then be used to relate the potential hazards of a new design to those of an
existing facility. This permitted an assessment of hazard acceptability in the context of
existing hazard levels.

In the 1950s the electronics industry demonstrated a high standard of reliability of
computers constructed entirely from transistors. Evolution of component testing
methods allowed the establishment of standards for electronic components. Resistor
tolerances were standardised in 1957 in terms of allowable percentage deviation from the
stated value (commonly 20,10,5,2 and 1%). This required an understanding of the
capabilities and limitations of the manufacturing processes. [Coppola 1984]

A perennial problem in reliability analysis is the collection and interpretation of failure
data. In comparison with other physical systems, electronic components are small and
discrete and therefore more readily defined. A large number of identical components
which are situated in a controlled, usually non-hostile environment provide a good source
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of coherent failure data. Electronic component failure modes and systemn failure models
are also more easily defined; this is particularly true of digital systems. Functional
testing, accelerated life testing and structured fault diagnosis are also more readily carried
out. It is for these reasons that many advances in the collection and interpretation of
failure data and in the development of reliability theory have been made in the field of
electronics; the techniques derived have then found wider application in physical systems
engineering.

It was in the early 1950s that the distinction between overall equipment failure rates and
the breakdown into failure mode rates was made. Each distinct component failure mode
has a different implication for the success of the system as a whole. Efforts were also
being made to develop mathematical models to represent component failure distributions.
The simple yet highly versatile exponential distribution for random failure was extended
to become the Weibull distribution [Lihou 1982a}, in which parameters are used to define
an appropriate distribution to correlate with experimental data. Markov processes were
used to model systems in terms of state space transformations, in which the various states
of a system along with transition paths are described topologically [Joller 1982a]. In the
early 1960s Monte Carlo methods came into use as a means of assessment using random
sampling, and of modelling using random stimulation.

1960

The 1960s saw the US, UK and French nuclear power programmes well under way.
Safety considerations still focused on the worst credible case with the corresponding
unfortunate influence on public opinion. In contrast Farmer [Fussell 1977] emphasised
the importance of ensuring the reliability of consequence limiting equipment. The space
race saw a reliance on failure tolerant systems in environments where mission failure
permits no possibility of recovery.

WASH-740 focused on the "what" of nuclear incidents. It became necessary to
develop techniques to elucidate the "how" of such incidents, to enable quantitative
assessments of risk to be made. One such fault modelling technique, Fault Tree Analysis
(FTA), was developed by H A Watson of Bell Laboratories in 1961 to aid in the
evaluation of the launch control system of the Minuteman missile. In this technique. the
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system failure event of interest is identified and the causal structure leading to this event is
described diagrammatically in a tree of events connected by Boolean operators (logic
gates). Following a safety symposium in 1965 when a number of papers were published
on the subject [Haasl 1965] the technique gained widespread acceptance towards the end
of the decade.

In the process industries the identification of this undesirable "top event" still presented
problems, relying entirely on experiential judgement. The increased complexity of new
designs gave rise to a need for structured techniques of Hazard Identification (HAZID).
The use of HAZID checklists predated the technique of Failure Modes and Effects
Analysis (FMEA), in which credible failure modes of components or sub-systems are
identified and all important consequences of these failures are elucidated [Recht 1966a].
Once a major hazard is identified, consequences can be estimated, for example the effects
of a release and subsequent ignition of flammable vapour. Newly developed
mathematical models of fire, explosion and toxic effects facilitated this consequence
assessment [ISGRA 1985].

Quantitative assessment of system reliability requires the availability of component and
systems failure data. Moreover, this failure data must be in the appropriate form for the
methods in which it is to be used. In the process industries in particular, a given
component may be required to operate under a wide variety of conditions. In the
consideration of a similar component in a newly-designed system, interpretation of
gathered failure data must take account of these differences in the context of the expected
operating environment of the new component. Although some companies maintained in-
house data stores the majority of these data related to failures of specific components
under specific conditions - of limited applicability to new designs. There was clearly a
need for generalised, large-scale and widely accessible data sources. One of the first
centralised reliability data banks to become available was the Electronic Equipment
Reliability Data Store. The decade saw the establishment of a number of such databases,
one of the most comprehensive of which became the UKAEA SYREL data bank of events
and generic failure rates which continues in use today [Anon. 1977].
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1970

By 1970 the semiconductor revolution was well under way. Texas Instruments had
succeeded in putting many transistors on a single wafer of silicon substrate to produce the
first integrated circuit (IC). The increasing scale of integration, proceeding rapidly by
orders of magnitude, led to the invention of the microprocessor which resulted in the
proliferation of digital computers in the 1970s. Chip manufacturers have production
reliability problems of their own. A single wafer of silicon may have hundreds of chips
etched onto it; the wafer is then sliced and each chip tested individually. In VLSI
production, rejection rates of above 90% are not uncommon. These problems have been
reduced by improvements in manufacturing techniques along with dramatic falls in
production costs which have seen the widespread availability of cheap electronic devices
in the 1980s.

Digital systems have an important advantage to the reliability analyst; their behaviour is
strictly deterministic. System information consists of logical O or 1 states and the
propagation of information is strictly prescribed by the system design. System behaviour,
therefore, is readily modelled; in simple terms faults may be diagnosed as finding a 1
where a 0 is expected, or vice-versa. Digital components (eg logic gates) are perfectly
discrete and similarly have simple failure modes. For these reasons computerised design,
modelling and reliability analysis of digital systems led the way in the development of
reliability theory, dynamic analysis and control theory in the early 1970s.

In the USA the proliferation of potentially hazardous nuclear sites and increasing
public concern over nuclear safety stimulated reliability studies. These culminated in the
US Nuclear Regulatory Commission report WASH-1400 [NUREG 1975].

WASH-1400 was the most comprehensive and in-depth study of reactor safety ever
undertaken and represented a milestone in the development of probabilistic risk
assessment (PRA). WASH-1400 was an attempt to calculate the risk from the operation
of 100 light-water reactors in the USA. The principal causal modelling technique used
was fault tree analysis, in which the probabilities of occurrence of hazardous events were
evaluated with respect to expected component and sub-system failure rates. Solution of
these fault trees, of which many were produced, was facilitated by computer codes which
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had become available in recent years [Lee 1985]. In conjunction with analyses of the
outcomes of hazardous events, WASH-1400 attempted to evaluate the comparative risks
associated with different incident scenarios. One result of this was the realization that the
WCI of WASH-740 did not in fact present the largest risk. A number of high
probability events of low consequences can present more of a risk than a low probability
catastrophic event. The figures were dominated by numerous small LOCAs , rather than
the major LOCA and subsequent core melt-down sequence of WASH-740.

WASH-1400 also emphasised the importance of human reliability considerations in
evaluating overall system safety. This was illustrated dramatically in the Three Mile
Island (TMI) incident in 1979. In TMI human misinterpretation of the situation
resulting from mechanical failure led to the release of contaminated gas to the
environment. The incident called into question the methods and conclusions of the
WASH-1400 report. After initial criticism however, it was realised that WASH-1400
successfully predicted the early event sequences in TMI; the complete accident sequence
was not predicted due to design differences in the TMI plant. The report of the
President's Commission on TMI (the Kemeny Report) concluded that the WASH-1400
methodology was on the right track but lacked refinement and application. In the
following years a number of PRA studies were published and PRA has since seen
widespread application in many industries.

In the process industries emphasis was placed not only on safety but also on the
economic aspects of operability and availability. Elucidation of potential failures and
their consequences relies heavily on the general experience and specific knowledge of
engineers and line managers. Large companies were conducting extensive safety audits
and studies accompanying all stages from initial design formulation through to plant
commissioning. At ICI in the early 1970s, refinement of the Method Study led to the
development of Hazard and Operability Studies - HAZOP, to form an integral part of a
Hazard Analysis - HAZAN (similar in concept to PRA) [Kletz 1985]. HAZOP
addresses the problem of hazard identification in that causes and consequences are
derived for an exhaustive list of all possible deviations from normal operating conditions
and all possible equipment failure modes. It has since been adopted as a standard
technique by many companies. It may be utilised not only for hazard evaluation but also
for instrumentation and control design, maintenance planning and fault diagnosis. One
disadvantage of HAZOP is that it requires a large investment of the time of experienced
personnel. The resultant expense can easily exceed 1% of capital cost [Whitehouse
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1982). Lihou [1980c] developed a technique of recording events in the form of logical
equations expressing the causes and consequences of process deviations and equipment
failures. The technique has been shown to be considerably quicker than conventional
tabular HAZOP. The cause and symptom equations may also be used to produce fault
trees directly, thereby permitting probabilistic assessment. This represents an important
bridge between FTA and HAZOP. FTA of chemical plant has been hindered by the
problem of hazard identification as it is a "top down" technique requiring the prior
identification of hazardous events.

In 1974 the town of Flixborough was shaken by the explosion of a cloud of
cyclohexane vapour at the NYPRO UK chemical plant. Although the ultimate cause of
the accident was mechanical - the failure of a by-pass pipe - the pipe had been installed as
a temporary measure and was operated in unsafe conditions for a longer period than
originally intended. The incident illustrated the role that the failure of management
systems could play; managers are not always cognizant of the implied hazards.
Following public outcry the Health and Safety Executive (HSE) compiled a list of 1700
hazardous sites in the UK. Surprisingly this was the first time that this had been done.
Calls for tighter control by national and local government brought about legislation and
planning controls in subsequent years. Following the Seveso disaster in Italy in 1976, in
which a cloud of highly toxic dioxin contaminated gas was released, the EEC has taken
steps to tighten safety measures.

For reliability analysts concerned with fault propagation, Fault Tree Analysis (FTA)
dominated the 1970s. In view of the considerable resources necessary to produce
comprehensive fault trees attempts have been made to computerise this process. The first
published attempt at this was Fussell's Synthetic Tree Method (STM) [Fussell 1973b]
applied to electronic systems. In essence the method consists of decomposing the system
into individual components, for each of which a mini fault tree exists in a library. The
minitrees are then combined to produce the overall fault tree. Although the method has
its limitations it marked the beginning of a more widespread effort towards automated
Fault Tree Synthesis (FTS). These methods, largely based on causal models of system
components have been applied to electronic, nuclear and chemical processing systems.

The first attempt at automated FTS for a chemical plant was made by Lapp and Powers
[Lapp 1976]. Their approach was novel in that the synthesis was founded on plant
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digraphs - a representation of the nature of the interrelationships between process
variables. The original paper was followed by a rather puzzling bout of frenzied
nitpicking in the literature, concerned with a possible logical flaw brought about by Lapp
and Powers' use of XOR gates. By 1980 progress in this area had been severely limited
by the problems of obtaining logically credible fault propagation analyses . By this time
other methods of representing fault propagation had been found. these included Cause
Consequence Diagrams and Event Trees .

1980

In recent years economics have continued to be a driving force in the pursuit of
increased safety and reliability. An apparent financial crisis in 1984 brought the US
nuclear power industry to a virtual standstill; no new power station projects have been
initiated in this decade. In the UK the long lasting Sizewell B public enquiry was
symptomatic of this trend. The reason for the financial problems is that safety
considerations have now become integrated into the costing of nuclear programmes; the
result has been in sharp contrast to the "too cheap to meter" claim of the 1960s. A
notable exception to this trend is the French nuclear power programme which currently
provides 70% of the country's electricity needs. According to Fussell:

"One question that arises in the prevailing atmosphere of doubt
about nuclear power is whether we have the technical tools for
assessing and improving system reliability and plant safety in such a
way that we can begin to allay public fears and restore financial
credibility to nuclear power" [Fussell 1984]

Since WASH-1400 [Nureg 1975] the emergence of useful failure data concerning
nuclear systems had, by 1984, brought about the publication of 22 US nuclear power
plant studies [Fussell 1984]. PRA had become firmly established as a means of
evaluating such risks. One conclusion emerging from these studies, along with analyses
of the TMI incident, is that public risk is 50% dependent upon human performance. This
dependence was confirmed by the Chernobyl disaster in 1986, where operators
responding to technical personnel requests deliberately disabled safety systems. This
disaster, and the contamination of the Rhine by pesticides from the Sandoz factory fire in
Basle, have also illustrated the international nature of major hazards.
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In a large number of modern-day disasters, for example Flixborough, TMI, Chemobyl,
Challenger and Piper Alpha, human error has played a major part. To incorporate human
factors in risk assessments or hazard analyses it is necessary to identify and quantify
these errors and to attempt to identify their causes. In the past two decades a number of
human reliability assessment techniques have been developed, the best known of which is
THERP - the Technique for Human Error Rate Prediction, developed for the nuclear
industry. More recent techniques attempt to incorporate expert judgement in the
prediction of human error rates and causes, for example the Success Likelihood Index
Method (SLIM) [Whalley 1987]. In these techniques ergonomic criteria are used to
assess those environmental and human characteristics which influence personnel
performance, these are known as Performance Shaping Factors [Whalley 1987].

In the process industry as well as the nuclear industry, attempts are being made to
standardise methods of improving safety and reliability and of evaluating operational
risks. The report of the International Study Group on Risk Analysis [ISGRA 1985]
presents a formalization of the concepts used in risk analysis and suggests the use of
HAZOP and FTA as the principal methods of numerically evaluating risk. In this latter
respect the Chemical Process Industry (CPI) lags behind the nuclear industry although a
bridging between HAZAN (CPI) and PRA (Nuclear Industry) is being seen in the UK
nuclear reprocessing industry [Hensley 1985].

There is now available a wide range of computer programs for evaluating the
complexities and problems of manually synthesised fault trees [Lee 1985). Although
some progress has been made towards automated synthesis, perhaps more significant to
date is the appreciation of the value of the insights gained by the engineers who conduct
fault propagation studies. Human understanding has also been found necessary in
ensuring the correctness of the fault models produced.

In recent years, the term 'expert system' has become widely, and perhaps incorrectly,
used to describe programs which are not truly knowledge based or expert. One example
is the class of programs which, only a few years ago, were termed Decision Support
Systems (DSS). DSSs are becoming available which are able to assist nuclear power
station control personnel in fault diagnosis and mitigation [Nelson 1984]. The
information utilised by these systems is primarily derived from standard operating
manuals and fault diagnosis procedures. Those DSSs which can be said to be truly
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knowledge-based also attempt to incorporate the experiential, heuristic knowledge and
procedures utilised by accomplished personnel. Considerable research has been
undertaken into automated Fault Diagnosis and Alarm Analysis systems, both algorithmic
and knowledge based. These systems commonly rely on incorporated fault propagation
models or knowledge. Research is currently being undertaken to synthesise fault
propagation information using knowledge based systems, the subject of this thesis.

If the 1970s was the decade of Fault Tree Analysis, the 1980s has so far seen
reliability engineers concentrating on the evaluation of network reliability [Coppola 1984].
Communication, in terms of electrical, distribution and computer networks can be
considered topologically as a collection of nodes connected by links, but, due to the
exponential relationship between the number of nodes in a system and the amount of
'number crunching' required, efforts have been directed towards methods of network
decomposition and algorithms for network reliability approximation [Aggarwal 1982].

This emphasis on approximation of system reliability is made not only in the face of
computational complexity but also because of the inaccuracies of available primary failure
data. These data can generally be expected to fall into an error band with a range of a
factor of 2. This being the case, resultant system reliability can be no more accurate (few
people express confidence in the accuracy of statements such as 'failure once in a million
years').

A number of the major disasters that have occurred in recent years have illustrated the
importance of Safety Management Systems (SMS) in the face of potential hazards. The
space shuttle Challenger, which suffered catastrophic failure in 1987, is a case in point.
The technology was at fault, engineers were aware of the problem, but NASA failed to
take corrective action. The Bhopal disaster in 1984, causing the deaths of thousands,
may have come about as a result of poor design and management on behalf of Union
Carbide. No matter how refined reliability technology becomes, it is valueless unless it is

implemented.

In the past there has perhaps existed the unfortunate opinion that considering safety
leads only to increased expenditure (on expanded instrumentation schemes for example).
It is now clear that improving reliability, up to an appropriate level, leads not only to
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increased safety but also to higher efficiency and improved industrial relations, with
corresponding economic implications.

If a high standard of Safety and Reliability is required, this currently involves the
application of techniques such as HAZOP, Fault Tree Analysis and other complex
analyses. These techniques are expensive and time consuming. As the cost of computers
continues to fall, the future is likely to see their increasing application as aids to the
analyst in these areas. Conventional data processing approaches to the more expert areas
such as Fault Tree Synthesis appear to have met with very limited success. The nature of
the expert approach suggests the application of the technology of Intelligent, Knowledge
Based Systems which emerged during the later 1980s. A review of this subject is
presented in the next chapter.



2.3 SYSTEM SAFETY AND RELIABILITY

2.3.1 Literature Overview

The bibliography contains references which bear on the subject matter of this thesis,
including those which are detailed in the text. Due to limitations of space, this
bibliography should not be considered complete, although efforts have been made to
ensure that pertinent references are included.

For the items in the bibliography concerned with Safety and Reliability the following
series of diagrams (Figures 2.3.1b-g) present a hierarchical classification according to
subject matter. This is not a general classification but focuses on the specific area of fault

propagation analysis, presenting:

+ Safety and Reliability SSR Figure 2.3.1b
+ Risk Analysis RA  Figure 2.3.1c
« Causal Analysis CA  Figure 2.3.1d
* Fault Tree Synthesis FTS Figure 2.3.1¢
« Fault Diagnosis FD  Fgure 2.3.1f
« Human Factors HF  Figure 2.3.1g

The classification is outlined in Figure 2.3.1a.

Those references providing a further literature review or bibliography are underlined.
There is an approximate correlation between the classification and the sub-headings of
this chapter; the diagrams may be used as an overview when reading the appropriate

section.

FIGURE 2.3.1a Qutline of Literature Classification
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FIGURE 2.3.1b System Safety and Reliability SSR
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FIGURE 2.3.1c Risk Analysis - RA
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FIGURE 2.3.1d Causal Analysis - CA
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FIGURE 2.3.1e Fault Tree Synthesis - FTS
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FIGURE 2.3.1f Fault Diagnosis - FD
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FIGURE 2.3.1g Human Factors - HF
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2.3.2 PRA/HAZAN

Probabilistic Risk Assessment (PRA) and Hazard Analysis (HAZAN) involve the
quantification of the Risks or Hazards associated with a particular activity. There are
essentially four stages:

1) Hazard Identification

2) Consequence Quantification

3) Quantification of probability of occurrence of Hazards
4) Quantification of Risk

The quantification of the risk is a product of the results of stages 2 and 3:

RISK = [Probability of occurrence] * [a measure of the consequences]
' [of unwanted events ] [of the unwanted events ]

Figure 2.3.2a gives a possible sequence of the stages that may be involved in
quantifying the nsk associated with an activity in the chemical process industry. Figure
2.3.1c gives a hierarchical breakdown of some of the literature in this area.



FIGURE 2.3.2a Risk Assessment
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As may be seen from Figure 2.3.2a, Risk Assessment involves a number of techniques
which analyse the propagation of faults in process plant: HAZOP, Event Tree Analysis,
FMEA and Fault Tree Analysis.

These techniques involve a considerable investment in human resources. This research
is concerned with the identification of the generic problems of fault analysis with a view to
providing automated support for these techniques using Knowledge Based or Expert
Systems technology.
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2.4 HAZARD AND OPERABILITY STUDIES

This section deals with the following aspects of HAZOP: its background, the technique
itself and its application, difficulties experienced with HAZOP, and more recent
developments which contributed to the initiation of this research.

2.4.1 Background

By the late 1960s hazard assessments were beginning to accompany all stages from
project conception through to operation of new plant; this was exemplified in the Hazard
Studies of ICI [Gibson 1976, Lihou 1977]. In recognition of the fact that failure to
identify certain hazards is often due to omissions in the face of complexity rather than a
shortfall of knowledge or information attempts were made to devise systematic methods
of identifying and evaluating process deviations. One such method, evolving from
Failure Mode and Effect Analysis (FMEA- section 2.6) [Browning 1970], and ICI's own
'Critical Examination' [Kletz 1985], became known as the Hazard and Operability Study
(HAZOP), which came into use in the early 1970s [Lawley 1973,74,76]. This technique
has since found widespread use as the principal method of identifying hazards in the
process industries.

2.4.2 Application of HAZOP

The aim of a HAZOP is to identify all major hazards and operability problems that

could arise as a result of process failure or maloperation.

A HAZOP of a new design is typically carried out using a P&ID or line diagram as
soon as possible after it has been completed, so that necessary modifications can be
carried out before detailed design commitments are too far advanced. For existing plant
undergoing a safety review it is important to ensure that the P&ID is accurate and up-to-
date, reflecting modifications from the original design. HAZOP may be applied to
preliminary process flowsheets early on in the life of a project; in principle the technique
is applicable at all levels of detail.
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A HAZOP team consists of several engineers and managers with experience or
knowledge relevant to the process under investigation, along with a chairman
accomplished in the technique and responsible for comprehensive recording of the
results. Kletz [1985] has produced a useful guide for engineers which discusses the
application and organization of HAZOP in greater detail and in the context of HAZAN
(Hazard Analysis) of which it forms a part.

HAZOP studies are so named because their purpose is to identify potential hazards
and operating problems. Analysis of the results from ten studies revealed the breakdown
of these problems to be as follows [Lihou 1980b].

TABLE 2.4.2a Problems Revealed by Analysis of Results from Ten HAZOPs

Timing of Study

Design Operation
Unexpected operating problems 57% 33%
Hazardous malfunction 26% 40%
Operating problems causing hazards 17% 27%

These data show that operability studies tend to reveal more operating problems than
potential hazards. This illustrates the key role that HAZOP can play in formulating (or
evaluating) operating instructions, fault diagnosis procedures and maintenance schedules.
The most common result of the utilization of HAZOP results is the reappraisal and
redesign of control and safety systems, rather than the revelation of major equipment
design flaws. In high risk operations, or in the evaluation of a major hazard, however,
HAZOP plays only a preliminary role as a precursor to detailed quantitative causal
analysis, ie HAZAN or PRA.

2.4.3 HAZOP Procedure

The first step in any HAZOP is the assembly of case-specific information relating to
the plant or design under consideration. This consists principally of:
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1) Comprehensive system charts or flowsheets, commonly P&IDs.

2) Expected operating specifications: physical, chemical and temporal parameter
envelopes, eg materials, flowrates, temperatures, reaction data, phase data, control

parameters etc.

3) Case-specific equipment operating and failures modes, design envelopes and fault
propagation characteristics.

A more detailed breakdown of the knowledge used in HAZOP may be found in
Chapter 5 which also discusses the specific and generic knowledge brought to the study
in the form of the expertise of the participants.

The basic procedure in a HAZOP is to consider all plant items - vessels, lines and
auxiliaries - in a systematic fashion, commonly based on a P&ID. The study team
considers all possible deviations from the intended operating conditions and looks for
their causes and consequences, noting any action to be taken to mitigate revealed
problems. The study is of the brainstorming type in order to prevent preconcieved or
overly structured thought processes leading to significant omissions. As a result of
workload pressures, however, it is common practice to record only those events which (in
the eyes of the analysts) could lead to a potential hazard or major operability problem.

The detailed sequence of an operability study with the systematic breakdown of the
P+ID into individual items is illustrated in the flowsheet of Figure 2.4.3a. For each
vessel, all lines and auxiliaries are studied in sequence, usually following the direction of
flow of the main process stream. As a preliminary to the consideration of any item, its
function and/or purpose is noted, along with key operating conditions; this focuses
attention on deviations which contravene these design intentions and ensures that
quantitative requirements and limitations are borne in mind.



FIGURE 2.4.3a Detailed Sequence of a HAZOP Study
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To facilitate consideration of all deviations a set of guide words, representing qualitative
change (eg more, less), are applied to each plant item. A list of seven guide words
recommended in the CIA guide to HAZOP [CIA 1977] are explained in Table 2.4.3a.
Each guide word is considered in turn, and is applied to process variables or operations
pertinent to the particular item to produce qualitative deviations from normal conditions
(eg more flow). If a given deviation (event) is considered both credible and significant, its
causes, consequences and indicators are noted, along with an evaluation of hazards or
operating problems and actions determining appropriate prevention or limitation of these
problems. The results are tabulated under headings such as Guide Word, Deviation,
Causes, Consequences and Action Required. An early example of a HAZOP study was
published by Lawley [1974].
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TABLE 2.4.3a HAZOP Guide Words

Guide Word | Meaning Comments
NO or NOT The complete negation of | No part of the intentions is
the intentions achieved; nothing else happens
MORE Quantitative increases Applicable to quantities and
or decreases properties such as flow and
temperature as well as activities

LESS such as 'heat' and 'react’

AS WELL AS A qualitative increase All intentions are achieved
together with some additional
activity

PART OF A qualitative decrease Only some of the intentions are
achieved; some are not

REVERSE The logical opposite of Mostly applied to activities, eg

the intention reverse flow, chemical reaction
or heat transfer

OTHER THAN | Complete substitution No part of the original intention
is achieved. Something quite
different happens

2.4.4 Difficulties With HAZOP

A common objection to HAZOP is that it may result in expensive plant or design
modifications. This viewpoint is easily refuted: "the main objection to visiting the doctor
is that it may result in expensive bills for treatment" [Kletz 1985]. There are, however, a
number of genuine problems associated with HAZOPs conducted in the fashion

described above:

1) Although guide words provide for the inclusion of all qualitative aspects of change
(eg more, less) there is no corresponding checklist to cover all of the process
conditions and operations that are subject to change (eg flow, pressure). Similarly

there is no systematic formalization of equipment failure modes.




2)

3)

4)

5)

6)

7

Considerable effort (and therefore expense) is required to produce comprehensive
HAZOP results. Shortcuts or omissions reduce the confidence that all major losses
have been included.

Whilst discussion of minor event sequences may take place, only "important' event
sequences are usually recorded.

For each entry in a HAZOP table there is a tendency to directly relate each event back
to its root causes (primary failures), or forward to its ultimate consequences (major
losses). This means that the details of fault propagation are not recorded.

Each entry in a table represents a discrete event sequence. In conjunction with 3 and
4 above, this produces difficulties in uncovering remote interactions; the team may be
forced to flit backwards and forwards over the P&ID in order to identify the
interactions. In cases where intervening causal chains are omitted due to their lack of
"importance" the team cannot use previously noted records in tracing an event to a

remote cause. Significant omissions may occur as a result of these problems.

Any modification of the original design necessitates a re-evaluation of the HAZOP.
It is often impractical to completely redo a section of plant and a piecemeal approach
may lead to significant omissions, especially in the case of remote interactions.

A problem common to many types of qualitative analysis:- each analyst or team will
almost certainly produce a different result. Because of the lack of a formal causal
structure, these results are difficult to compare and to verify. This exacerbates
problem 6 as the original HAZOP team is usually not available.

2.4.5 Recent Developments

In the late 1970s, workers at Aston University tackled these problems. The technique

devised by David Lihou [Lihou 1977,78,80c, Jones 1987] is described. This is illustrated
by an example: the Ammonia Let-Down System (ALDS), part of which is shown in
Figure 2.4.5a, drawn from reference [Lihou 1982d] which is reproduced in full in

Appendix 1.
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FIGURE 2.4.5a Ammonia Let-Down System - Two Phase Splitter
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Progress was made in three stages: formalization of events and failure modes,
recording causal information in the form of logical equations, and the linking together of
the equations using computer aids to produce fault trees for further analysis.

1) Formalization of Events and Failure Modes

An event is defined as follows:

event = object ( property word , guide word , {component})

e.g. Line 1 ( flow , more syngas )



Object refers to the physical location of the event (vessel, line, valve etc). Guide
Words (no, more, less etc) are as defined in Table 2.4.3a, and are applied to Property
Words: the process variables and conditions (flow, temperature etc) shown in Table
2.4.5a. The names of process materials (components)are included where appropriate.
Thus an example of an event is "Line 1 (flow, more, syngas)", as above. For rapid
recording of the results, property words, guide words and components may be referred to
by index numbers. The complete set of index numbers for the ALDS is shown in Table
2.4.5b. The example event becomes "L1(133)". In considering a particular plant item, the
team may prefer to consider each property in turn, applying the set of guide words to it.
In this case, the first two columns in the tabulated records would read property word,

guide word, rather than guide word, deviation.

TABLE 2.4.5a Property Words

Process Process Physical
Conditions Operations Properties
Flow Separate Density
Temperature Heat Transfer Viscosity
Pressure Mix Vapour Pressure
Level Absorb Calorific Value
Concentration React pH
TABLE 2.4.5b Index Definitions for Events in ALDS
Index | Property Word Guide Word Component
1 Flow No Ammonia Liquid
2 Pressure Less Ammonia Gas
3 Temperature More Synthesis Gas
4 Level As well as Methane
5 Concentration Part of / fluctuation | Instrument Air
6 Separate Reverse
1 Heat Transfer Other than
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Relevant equipment failure modes are also tabulated, and may be referred to by code
numbers or letters. Those for the ALDS are shown in Appendix 1.

The importance of these tabulations is that, in principle, all plant fault states (process
deviations and equipment faults) may be defined a priori. This provides a structure for
the inclusion of all such faults, ensuring that none are omitted.This complete set is, of
course, limited by the context of the plant item(s) under consideration at any particular
time.

2) Cause and Symptom Equations (CSET)

As an alternative to tabular records Lihou [1980c,d] suggested that causal links could
be recorded in the form of logical equations:

Cause equations:-  in which a process deviation is equated to the logical combination of
its causes,

Symptom equations:- where deviations at the inputs to process vessels are equated to their
consequential effects in, or at the outputs of, the vessel

In order to explicate causality within and through vessels, appropriate points or streams
within vessels are defined as Nodes, serving as locations for the definition of events

thereby facilitating symptom equation formulation.

In the ALDS P&ID, Figure 2.4.5a, we may consider the causes of no flow in line 2:

Line 2 (flow,no) caused by : Node 2 (flow no)
or Line 2 (blocked)
or Line 2 (blocked valves)

This cause equation has the coded form: L2(11) = N2(11) + L2(0) + L2(BV)
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Looking at the consequences of no flow into C1:

Node 1(flow,no) causes:  Node 2(flow,no)
and Node 5(flow,no)

which may be represented by the symptom equation: NI1(11)-N2(11) * N5(11)

The operators used here (=,-,*,+) distinguish cause and symptom equations and denote
‘and' and 'or' logic relations. The full set of equations for the ALDS is reproduced in
Appendix 1.

The use of cause and symptom equations has a number of advantages:
i) Provision is made for consideration of all deviations and failure modes.

i) Remote interactions may be thoroughly explored - fault trees may be
constructed directly (see below).

i1) The effects of plant modifications may be quickly assessed by rewriting the
appropriate equations.
iv) There is a considerable saving in the amount of time (and therefore money)

required for the study.

v) At any one time the team's attention is focused on a limited section of plant.
This allows for concentration on a section with clearly defined boundaries,
rather than flitting from place to place on the P&ID exploring remote
interactions. Remote interactions are uncovered by equation links.

vi) Using a computer gives a permanent but modifiable readily accessible record.

vii) Computer oriented structured synthesis raises the possibility of automated

synthesis.

3) Fault Trees from Operability Studies

In a comprehensive HAZOP study using cause and symptom equations, all significant
events and causal interactions should be described. It is then possible to produce a fault
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tree directly for a desired event by tracing the causal logic through the equations.
Obviously, this is much easier to do by computer than by hand, and suitable software has
been written. In the CAFOS program [Jones 1987] the equations are interpreted into a
suitable form for fault tree analysis. The fault tree may be displayed pictorially for
qualitative assessment, and probability calculations may be carried out based on available
primary failure data. The author has subsequently written a personal computer version of
the program - PC-CAFOS [Booth 1986]. Both packages have found commercial
applications.

Detailed discussion of fault tree analysis and fault tree synthesis may be found in
section 2.5. It may not have escaped the reader’s attention, though, that the technique
described above is significantly different from conventional HAZOP. Indeed it may be
said to be closer to fault tree synthesis, as the end result is explication of all events and
causal relations rather than just those of significant interest. Furthermore, generation of
cause and symptom equations is not accompanied by an immediate analysis of revealed
hazard states; there is no "action required'.

In a fault tree synthesis (section 2.5.3) a fault tree is developed for a single identified
undesirable event. In CSET (in principle) all fault trees are generated in one go. As the
equations are generated by the HAZOP team they are able to identify those undesirable
events which are worthy of further consideration. Once the set of equations is complete,
these events may be reappraised in the light of the full fault trees that are now available.
The computer aid allows exploration of remote interactions which may well have been
missed in a conventional HAZOP. For those events which are selected for detailed
HAZAN, fault trees are already available for qualitative and probabilistic evaluation.

It must be stressed, however, that confidence can only be placed in the quality of the
fault trees if the completeness and logical correctness of the CSET study is assured. If
there are any omissions in the equations, events will fail to "link up" in the fault tree. Any
malformed equations will result in illogical fault trees. In order to address these problems
Lihou [1982¢] has used general rules to assist in cause equation formulation; an example

is given in Figure 2.4.5b.
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FIGURE 2.4.5b An Example of a Cause and Symptom Equation Rule

Pipelines - Flow

No flow may be caused by any of the following:-

® No flow in the line(s) immediately upstream

No flow at the node where the line leaves an equipment

The supply tank empty

A valve shut in the line

A filter fully blocked in the line

A pump in the line stopped

It may be seen, then, that the use of cause and symptom equations provides a bridge
between the techniques of Fault Tree Synthesis/Analysis and HAZOP. The systematic,
formalised and structured method, the proof of ready computerisation by CAFOS and the
existence of synthesis rules as above all suggest the possibility of a rule-based system
("expert" system) to aid in the analysis. This possibility provided the initial stimulus for
the present research.
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2.5 FAULT TREE ANALYSIS

This section deals with the following aspects of Fault Tree Analysis:
1)  Background - The historical development of the technique
2)  Fault Trees - An introduction to their construction and utilization

3) Fault Tree Synthesis - An in-depth discussion of both manual and automated
synthesis

4)  Fault Tree Evaluation - How the trees are used after construction

The term '"Fault Tree Analysis" is used to describe the entire process of analysing a
system using fault trees, incorporating the two stages of synthesis and evaluation. An
overview of fault tree analysis literature is given in Figures 2.3.1d and 2.3.1e.

2.5.1 Background

Fault Tree Analysis was first devised in 1961 to evaluate the reliability of the launch
control system of the Minuteman missile. After a safety symposium in 1965, at which a
number of papers on the subject were presented [Haasl 1965], the technique was more
widely investigated by reliability and safety analysts who at that time were in need of such
a means of evaluating the causes of identified system failures.

In the early 1970s fault tree analysis was adopted for widespread use in the aerospace,
electronic,and nuclear industries; a study evaluating US light-water reactor accident
sequences - WASH-1400 [NUREG 1975] devoted 1300 pages to the subject. In proving
the usefulness of the technique this also illustrated the considerable effort involved in the
synthesis of fault trees - in this case, measured in man-years. A number of workers
tackled the problem during the decade, meeting with some success in the development of
computer-based synthesis aids (section 2.5.4).

Considerable efforts were also directed towards the automated evaluation of fault trees,
both qualitative, in terms of cut-set and path-set (tie set) derivation, and quantitative -
probabilistic assessment of the likelihood of faults based on available primary failure data,
and statistical analyses comparing event sequences. A large number of commercially

54



available codes were written during this period [Lee 1985]; such codes were proven to be
a necessity rather than a luxury by WASH-1400.

A recent review [Lee 1985] illustrates the domination of the reliability literature of the
1970s by fault tree analysis. It has emerged as the principal method of fault propagation
analysis in Probabilistic Risk Assessment (PRA) and Hazard Analysis (HAZAN).
Although computerised evaluation is well advanced, automated synthesis has met with
limited success and has not gained widespread acceptance.

2.5.2 Fault Tree Analysis

Hazard identification procedures such as HAZOP, when used in a Hazard Analysis
(HAZAN) reveal the possibility of occurrence of a number of unwanted happenings,
termed events. In order to discover how these events may come about, and how likely
they are to occur, it is necessary to make explicit all relevant event sequences, from
primary equipment failure or human error through to the specific identified event. Fault
Tree Analysis provides a means of describing and evaluating this fault propagation.

The starting point in the construction of a fault tree is the identified unwanted event,
termed the "top event". The first step is to deduce the immediate causes of the top event,
grouping them according to how they combine to cause it. This is illustrated in the simple
fault tree shown in Figure 2.5.2a, where the causal logic is shown by AND and OR logic
gates.

FIGURE 2.5.2a A Simple Fault Tree
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Each leaf ("bottom event") in the tree is considered in turn, the combination of events
causing it being described. This iterative process continues the downward development of
the tree until "primary events" are reached. These are events such as component failures
which are considered to have no causes (more specifically, they have internal failure
causes which are not developed), or events which need no further resolution; failure data
is available or may be estimated, or failures whose causal sequences are difficult to
identify (many human errors fall into this category); failure rates must be estimated from
the best available experience. Events whose causes lie outside the defined system (usually
occurring at the physical boundaries of the system) fall into this category.

Once constructed, a fault tree may be evaluated qualitatively - by inspection or by
derivation of event cut sets and path sets, and quantitatively - primary event failure data
may be used to directly calculate the probability of occurrence of the top event. Fault tree
evaluation with respect to the verification of the synthesis is discussed in section 2.5.5.

Fault tree analysis is of value in:

® Helping the analyst to understand the system and the implications of the
chosen design

® Assessing hazard or risk levels.

® Assessing system availability / mission success rate.

® Directing safety/reliability resources to areas where they are best employed.
® Comparing different designs.

® Identifying and analysing common mode failures.

® Identifying events critical to system reliability and thus components critical to
system operation.

® Compiling operating manuals, fault diagnosis aids and maintenance schedules
® Demonstrating compliance with safety requirements.

® Justifying design changes.

e Evaluating the effectiveness of safety systems.

The use of fault trees is discussed in [Young 1975].
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2.53 Fault Tree Synthesis

Fault tree synthesis encompasses a number of procedures:

1) System Definition

Before constructing a fault tree the analyst must possess a thorough understanding of
the system under consideration; all relevant information must be available:

» comprehensive system charts or flowsheets: eg circuit diagrams or P&IDs.
» process specifications (materials, design and operating parameters etc)
» component operating and failure modes and fault propagation characteristics.

= system boundary conditions (spatial and temporal) - those conditions which
must or must not be present and specific operational parameters pertinent to the
top event, serving as limitations on the events allowed in the context of the top
event.

It is important that the top event is carefully selected and defined; the assumptions in its
definition determine the system boundary conditions and thus the nature of the final fault
tree. The information required here is similar to that required for HAZOP (section 2.4);
Powers [1974,75] presents a classification which is of value in ensuring its completeness.
A more detailed study of this knowledge appears in Chapter 5.

2) Event Definition

An event may be either a fault or a failure. Failures are those events which are
considered primary (having no further causes - see above) whereas the causes of a fault
‘ may be developed further - these may be other faults or failures. An event is defined by its
location - the item where it occurs, and the state which the item enters into. Table 2.5.3a
shows the conventional event symbols as used in WASH-1400 [NUREG 1975],
although there are variations on this theme [Fussell 1976, Haasl 1981].

3) Logic Gates

Although it is only necessary to use AND and OR gates in constructing a tree it is
sometimes useful to employ others, shown in Figure 2.5.3b. XOR and NOT gates must
be used with caution as there are problems in ensuring the logical correctness of the
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resulting tree. In a fault tree, all primary events should be independent of each other. Any
interdependence is called s-incoherence and requires special means of evaluation [Fussell
1976, Rosenthal 1980, Joller 1982a]. It is possible (and simpler) to construct fault trees
using AND and OR gates only; XOR and NOT gates should not occur in logically
formed fault trees and INHIBIT gates may be replaced by AND gates without affecting
tree evaluation; this simplification is generally made in automated synthesis.

TABLE 2.5.3a Fault Tree Event Symbols

[ ]

&)

<

Fault

Results from the
combinations of events
through the input logic gate.

Primary Failure

A basic event or component
failure requiring no further
development.

Primary Undeveloped

Considered a basic event
because it is of insufficient
COI’IS&C]I.IEI'ICE or the neccessary
information is unavailable.

Q

()

A I

Subtree Exists

A subtree exists and has been
evaluated elsewhere;
the quantitative results are

Switch/normal state
A switch to include or
eliminate parts of the fault
tree which may or may not

Transfer in/out

Used to modularise the tree.
Applicable in the case of
repeated events in the fault

inserted as though it were apply to certain situations. tree.
a component. Also used to describe high-
probability normal events.
TABLE 2.5.3b Fault Tree Logic Gate Symbols
(exclusive
AND OR INHIBIT | XOR = NOT

The output event
occurs if all the
input events occur

The output event
occurs if one or
more of the input
events occur

The input event
directly produces
the output event
if the indicated
condition is
satisfied

The output event
occurs if one and
only one of the
input events
occurs

The output event
occurs if the
input event does
not occur
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4) Tree Synthesis

Published information dealing with generalised fault tree construction (apart from
automated synthesis (2.5.4)) is limited. Reliance is placed largely on the knowledge and
understanding, intuition, deductive capability, thoroughness and previous experience of

the analyst.

Haasl [1965,81] devised a "structuring process" to assist in the selection and
application of logic gates when developing the tree. Fault propagation is developed from
the functional or structural description of the system through system, subsystem and
component levels. In this methodology three types of causal event are defined, as in
Figure 2.5.3a:

1. Primary Failure - due to internal failure of the component; when operating in an
environment for which the component is qualified; causes are not
further developed.

2. Secondary Failure - due to factors outside the component design envelope

3. Command Fault - maloperation of a component due to the action of an initiating
element via a control signal or external normal causal connection,
distinguished by the fact that the component can operate correctly if
the initiating element returns to an unfailed state.

FIGURE 2.5.3a Causal Event Classification
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Applying this "gate template' in conjunction with the component failure characteristic
diagram Figure 2.5.3b [Henley 1981] assists in developing the causes of a particular
event.

FIGURE 2.5.3b Component Failure Characteristics
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From the limited publications dealing directly with manual FTS techniques [Barlow
1975b, Dunglinson 1983, Fussell 1976, Haasl 1965,81, Prugh 1981] it is possible to
identify a number of guidelines, principally based on Haasl's "'structuring process'"



D
2)

3)

4)

5)

6)
7)

8)

Ensure that the 'where', 'what' and 'when' of all events is described fully.

Causality should not pass through an OR gate. Inputs to an OR gate are identical
to the output but are more specifically defined as to cause. If causality appears to
pass through an OR gate this is an indication of a missing AND. This rule (which
is largely ignored) is a reflection of the fact that a given event in a fault tree actually
represents a system state , ie for that event to occur the system is in a certain fault
state defined by a sequence of events occuring below the given event in the fault
ree.

When refining an event ask: can this event consist of a component failure?

Yes - state-of-component fault - add an OR gate and find primary, secondary, and
command fault modes.

No - state-of-system fault - look for immediate,necessary and sufficient causes
through AND and OR logic.

A given event may be defined in terms of a failure mechanism, mode or effect, ie
for a given subsystem:

Failure Mechanism - the sequence of events internal to the subsystem which causes
it to fail.

Failure Mode - a failed state of the subsystem, defined at the subsystem level.

Failure Effect - the effect of the subsystem failure on the system of which it forms
a part.

Refinement of an event thus passes from failure effect, through mode, to
mechanism, ie the effect of a subsystem failure becomes a mechanism of a failure

mode of the system.

No Miracles: assume "all other things normal", ie a component will ‘always

propagate a fault.
Complete the gate: complete all inputs to a gate before further refinement.

No gate-to-gate: ensure that the output of a gate leads to a defined event and not
directly to another gate.

Repairability of components is a consideration only when evaluating the fault tree;
when constructing the tree consider all components as non-repairable.
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9) It is useful to distinguish between initiating and enabling events [Dunglinson
1983]. Some events initiate fault propagation whilst others permit the propagation
to continue by enabling AND gates (eg a control system device failure or
redundancy loss). The enabling event may remain undiscovered for some time,
before an initiating event combines to cause a fault.

The top event of a fault tree is often general in nature (eg "chlorine release') and must
first of all be defined in terms of system faults. Definition of the "tree top" largely
determines the structure of the tree thereafter. As a number of top events such as vessel
overpressure, explosion, fire etc are encountered frequently it is useful to generalise the
corresponding tree tops to form templates for use in further analyses. The well known fire
triangle is a simple example of such a template. Prugh [1981] has described a number of
tree top templates applicable to process plant.

2.5.4 Automated Fault Tree Synthesis

2.5.4.1 Introduction

With the increasing interest in Fault Tree Analysis (FTA) in the early 1970s, it was JB
Fussell [Fussell 1973a,b] who first published a formalization suitable for automated fault
tree synthesis (FTS), for electrical systems. During the decade a number of workers
attempted to devise such methods for the nuclear and chemical process industries leading
to a number of publications which are classified in the literature overview (Figure 2.3.1e)
according to the basis of the synthesis. This section presents an outline, an analysis and a
discussion of FTS methods.

2.5.4.2 Qutline of Synthesis Methods

As can be seen from the literature overview synthesis methods fall into two main
groups, based on component models or graph models.

1) Component Models.

The system is decomposed into components or basic devices. For each component
causal logic is defined - as mini fault trees, decision tables, transition tables or transfer
functions; these causal models are usually stored in a generic library. Tree synthesis is
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achieved, essentially, by "cobbling together" mini-fault trees for individual components
according to the system topology to form the overall fault tree. This assembly may be
achieved with respect to constraints defined by the domain of the top event and of the
events added as the tree is developed, along with rules to structure the process according
to defined subsystems, event classifications, control systems and generalised logic.

2) Graph Models.

These methods are based on the topological representation of system variable and
component interactions in the form of variable digraphs, signal flow graphs or the
reliability graph of the system. The graph model is first synthesised from the structural
model (system description, eg P&ID or circuit diagram) and then an algorithm is used to
traverse the graph generating the fault tree. Generation is in the context of constraints
collected in the process along with generalised control loop and structural rules. This is a
process analogous to the use of constraint propagation for theorem proving in Artificial
Intelligence [Charniak 1980, Sussman 1980]

3) Structural Models

More recent efforts towards component model synthesis have focused on the
structuring of process systems by control loops. The plant is considered as a set of
interconnected loops, whose individual fault structures are combined to give the fault tree.

4) Knowledge Based Synthesis

The research presented in this thesis is concerned with knowledge-based fault tree
synthesis in respect of the similarity that exists between FTS and the method of HAZOP
recording using boolean equations [Jones 1987] discussed in 2.4.4. To date, the author is
not aware of any successful accounts of attempts to specifically generate fault trees using
KBS. KBS are, however, finding increasing use in the development of fault diagnosis and
decision support aids; relevant here are those knowledge based fault diagnosis systems
which generate causal models from structural descriptions. This topic is looked into in
the section on Fault Diagnosis, 2.7.

2.5.4.3 Analysis of Synthesis Methods

1) COMPONENT MODELS
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1a) Mini-Fault Trees
Fussell [1973a,1973b,1975]

Fussell formalised concepts involved in the causal analysis of simple electrical systems
to produce the Synthetic Tree Model - STM. This structured fault tree synthesis method,
whilst providing a manual aid, was suitable for computerization.

There are a number of salient features of STM:

1] System Definition

STM was designed to cope with simple linear electrical systems (involving switches,
fuses, relays, motors etc). Circuit diagrams showing components and their
interconnections are required. Obviously the top event must be defined, but this event may
not fall into the class of events defined within STM; here the tree top must also be
specified. (For example the event 'vessel overpressure' may have to be refined to the
events 'pressure relief switch failed' and "pump on too long"). To limit the analysis certain
system boundary conditions are required. The most significant of these are the top event
boundary conditions. These define events that are either allowed or not allowed in the
subsequent fault tree (eg for ‘pump on too long' a not-allowed event is 'pump stopped', as
the two cannot coexist).

ii] Component Failure Transfer Functions

These define the causal activity of a component. A set of generic transfer functions is
stored in a library, to be drawn on and instantiated for each occurrence of the component
in the system under consideration. A component has one failure transfer function for each
of its fault and failure modes, Figure 2.5.4a [Fussell 1973a], comprising:

® output event - a particular component failure mode

® output logic gate - determining the logic gate to be used when combining FTFs
with the same output event

¢ internal fault logic in the form of mini-fault trees, with input events in the form of
primary failures or command faults

® discriminator - conditions governing the coexistence of minitrees in the final fault
tree
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FIGURE 2.5.4a Component Failure Transfer Function
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1ii] Component Coalitions

A component coalition is defined as a subsystem containing all those components
which lie on a single series circuit path, ie share a single current flow path. This provides
for the definition of subsystem failure modes, eg 'no current in coalition X', which may be
related directly to corresponding component failure modes, eg 'no current in component

X.

iv] Fault Events

Apart from primary failure events, a classification of fault events is suggested:

Ist order - used only as top events, these must be refined further to include events
specific to components or coalitions in the STM model.

2nd order -fault events occurring at the coalition (subsystem) level, encompassing more
. than one component.

3rd order - component command faults due to subsystem or coalition failure.

4th order - component command faults due to directly connected component failure.
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v] Event boundary conditions

These are "allowed" and "not allowed" events associated with a given event when it is
added to the fault tree. The domain of an event E is defined to include any event lying in
the branch below E in the fault tree. If E forms an input to an AND gate, all inputs to that
gate also fall in the domain of E. Two incompatible events for the same component, eg
'fuse blown' and 'fuse overload' cannot coexist in a given domain. Thus when E is added
to the fault tree, boundary conditions must be considered when developing the domain of
E. "A most important corollary is that a fault event is equivalent to another fault event if,
and only if, their event descriptions and their associated event boundary conditions are, in
effect, identical" [Fussell 1973a]. This explains the phenomenon where two fault events in
a tree may appear to be identical (having the same item and incident definitions), but are
not so because their causal structures are different and incompatible. It is clear that XXX’
caused by 'AAA' results in a different system state than 'XXX' caused by 'BBB'.

Fussell goes into great detail in the definition and classification of boundary conditions
for the different orders of events.

vi] Tree Construction

An algorithm is used to develop the specified tree top down to primary or undeveloped
events. This proceeds according to the order of the event being developed, logic governing
inclusion/exclusion of events under AND and OR gates, and existing or generated event
boundary conditions. The order of an event determines the use of failure transfer
functions or the employment of the direct hierarchical relationship between current flows
in components and coalitions.

In attempting to apply component mini-fault tree model based synthesis to chemical
processes a major problem is soon encountered - how to link the component models
together? Information flow between electrical components is restricted to one parameter -
current flow, whilst in chemical processes components may interact through mass, energy
or momentum transfer, ie by means of many continuous variables.

Powers [1974,1975,1976]

Powers and Tompkins addressed this problem by devising Information Flow Models

for components. Based on rigourous mass, energy and momentum balance equations



these models take the form of "gain matrices" defining qualitative relationships between
independent and dependent component variables. Different components are linked by
those variables which they have in common. In the system as a whole, these component
linkages provide "Information Flow Paths" through the system model.

With the use of minitrees to define the 'tree top' for a particular event, subtrees are
refined by tracing through the diverging information flow paths. Component failures are
described by minitrees for use when a failure mode is required for completion of an
information flow path.

This method does not provide a complete fault tree synthesis structure (questions of
logic gate selection, control loops and fault tree coherence are not addressed), but rather a
means of ensuring that all component interactions are considered. The component models
(information flow matrices and failure minitrees) are extremely exhaustive and complex,
involving consideration of all the variables associated with the component. Attempts are
made to comprehensively classify the information that is required about a system before
fault tree synthesis can take place: equipment and chemical property data, along with
equipment failure mode data.

In describing component interactions, then, attention is focused on key process
variables rather than on the components themselves. In this respect this work can be seen
as the precursor to the variable-digraph approach of Lapp and Powers discussed below
(2a Variable Digraphs).

Hollo [1977], Taylor [1977,1982], Olsen [1978,19?.9]

The work carried out at the RISO Laboratories also uses component models to
represent chemical processes in a fault tree and cause-consequence diagram synthesis
strategy. Each component has a set of ports; connections between components, via these
ports, are defined by the user. For each component there exists a generic functional and
failure mode model, stored in a library, consisting of a set of mini-fault trees. These
minitrees causally relate component outputs (in terms of variable values and component
states) to input conditions and internal failure modes. Fault tree synthesis proceeds from
the top event downwards by progressive refinement of the leaves of the tree. Component
minitrees are combined by matching output and input events at ports linking components
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to form the overall tree. In contrast to the Powers and Tompkins method, then, attention is
focused on physical rather than parametric interconnections between components, and on
events rather than variables as component input/output.

Component models are constructed in a systematic manner to enable them to be
combined meaningfully in various system configurations. In a similar manner to that of
Powers, qualitative relationships between all component variables are rigorously defined
from steady state and dynamic equations. A large number of minitrees (typically 20 to 60)
are defined for each component. Feedback loops are catered for by introducing special
minitrees for those components which serve to reduce or eliminate process disturbance, in
order to introduce AND gates into the final fault tree. These minitrees take the form of
"output event occurs if input event occurs AND compensating component fails".
Provision is also made for introducing time delays into the component cause-effect
models to permit event sequencing, as these models have also been used for Cause
Consequence Diagram construction [Hollo 1977] (CCDs are discussed in 2.6).

Martin-Solis [1977,1982]

This work proceeds along similar lines in the synthesis of fault trees. The methodology
evolved from the alarm analysis network synthesis [Andow 1975] discussed in 2.7.
Component models consist of mini-fault trees derived from functional equations; the
mini-trees are combined in the overall fault tree. To ensure coherent trees, use is made of
the concepts of domain and event boundary conditions as described by Fussell [1973a]
and above (1a).

1b) Decision Tables
Wu [1977], Salem [1975,1977,1979]

In this representation components are modeled by decision tables [Pollack 1971]
which relate each possible output state of a component to a set of combinations of states
of inputs and internal operational or failure modes. The decision tables are essentially a
compact means of recording the same information that could be conveyed by a set of
mini-fault trees (their principal advantage is that of ready storage and manipulation by
computer). Consider the simple decision table for a pump, and the corresponding
minitrees in Figure 2.5.4b. (Wu et al use a numeric notation for variable values and failure
modes which is here translated for clarity). For a given row in the table, the output value
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is true if all the preceding values in the row are true (*-' for a value indicates "don't care").
This provides for the representation of AND logic between events (required for control

loops).
FIGURE 2.5.4b Decision Table and Mini-Fault Trees - a Simple Pump Model
Input 1 - Input 2 - Internal Output -
Flow In Power Mode Flow Out
No - - No
- No 2 No
- - Fails to run No
Normal Normal 0K Normal
ND NORMAL
OUTARLOW OUTFLOW
[ a2
I l 1 [ | |
no no fails normal normal pump
inflow power to run inflow power X
FAULT TREE SUCCESS TREE

The coupling of components is achieved by defining a set of 'nodes' throughout the
system. The output from each component is connected to a node which is, in turn,
connected to the inputs of one or more succeeding components; this provides for
divergence in fault propagation. Thus an output event of a component can be said to occur
at its output node; this nodal event corresponding with input events of succeeding
components.

Tree synthesis proceeds from the initial definition of the tree-top by successive
refinement of the tree leaves, tracing from effects to causes through component decision
tables and via linking nodal events. The fault tree consists of events occurring at nodes
(component input/outputs) along with component fault and failure modes. Logical
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correctness is addressed by editing during the construction of logic gates using rules
defining compatibility of events and event boundary conditions similar to those of Fussell
(above).

Kumamoto [1979] present a similar method of using decision tables to model
input/output/failure relationships. Synthesis of fault trees is not attempted, however, the
goal is the direct production of cut sets for a selected top event. The top event is first
defined as a single event decision table. This table is refined by successive replacement of
those events in the table which are defined as output events of component decision tables.
The end result is a decision table for the entire system (called a critical transition set) with
the top event as output, and primary events as inputs. Each row in this final table
represents a cut set for the output event. The critical transition table resembles the fault
matrices [Lihou 1980e] and system decision tables [Berenblut 1977] which have been
used for fault analysis by pattern recognition (section 2.7).

By this side-stepping of the fault tree representation, the aim is to avoid difficulties in
logical correctness of synthesised fault trees by not producing any. In practice, however,
rules governing transition from one decision table to another, as defined by Wu et al
above, must be employed for correct and complete cut sets.

2) GRAPH MODELS
2a) Variable Digraphs
Lapp [1976,77a,77b,77c]

The previous section (1a) discussed how Powers and Tompkins [1974,75,76] devised
information flow models for components to describe the directional relationships between
component variables. These relationships may be expressed diagrammatically in the form
of variable digraphs. Lapp and Powers described the manual synthesis of digraphs for
chemical processing systems and presented an algorithm for the synthesis of fault trees
from this plant digraph.

Consider the simple variable digraph for the control valve shown in Figure 2.5.4c. The
nodes in the digraph represent variables in the streams connected to the devices. The
edges show the direction and magnitude of how change in one variable causes change in
another, whilst incorporating conditions which are failure modes of the device. For
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example, an increase in signal pressure (P1) causes an increase in output flowrate (M3).
In the case where the valve failure mode is '‘valve stuck", no change propagates.

FIGURE 2.5.4c Example Component Variable Digraph

©)
® ®

AIR TO OPEN CONTROL VALVE VARIABLE DIGRAPH

Pl = control signal pressure
P2 = pressure - valve input stream
M3 = mass flowrate - valve exit st ream

The complexity of the digraphs representing a component depends, naturally, on the
number of variables and failure modes considered.

The production of the fault tree for an event involves these stages:
1. Define the system, specifying streams and nodes (P&ID)
2. Define the top event, and the variable of which it is a deviation
3. Construct (manually) a plant digraph for the top event and transfer to computer

4. Automatically synthesise the fault tree from the plant digraph

The variables of a given stream in the process may serve as nodes in the digraphs of
several components, the component digraphs may then be linked by these nodes to form
an overall plant digraph. An example is Figure 2.5.4d showing the digraph for the
variable T4 of the Nitric Acid Cooler.
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FIGURE 2.5.4d Plant Digraph for Variable T4 of the Nitric Acid Cooler p 1977]
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The plant digraph for a variable may be used to synthesise fault trees for top events
which are changes in this variable. proceeding in the standard manner by successive tree
leaf refinement. Essentially the method consists of tracing through the digraph along all
appropriate paths noting causal changes in variable and failure modes; these appear in the
fault tree. Multiple causes for a given variable deviation may be grouped under an OR
gate. In some circumstances, however, AND gates must be incorporated; this occurs
when encountering control loops in the process. Lapp and Powers used general loop
fault trees, programmed into the algorithm, to tackle the problem, Figure 2.5.4¢ - these
trees are used when developing the causes of the deviation of a variable in a control loop.
Process loops are readily detected from the structure of the plant digraph.
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FIGURE 2.5.4¢ Generalised Fault Tree for a Feedback Control Looj

event occuring at
variable in control loop
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external disturbance loop variable fails
enters loop to control disturbance

The problem of consistency checking illustrates the general principle assumed when
defining an event in a fault tree, namely that no other events or failures occur in the
domain of the event that are contrary to its causes and effects. L+P proposed the use of
exclusive-OR (XOR) gates to be included in the tree when one and only one of the input
events being true causes the output event to be true. By the introduction of NOT logic
this violates the independence of primary events leading to incoherent cut-sets. The use
of NOT logic (XOR is equivalent to a combination of NOT, OR and AND) gave rise to
considerable debate [Locks 1979, Yellman 1979, Lambert 1979, Lapp 1979]. The general
consensus seems to be that XOR gates are not necessary as the principle "all other things
being equal" is generally true; it is usually safe to assume, when considering a given event
sequence, that the rest of the plant operates normally. In other words, OR gates are

sufficient.

The Lapp-Powers algorithm has been applied to electrical systems [Cummings 1983].
These systems are considerably easier to analyse than chemical processes for a number of

reasons:

® Many devices are 2-state: either working or failed. CP devices and equipments have
multiple failure modes.

® There are only two variables - voltage and current, which may be treated digitally, ie
either present or not. Process systems have many interlinked continuous variables.

e Synthesis of the variable digraphs is easier because of the above and because
component digraph models are simpler and involve little complex variable
interaction.
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The successful application of the technique to electrical systems (plus more recent
refinements) does support the thesis of Lapp and Powers, i.e.: providing that the digraph
is a complete and correct representation of system causality then the fault tree can be
synthesised from it, using appropriate prior generalised fault trees for control loops.
Attention is then focused on the production of plant digraphs from component digraphs
and this is where the main problems of the method lie. More recent efforts have refined
the algorithm for synthesizing fault trees from plant digraphs [Allen 1980, Andow 1980a,
Ulerich 1988] but none of these address this central problem; automated construction of
plant digraphs from component digraphs and a system description has not been
demonstrated. Synthesis of variable digraph models for complex equipment is very
difficult. It appears that system digraphs were constructed by hand for each top event as
the structure of the required digraph is dependent on the domain of the specific top event
selected. Automated synthesis of digraphs has yet to be demonstrated. Construction by
direct combination of component digraphs cannot be relied upon to produce complete and
correct plant digraphs.

2b) Signal Flow Graphs [Aggarwal 1978, Kumamoto 1981, Misra 1970]

Signal flow graphs are similar to variable digraphs in that they consist of nodes
representing process variables, and directed edges representing variable interactions. Each
edge, however, has only a transmittance (or gain) associated with it; primary failures are
modeled by their effect on source variables added to the signal flow graph. Edge gains
have continuous values derived from mathematical approximation of plant operating
parameters and gains may be summed over a given node. A top event is defined in terms
of an inequality in a variable value and graph theory is used to derive causal source
variable inequalities and thus causal primary failures.

This method is unsuitable for automatic fault tree synthesis as it has all the
disadvantages of the vaniable digraph method along with those of its own. It is not feasible
to effect the automated synthesis of the signal flow graph from the process description
and individual component signal flow models. Whilst it is possible to define control
systems rigourously in terms of information flow this is extremely difficult, if not
impossible, for complex equipment.
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2¢) Reliability Graphs

Camarda [1978] has described an algorithm for the automatic synthesis of fault trees
from a reliability graph. This method is not suitable for chemical processing systems as
the reliability graph is a 2-state representation - components are considered as either
working or failed, ie multiple failure or fault modes are excluded.

Reliability graphs are, however, finding increasing use in the evaluation of network
reliability for communication systems, eg telephone or computer networks, as these
systems are readily defined in terms of information flow. It is interesting to note the
general idea of synthesizing system failure modes from a graphical description of all the
ways in which the system can operate successfully. This is advantageous because the
ways in which a physical system can operate are much fewer than those in which it can
fail. Indeed, for 2-state systems, it is possible to directly transform the success tree (a fault
tree type structure whose events are successes) into the fault tree by event inversion and
the simple exchange of AND for OR and vice-versa [Joller 1982b]. The fault tree and the
success tree in Figure 2.5.4b illustrate this.

The overall problem characteristic of graph based methods seems to be that it is at least
as difficult to synthesise the graphs as the fault tree itself, so if the graph has to be
produced manually, why bother?

3) STRUCTURAL MODELS

In all the methods of fault tree synthesis for chemical processes described so far, a
central problem that has to be addressed is that of successfully modelling the action of
control loops under fault conditions. It is not possible to do this by qualitative component
modelling only, and all the methods rely on previously defined generalised fault tree
templates to be applied in each case, for example the generalised tree of Figure 2.5.4f.
Automatically synthesised fault trees also tend to be ill-structured and rather opaque to the
user. In order to address these problems directly, Shafaghi et al [Shafaghi 1984] devised
an approach where the primary decomposition of the plant is not into components, but
into control loop structures. The plant is considered as a series of control loops
incorporating process equipment. Connections between control loops are defined by
considering the outputs of one loop to be the inputs to others - this forms a control loop
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digraph, whose nodes are loops and edges are loop interconnections. The method consists
of the following steps:

1) Definition of the plant control loop digraph.
2) For a given event, generation of a generalised fault tree from the loop digraph.

3) Substitution of the elements of the generalised fault tree by a specific failure structure
for each loop. In essence these structures consist of sets of fault trees representing all
fault propagation within the boundaries of the loop.

The method as described has a number of shortcomings:

a) The plant description is a control loop decomposition which must be manually defined
from the process flowsheet (eg P&ID).

b) Control loop failure structure models, whilst having generalised properties (all negative
feedback loops have the same basic structure), must be carefully constructed for each
loop in the plant. This is necessary to facilitate the inclusion of the failures of the
differing equipment which may be encountered in each loop.

c) Only process deviations which are directly related to control loop action may be
included in the fault tree.

This method, on its own, is not a complete method of producing fault trees for chemical
processes by computer. External fault propagation information is required to complete
the loop failure structure models, and to "fill in the gaps" where faults are not directly
concerned with control loops. By constructing fault trees whose skeleton is first defined
by the plant control loops structure, however, the trees have a consistent structure and are
readily understood. The method emphasises the fact that control loops can only be
handled adequately by considering them in their entirety, rather than as a collection of
individual elements. With the inclusion of component models to "fill in the gaps" of
causality and to assist in the definition of loop failure models, an overall strategy for fault
tree synthesis emerges: it is necessary to combine both component level and structural
level information in order to produce complete, correct and well-structured fault trees.
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2.5.4.4 Discussion of Synthesis Methods

In spite of the efforts detailed above, automated FTS has met with limited success and
has not gained widespread acceptance. (At least, outside the electronics industry, in which
the systems are much easier to analyse and the requirement is often for a means of testing
or a strategy for fault diagnosis). A general reason for this lack of success is that
chemical process systems are simply too complex for a rigourous algorithmic analysis:
one might as well attempt to construct numerical simulations. In attempting to tackle the
problems of complexity one is forced into investigation in more and more detail, throwing
up new and even more intractable problems. There is a subtle paradox at work here:

1) Itis not possible to analyse all the complexities of a system without considering
some of the detailed interactions of its components

2) Itis not possible to evaluate component interactions reliably without considering
the system as a whole (cf the dynamic behaviour of control systems)

The inescapable conclusion is that both levels of analysis are necessary.

Problems with digraph models include:
1) The task of preparation of the digraphs often equals that of FTS by hand

2) The digraph essentially represents normal information flow paths, where failures
propagate from variable to variable along these previously defined paths. It is not
possible to synthesise, from the plant digraph, those system failures which involve
changes in the structure of the digraph, eg where there is contamination of one
stream by another, or an abnormal flow situation occurs.

3) The digraph required depends on the system fault of interest. Unless all plant
variables are included in digraphs, this limits the analysis to a single, selected top

event.

4) Difficulties in evaluating control system responses are overcome only by
embedding structural rules in the synthesis algorithm.

Andow [1980a] has discussed the problems associated with component models based
on pressure/flow relationships which are used in the literature. In order to be complete,
these models approach the complexity of mathematical models, indeed some of the
methods involve compilation of component models from the sets of steady-state and
differential equations describing their behaviour. This is clearly not practical for
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equipment of any great complexity if the general applicability of the causal models is to

be maintained. Moreover, fault trees, or other causal structures, do not require the
elucidation of a multitude of detailed events; only the set of credible and significant events

is needed, and, in principle, one is only interested in the direct causal relationships

between these events.

Problems with all automated FTS methods include:

8)

1
2)

3)

4)

5)

6)

7

The synthesised fault trees are unlike any that would be constructed by hand.

No always-satisfactory algorithm has been produced to deal with control loops. It
is always necessary to consider the loop as a whole rather than as a collection of
components.

Two-way flow of information is difficult to model, eg flow disturbances propagate
both upstream and downstream from a line blockage or valve closure, and in some
cases, may cause looping.

The time dimension is often ignored - except in the work of Taylor and Hollo
[Taylor 1977, 81b] in producing Cause-consequence Diagrams and Event Trees.
Time obviously plays a part in considering batch or sequential processes, which
none of the above methods do.

None of the published methods comes anywhere near representing the behaviour
of complex equipment, eg distillation columns or reactors.

The capability to deal with a large number of different systems within a given
domain (especially process engineering) has yet to be demonstrated

There is a confidence problem - a fault tree from a "black box" is an unknown
quantity. Although computerization permits a more exhaustive study, an important
feature of manual fault tree synthesis is that it provides the analyst with an intimate
knowledge of the process. The analyst's expertise determines the completeness of
the resulting study. For this reason any synthesis methods are likely to remain as
aids only.

The application of automated FTS to chemical process systems has additional
problems compared to the application to electronic systems:

(i) Process variables have a continuous range of possible values, in contrast to
the binary nature of many electronic systems.
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(i) Equipment may have a continuous range of degradation and multiple failure
modes, rather than two states of operation and failure.

(iii) The actions of process operators may need to be included.

Clearly, fault propagation analysts do not operate by exclusively considering either
digraphs, component models or structures. Considering a system at the minimum
appropriate level of detail is all that is necessary; the use of structured models
incorporating various levels of abstraction seems to be the way forward.

Due perhaps to the failure of automated synthesis to gain widespread acceptance, in
recent years efforts have been directed more towards computer based decision support
systems - Fault Diagnosis (FD) and alarm analysis systems - for use in high-risk
enterprises. As these diagnosis systems employ causal logic models - often directly using
fault trees or alarm networks - there is some common ground between FTS and FD. This
is particularly the case where the diagnosis system uses structural models to generate and
employ causal models. This shift of emphasis is illustrated in the employment of variable
digraphs for FTS [Lapp 1976, 1977b] and for FD [Ulerich 1988]. These fault diagnosis /
alarm analysis systems are discussed in section 2.7.

2.5.5 Fault Tree Evaluation

Lee [1985] presents a useful review of fault tree evaluation methods which may be
divided into the qualitative and the quantitative.

1) Qualitative Evaluation [Allan 1981, Bengiamin 1976, Garriba 1977, Nakashima 1979,
Rasmuson 1978, Wagner 1977, Wheeler 1977]

Visual inspection of a fault tree can give valuable insights into the fault propagation
characteristics of a system, but the most common qualitative evaluation involves the
production of the minimal cut sets (MCS) of the tree. A minimal cut set is a set of
primary failures which are both necessary and sufficient to cause the top event in the tree.
The enumeration of all the MCS gives all possible combinations of primary events which
can cause the system to fail. This enumeration is achieved by logical expansion of the
fault tree to give cut sets, followed by elimination of redundancy to give the minimal cut
sets. For complex trees there may be a large number of MCS; many algorithms for
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efficient enumeration were developed in the 1970s [Garriba 1977, Nakashima 1979,
Rasmuson 1978, Wheeler 1977], but the problem has been somewhat alleviated by the

increased computer power available in more recent years.

A minimal path set or tie set is a set of primary events whose non-occurrence ensures
the non-occurrence of the top event. The MPS are found by constructing the dual fault
tree (sometimes called the success tree), by substituting AND gates for OR gates and vice
versa, and replacing each event by its complement. (The complementary event to a
component failure is component success; strictly speaking this is applicable only to 2-
state components, whereas chemical process components have multiple failure modes.
The approximation is justified where the probability of each failure mode is small.) The
minimal path sets of the fault tree are given by the minimal cut sets of the success tree.

2) Quantitative Evaluation [Fussell 1976, Laviron 1982, Rosenthal 1980, Wheeler 1977]

Quantitative evaluation involves calculation of the top event probability based on
primary event failure data. The assembly of reliable failure data often presents major
problems, particularly with regard to human error, but these problems are outside the

scope of this work.

The first step in probability calculations is often the production of the minimal cut sets
of the tree. The probability of the top event is then the disjoint sum (given by the OR
relationship) of the probabilities of the MCS. Alternatively, probabilities may be
calculated recursively in the tree, working from primary events upwards.

A major problem occurs when, as is most often the case with systems of any
complexity, there are repeated events in the fault tree [Bengiamin 1976, Allan 1981]. Here
a straightforward calculation is invalid, as it relies on the assumption that all events are
independent. An event may be repeated in a tree where it may combine with other events
to lead to the top event via a number of different fault propagation routes. This, in fact, is
common cause of intermediate events; straightforward calculation of the top event
probability is then incorrect because the repeated event makes a multiple contribution.
Mutually exclusive events (occasionally associated with NOT or XOR gates) or any event
dependency leads to the same problem There are various approaches to the problem of
repeated events including Monte Carlo Simulation, Bayesian approximation [Jones 1987]
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and Disjoint methods. The scale of the problem is, however, an exponential function of

the number of repeated events.

Whilst the current work is not directly concerned with fault tree evaluation, if fault trees
are to be produced via HAZOP equations then qualitative analysis is useful as an aid to
evaluating the correctness of these trees. This correctness may be judged by the
correctness of the cut sets derived from the synthesised trees.

2.6 OTHER CAUSAL REPRESENTATIONS [Andow 1980b, ISGRA 1985]

In order to identify, describe and evaluate system failures, a number of different
techniques have evolved. These techniques are all concerned with the analysis of fault
propagation and as a result they are similar in their nature and in their problems. They
may be considered to operate either deductively, inductively or as a combination of the
two:

Inductive - proceeding from cause to effect - identifying the effects of a particular event
Deductive - identifying the causes of a given event

The techniques of HAZOP and Fault Tree Analysis are discussed elsewhere (2.4 & 2.5)

Event Trees [Henley 1981, Heslinga 1983, Taylor 1981b]

The specific mode of failure of an item of equipment is selected. The potential courses
of events that might follow, as the fault propagates through the plant, are developed. The
result is similar in appearance to a fault tree, but proceeds from a single primary event
through to several possible consequences, via success or failure of intermediate events.

Failure Modes and Effects Analysis [Browning 1970, ISGRA 1985, Recht 1966a])

FMEA involves consideration of the effects of all critical component failure modes:
1) Identify and specify all component failure modes of interest

2) For each failure mode, identify effects on other components and on the
performance of the system as a whole
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3) Estimate the seriousness of the consequences of each failure sequence

In order to identify every system failure which is caused by a combination of events it
would be necessary to consider all (non-conflicting) combinations of all the identified
failure modes. This is clearly not feasible, so in practice reliance is placed on the
expertise of the analyst in discovering all the significant failure combinations. FMEA
does not permit reliable probability calculations as there is no guarantee that all failure
combinations have been considered. It is possible, however, to combine the probability of
occurrence of each failure mode with a measure of its severity to provide a ranking order.
This is known as Failure Modes Effects and Criticality Analysis (FMECA).

Cause-Consequence Analysis [Nielsen 1971,75, Taylor 1981b]

A critical or potentially hazardous event is first selected. The consequences of this
event are considered, along with subsequent equipment and personnel action or failure.
The causes of the critical event and other equipment failures are included as fault trees.
This represents, in effect, a combination of fault trees and event trees to give an overall
picture of the critical event: its direct and contributory causes and its possible
consequences. The method also has the advantage in that it takes into account, where
appropriate, the time ordering of events.

Alarm Analysis

Alarm trees are computer data structures which are used to represent the different
sequences of alarms which may occur in a process. When an alarm sequence does occur,
the representation may be of assistance in diagnosing the problem and identifying the
failure that initiated the sequence. The use of alarm trees and networks for the real time
analysis of fault propagation in process plant is discussed in 2.7.

As may be seen from the above descriptions:

» FTA is a deductive technique, for identifying event sequences which can lead to a
particular outcome, particularly useful in assessing the likelihood of that particular
outcome.

+ FMEA and Event Trees are inductive methods, used primarily as a means of
evaluating the system reliability implications of critical components.
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* HAZOP and Cause Consequence Diagrams express both the causes and the
consequences of the selected events. The former assists in the identification of
undesirable outcomes whilst the latter provides a comprehensive picture of the
circumstances surrounding a particular event.

Each of these techniques is of value in the appropriate circumstances. To illustrate:

« A HAZOP identifies a serious hazard

* Fault Tree Analysis evaluates the likelihood of the hazard and reveals that a
number of components are critical to successful operation

* FMEA and Event Trees develop fully all the consequences of failure of the critical
components

* Cause-Consequence Diagrams are used to present the overall picture of the hazard

It is evident that there are strong similarities between the different techniques and their
representations; the analysis of fault propagation in process plant is a generic problem
[Andow 1980b]. A full discussion of the knowledge used and the reasoning employed
may be found in Chapter 5.
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2.7 FAULT DIAGNOSIS

2.7.1 Introduction

An essential requirement for the successful operation of a chemical plant is the ability
to detect process deviations and fault conditions, to determine their causes and possible
consequences, and to take remedial action soon enough to prevent loss. To this end, one
may rely on:

* Human ingenuity, intelligence, training and experience. [Pau 1981, Rasmussen
1978,81, Su 1986]

» Computer Aids for assistance in fault diagnosis, consequence prediction, remedial
action and consequence mitigation (discussed below).

* Diagnosis according to a sequence of actions worked out in advance and intended
to minimise the time taken to locate and correct the fault [Lihou 1980a,¢].

* Go to bed and hope everything turns out all right in the morning.

Of relevance here are computer aids for fault diagnosis. The term diagnosis here refers
to the process of deducing, from a set of observed plant states, the primary equipment or
environmental (in a direct sense) causes of the observed states. The requirement is
naturally different from fault analysis in that one is attempting to discover a particular
fault condition according to a set of observations in real time, rather than to describe fully,
at relative leisure, the different fault sequences that may occur in a particular design. For
example, in diagnosis it is common to make the assumption that plant deviations are due
to a single initiating event, rather than a (generally less likely) combination of causes.

This discussion includes the subject of alarm analysis, a technology developed for
reducing the apparent complexity of multiple alarm displays, particularly with regard to
modern computer controlled plant. This involves determination of groupings and
relationships between alarms and the presentation of this information to the operator. It
has found widespread application in the nuclear industry, where the number of potential
alarms may run into the thousands [Andow 1978].
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These systems are often based on a previous fault analysis such as a HAZOP or a
Fault Tree Analysis, but some of them attempt to derive causal behaviour from a structural
representation of the plant. The differing approaches to the problem may be seen from
the literature overview of Fault Diagnosis and Alarm Analysis given in Figure 2.3.1f.

2.7.2 Qutline of Computer Models

In considering the different generic aspects of computer aids it is possible to divide
them into two loose categories, according to the basic model of the process used by the
computer. This is generally either a causal model or a structural/functional model
(Rasmussen makes a distinction between structure and function [Rasmussen 1979a], but
the assumption in most of the models is that function is implied by structure and therefore
implicit in the representation). A distinction is also made between algorithmic and
knowledge based systems. The term algorithmic refers to "conventional" software, data
structures and programming methodology, distinct from Knowledge Based, "Expert", or
Al systems as discussed in Chapter 3. This distinction is most apparent in the
representation of the system under analysis, contrasting "conventional” data structures
with networks, rules, frames, constraints etc. Pau [1986] presents a review of IKBS
approaches to fault diagnosis, test generation and maintenance problems.

Pattern Recognition

Early attempts at computer aided fault diagnosis made use of recorded characteristic
effects of faults in a particular plant. For a given fault, the symptoms of the fault will
become apparent to the operators as changes in certain observable variables, ie these
variables deviate to high, low etc. These relationships between a fault and its symptoms
may be stored in a computer in the form of matrices [Lihou 1980¢] or decision tables
[Berenblut 1977, Munday 1977]. When deviations in process variables are observed, the
set of deviations may be compared against those stored in the tables or matrices by a
process of pattern matching. When a match is found the existence of the corresponding
initiating event is implied.

These systems work by a process of simple pattern recognition. The plant itself is
considered as a "black box" with inputs (initiating faults) mapped to outputs (Process
variable deviations). In order to construct this mapping a previous fault analysis, usually
HAZOP is required. In the case where the HAZOP has been recorded as Cause and
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Symptom Equations [Lihou 1980e] which are described in Section 2.4.5 the equations
may be directly translated into plant state matrices.

Causal Models

These models involve interpretation of observed symptoms according to a pre-defined
model of fault propagation developed for the particular process. In other words, the
computer stores the complete results of a previously conducted fault analysis, eg HAZOP
or FTA. This information may either

1) Directly relate observations to primary causes or final consequences.

2) Represent detailed cause-effect relationships relating primary causes to ultimate
consequences via fault propagation pathway, (either conventionally, or as part of a
KBS)

Some of these methods, which use an exclusively causal model, attempt the automated
synthesis of the causal model using methods developed for Fault Tree Synthesis, for
example from variable digraphs [Ulerich 1988] or component models [Andow 1975].

Structural Models

These methods involve the interpretation of symptoms in the context of a structural or
functional model of the plant which incorporates the causal behaviour of the components,
from which causal hypotheses may be constructed. The model is initially defined by a
structural description of the system. This is combined with a behavioural description of
the components or substructures contained by the system. The behavioural descriptions
may be generic in nature being instantiated according to the particular components in the
system of interest. In this way the method resembles those used for the synthesis of fault
analyses, in that a structural description of a system is combined with causal descriptions
of its components in order to describe the causal behaviour of the system as a whole. The
advantage of this approach is that one need only describe the structure of the system to
the computer for each case, rather than having to conduct and describe an a priori fault
analysis. Again, conventional approaches have more recently given way to IKBS methods,
the synthesis of fault analysis by IKBS being of direct concern in the present research.
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2.7.3 Causal Models

1

2)

We can distinguish three types of causal model:

Direct relation of observations to primary causes or ultimate consequences. This
operates via straightforward pattern matching of observed symptoms or event
sequences to primary causes or possible consequences, the symptom to cause or
consequence mapping is drawn from a previously conducted analysis (eg HAZOP or
FTA). The patterns may be stored as:

Event Sequence Records - derived from previous incident records or a priori
analysis.[Baybutt 1986].

Decision Tables - each decision table rule consists of a set of possible observable
process variable values which are indexed to a possible cause for diagnosis
[Berenblut 1977, Himmelblau 1978], or consequence for deciding if the observed
conditions will lead to an undesirable outcome [Munday 1977].

Plant State Matrices - A state matrix of process variables is formed from on-line
observations and compared with previously defined fault symptom matrices. A
positive match implies that the fault is the one defined by the matched fault
symptom matrix. This technique is useful for diagnosing the causes of
disturbances in complex equipment [Lihou 1980e].

Conventional computer representation of fault propagation:

Fault Trees - in this approach a predefined fault tree of a particular event is used to
determine its possible causes, usually by enumeration of candidate cut sets. The
fault trees may be generated off-line by computer, Ulerich [1988] uses an updated
version of the Lapp/Powers variable digraph method, described in 2.5.4.

Decision Tables - The information conveyed by a fault tree may be stored as decision
tables and used in a similar manner, ie cut set analysis [Berenblut 1977,
Himmelblau 1978].

Alarm Trees - networks representing groupings between alarms and the cause-effect
links between them [Andow 1974, 75, 78].

Variable Digraphs - using a variable digraph of normal links between process
variables to determine causes of variable deviations [Tsuge 1985b].
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3) Representation of fault propagation using IKBS.

These systems represent causal information in a data structure, and using a
programming language that allows for IKBS methods. In practice most of them
essentially represent similar information to that contained in a fault tree, but encoded
in the form of rules as shown in Figure 2.7.3a [Andow 1985a, Chester 1984,
Kumamoto 1984].

FIGURE 2.7.3a Encoding a Fault Tree as a Rule

IF A and B (exist as events)

T
/ THEN T (will occur)

ﬁINrN

A |B \ IF T (occurs)

THEN A and B (is the cause)

Variations:

* IF <system in state]1> AND <observa ble fact> THEN <system was in stat €2>
+ IF <component x OK> OR <component y OK> then <component z OK>
* category <event> has subcategory < subevent> provided <fact>

Rules may also be used to represent more subtle interdependencies between states, eg
consistency between measured variable, indicator status and indicated value.

Storing the information as rules allows for the use of knowledge engineering
techniques such as search space strategy, application of heuristics, information request
selection, weighted inference, explanation facilities etc. The starting point is a set of
observed conditions. The inference structure formed by the rules is then searched to
establish causes and consequences using forward chaining, backward chaining or a
combination of the two. This method of finding candidate sets of initiating failures is
very similar to determining the cut sets of the corresponding fault tree. However, if one
were to set out to determine exhaustively all the candidate sets for a system of any
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complexity, the search space: the number of candidate sets to be checked out during
diagnosis, would be too large. For this reason a pseudo-probabilistic method (often
based on Bayesian inference) is used, for example, breadth first search with 'best option'
likelihood filtering based on previously defined penalty functions for each causal path
[Andow 1985a]. The 'single fault' assumption is usually made in order to eliminate
candidates as the search progresses.

An alternative approach is that of semantic network based representation. Underwood
[1982] uses the Common Sense Algorithm (CSA) which was developed in the Al
community for reasoning about physical systems, as a basis for problem solving and
language comprehension [Rieger 1977]. A causal semantic net is constructed linking
CSA-events, describing actions, states and statechanges, with CSA-links, representing
causation and interdependence. Diagnosis proceeds from the identification of process
disturbances in the network via search strategies to determine candidate causes.

2.7.4 Structural Models

The algorithmic systems which rely on an initial structural description and combine
this with predefined generic causal models use techniques similar to those for automated
fault analysis. For example, Andow and Lees [1975, 78] have used plant unit models to
construct fault trees and alarm networks for fault diagnosis and fault analysis.

Particularly in the field of digital electronics it has proven readily feasible to construct
generic models of system components. This is due to the deterministic and binary nature
of these systems, which are considerably simpler in their behaviour than chemical process
systems.

The DART project - Diagnostic Assistance Reference Tool [Genesereth 1982] is
designed to pinpoint failed components in computer hardware, on a Least Repairable Unit
(LRU) basis. The representation of the equipment to be diagnosed comprises:

« ahierarchical design description at multiple levels of abstraction

« functional models of primary components (eg logic gates) which are designated as
LRUs
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* behavioural (i/0) models of subsystems (eg a multiplier or an adder).

Diagnosis proceeds from an initial unwanted symptom of the system as a whole (ie the
faulty computer board) by generating input/output tests to discriminate between
subsystems. This identifies the failed subsystem which itself is then subjected to the
same test/discriminate process.. Discrimination of subsystems proceeds in this fashion
"down" the hierarchy to narrow down the options to a single LRU (the single fault
assumption is made).

DART and other similar systems such as IDT [Shubin 1982] border on the
conventional/IKBS boundary in that they use symbolic representation and inference. The
CRITTER system [Steinberg 1982] reasons about digital hardware in a similar manner, at
multiple levels of abstraction, using constraint propagation [Sussman 1980] to relate
behaviour to specifications, although this system is essentially a simulator, useful in both
design and the development of testing strategies.

None of the knowledge based systems encountered by the author which analyse fault
propagation in physical processes rely on the actual synthesis of causal behaviour from a
description of the structure of the physical system [Fink 1985, Maclean 1983, Matsumoto
1985]. A description of the physical system is used rather as an adjunct to a more general
experiential knowledge base consisting of problem specific cause effect descriptions;
these may take the form of rules as described above.

The reason why a structural or functional description of the physical system is
necessary is described by Fink et al [Fink 1985] in their design for an Integrated
Diagnostic Model. We may distinguish between two types of problem-solving
knowledge: Shallow or experiential knowledge, rules of thumb or in IKBS parlance
Heuristics; and Deep or compiled knowledge, that relating to the underlying theory of the
domain which enables an expert to reason and explain, where necessary, from first
principles. As may be seen in Chapter 5, for an expert system tackling the complexities
of chemical processes to be at all robust or generally applicable it is absolutely necessary
for both types of knowledge to be represented and used.



2.7.5 Discussion

The problems of fault diagnosis and of fault synthesis are similar as in both cases the
analyst is attempting to determine the causes and consequences of process deviations,
either in real time as an operator, or off-line as a HAZOP or Fault Tree analyst. Therefore
one would expect the methodologies, their problems and solutions, to be similar in nature.

As has been stated, the methods of particular interest here are those which involve
IKBS techniques for manipulating both causal and structural knowledge about a system.
These are readily illustrated by the representation systems used, these are discussed in
detail in the IKBS Literature Review in Chapter 3:

Rule Structures - able to represent naturally cause-effect relationships between events
and variables. Of importance here is the fact that the rules each represent a chunk
of knowledge, which is complete and consistent in itself but which does not
necessarily have to be consistent with the rest of the knowledge base to be of value.
An analogy would be the use of a set of mini-fault trees for fault diagnosis. If one
were to combine all the minitrees one would not necessarily have a complete and
correct fault analysis, yet, in diagnosing a particular fault, they provide valid and
useful causal paths for investigation. Rule based systems work in an inferential
rather than a deterministic fashion.

Networks - Representing physical, causal and interdependency links between
components, variables, states, actions, statechanges etc

Frames - Frame based representations of physical objects, their attributes and
relations have been widely used. The collection of all the information about a given
entity "in one place" is their principal advantage.

Decision Support Systems

One or more of these types of representation may form part of a Decision Support
System, of which a number have been developed, particularly in the nuclear industry.
These systems generally consist of structured databases containing information regarding
accident sequences, causes, consequences and remedial actions [Baybutt 1986b]. More
recently there have been attempts to include this knowledge as part of an expert system
environment in order to assist in the selection of the particular information required by the
decision maker [Embrey 1986b, Williams 1983]. The motivation behind DSSs is the
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facility to have all relevant information at hand in a readily accessible form, with assistance
from the DSS in finding the information required at any particular time.

The FALCON system for rule based alarm analysis in process plant combines the use
of rule-based causal representation with a model of the interactions between process
variables (stored as transition tables) to deduce causal hypotheses [Chester 1984]. Real
time monitoring of a process is used to give an indication of system faults. Whilst
systems like this use both shallow and deep knowledge, both types of knowledge bases
are developed for each particular physical system. What is required of a truly general
Knowledge Based System for Fault Analysis is the ability to produce causal knowledge
for a variety of different process plant configurations.
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CHAPTER THREE

LITERATURE REVIEW - Knowledge Based Systems

3.1 INTRODUCTION

The technology of Knowledge Based Systems (KBS), sometimes referred to as Expert
Systems, is a very young one. It has been made possible primarily by the availability of
cheaper computing power in the 1980s. These systems rely on the manipulation of
symbols and concepts rather than the numerical manipulation of conventional data
processing applications.

This chapter presents a Literature Review of Knowledge Based Systems. An historical
perspective is presented which places the technology of KBS in the context of Artificial
Intelligence (AI) research from which it emerged. This is followed by a discussion of the
tools - computers and software - used for Knowledge Based System building. The bulk
of the Chapter is concerned with a detailed description of KBS technology and Al
research as they apply to reasoning about Engineering Systems.

3.2 HISTORICAL PERSPECTIVE

This historical review is a brief one and is intended only to place modern work on
Intelligent Knowledge Based Systems (IKBS) and Expert Systems (ES) in the historical
context of the Artificial Intelligence (AI) techniques which made it possible. Some of the
more important historical landmarks help to establish this perspective.

The field of Al and its derivatives is a relatively new one; this means that it is difficult
to judge the current relevance of published work by its age alone; relatively old works still
have unexplored ideas. It is only in the last decade that economic advances in digital
technology have made possible the widespread development of IKBS, so many of the
quoted publications date from the 1980s.
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Although the idea of a computing machine had been around for a long time, it was in
World War II that the first programmable computers were used. These electromechanical
devices made a great contribution to the Allied war effort; their contribution to British
codebreaking activities significantly altered the course of the war.

A major breakthrough came about when the thermionic valve was superseded by the
transistor which was invented in 1947. This made possible, in the mid 1950s, the storing
of a program rather than just its data in dynamic memory, giving fast access and
facilitating modification of the programmer’s instructions to the computer. This led to the
first use of high level languages; interactive rather than batch development of large
programs became possible.

The first "intelligence" work performed on computers was in game-playing, eg chess
and tic-tac-toe (Noughts and Crosses). The term Al was first used in 1958 by John
McCarthy at a conference discussing Machine Intelligence. In 1958, McCarthy
developed LISP from previous list structure based research, basing his work on the
Lambda Calculus for symbol manipulation, which defines the pure language of LISP
[McCarthy 1978]. The language rapidly became the most important in Al, particularly in
the USA, which, almost alone in the world, devoted extensive resources to the
development of Al applications, particularly in the military sphere.

In 1963, the first published volume of Al papers appeared [Feigenbaum 1963]. Many
important developments were made at MIT in the Semantic Information Processing
projects, illustrated by a published volume of the same name [Minsky 1968]. The use of
the word semantic emphasises the focus on meaning in the several models of intelligent
behaviour that were being investigated, for example, a formal logic theorem process.
Later in the 1960s it was realised that large amounts of background knowledge were
needed in any model which competently tackled a particular task. Rather than using
formal logic, people reason at a higher level of abstraction, using heuristics or rules of
thumb. This emphasis on task competence and background knowledge, defined as
heuristics in narrow domains (fields of expertise), gave rise to the first knowledge-based
systems. Rather than attempting to simulate intelligence through general problem
solving, theorem proving and game playing, more emphasis came to be placed on tackling
problems such as image processing and natural language understanding, which, to a
human, may not seem to require a high degree of intelligence. (Interestingly, Chomsky
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has proposed that humans may possess in-built or "programmed" mental faculties for
these tasks.)

Progress in the 1970s was somewhat slow until later in the decade when Very Large
Scal Integration (VLSI) chips became cheaper and powerful computers became more
widely available. At this time the first major successful expert systems projects came to
fruition, in the analysis of the structure of organic molecules (DENDRAL [Lindsay
1980]) configuring computer systems (R1 [Rosenbloom 1980]) and in medical diagnosis
(MYCIN [Clancey 1981]).

All these initial successes occurred in the United States due to the considerable
investment in large-scale Al during the 1970s. In the UK, however, Al research efforts
were almost wiped out following the publication, in 1973, of the highly unfavourable
Lighthill report to government [SRC 1983]. With hindsight this "influential and highly
damaging, but also naive and misguided" report can be seen to have considerably
underestimated the potential of the then largely theoretical Al research effort "on the basis
of what appeared to be partially understood technical arguments' [Bremer 1988]. There
was also an apparent attitude problem: "part of the stimulus to laborious male activity in
creative fields of work, including pure science, is the urge to compensate for lack of the
female capability of giving birth to children.... a relationship which may be called
pseudomaternal rather than Pygmalion-like comes into play between a Robot and its
Builder" [SRC 1973]

Whilst some research continued at Edinburgh and Sussex Universities, the influence of
this report on the levels of investment that industry and government were prepared to
make are still in evidence today; small, PC-based systems performing largely trivial tasks
are common in the UK whereas in the US larger, workstation based systems of greater
individual significance tend to be the norm. The Alvey programme of the 1980s has been
seen by many to be too thinly resourced to produce the hoped-for boost to UK expert
systems technology.

The continuing economic development in digital hardware has produced an astonishing
fall in the price of computers in the 1980s. This has facilitated the rapid upsurge in
IKBS development seen in recent years. There is now a plethora of highly successful,
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but small, "Expert" Systems working in restricted domains. These are mainly in-house
systems designed to tackle specific problems, and are usually implemented using PC-
based expert system shells such as Xi-Plus. In developing systems of any great ability,
however, large amounts of computing power are still required and for this reason personal
computers are not considered adequate. Purpose built Al workstations are proving
invaluable in dramatically reducing development time by providing a complete
development environment.

Although LISP is still the principal language for Al work in the USA, the
announcement by the Japanese that they were to use PROLOG in their ambitious 5th
generation project led to a surge in the use of this logic programming language, which has
always been popular in the UK. There are now a large number of alternative, but largely
derivative, symbolic programming languages available ( eg LOGO, POPLOG, FRL, KRL,
PL2 etc). Development of tailor made IKBS has been made possible by the availability
of purpose built Expert System building tools (eg SAVOIR, XI-PLUS, Knowledge Craft,
Leonardo); these are essentially expert systems without a knowledge base.



3.3 LITERATURE OVERVIEW

For the items in the bibliography concemed with Expert Systems the following series
of diagrams (Figures 3.3a-d) present a hierarchical classification according to subject
matter:

» Expert Systems ES  Figure 3.3a
« Intelligent Knowledge Based Systems IKBS Figure 3.3b
* Artificial Intelligence Al Figure 3.3¢c
* Applications APP  Figure 3.3d

Those references providing a further literature review or bibliography are underlined.
There is an approximate correlation between the classification and the sub-headings of
this chapter; the diagrams may be used as an overview when reading the appropriate
section.
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FIGURE 3.3d
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3.4 COMPUTERS AND SOFTWARE

3.4.1 Computer Hardware

It is the nature of Al programs that they are large, requiring large memory and data
storage capability, and they take a long time to run, necessitating processing power. For
this reason they have been historically restricted to mainframes. Although useful work
can be done on minicomputers and, more particularly, purpose designed workstations,
personal desktop computers are still (even with their capability extended) considered to be
severely lacking in power for this type of work. The reason why Al systems need this
power in a computing system can perhaps be best illustrated using the example of a
simple chess playing program. The program decides on a particular move by first
considering every possible combination of board positions that can arise as a result of the
next (say) five moves by each player. The number of different possible board positions is
a very large number, for each additional move that is considered, the number of possible
board positions increases by increasing orders of magnitude; this is known as
combinatorial explosion. To generate these positions takes processing power and for
storage, a lot of storage space will be used. The process generates a very large search
space to be explored in selecting the best move, needing lots of processing power. In fact
this exploration into the future of the game is done in a controlled fashion and is directed
by a process known as heuristic search, exploring promising board positions further than
non-promising ones. Al programs like this use symbolic languages where the data and
program are large complex symbol structures. For example LISP symbol structures are
stored using a cell/pointer system which is extremely greedy when it comes to memory
space. This memory space has to be reclaimed every so often by a process known as
garbage collection. Al programs also make use of recursive control structures, where a
function may call itself. This process of self calling may be repeated to very many levels
of depth, requiring large memory (stack) space to keep track of the return path. The
author once inadvertently managed to completely tie up a VAX 11/750 minicomputer
using recursion. Every time a recursion was initiated this created a new process which
was allocated time on the machine. Very soon the program hogged 95% of the
timesharing and all other processes ground to a halt.

Al Systems tend towards general models of intelligence and therefore often require
more processing power than an IKBS performing a particular task in a restricted domain.
Perhaps the best alternative for the latter kind of development is the personal workstation.
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These modern machines have excellent processing and data storage capabilities and have
the advantage over mainframes in that they do not operate on a time sharing basis.
Exclusive use of the full power of the workstation allows truly interactive development in
an excellent overall environment designed specifically for Al programming, in LISP or
PROLOG, usually accompanied by more sophisticated ES building tools. The section
on IKBS software which follows (3.4.2) discusses these environments.

3.4.2 Knowledge Based Systems Software

The software tools used for developing IKBS can be divided into two categories:
Symbolic programming languages, of which the chief two are LISP and PROLOG, and
expert system building environments, which free the knowledge engineer and the user
from the mechanics of knowledge representation , inference and user interfacing, so that
they can concentrate upon the problem to be solved.

LISP

The language LISP, List Processing, was invented by John McCarthy in 1958, though
it was not in a recognizable computer form until a few years later. Historically there have
been two major dialects of LISP, MACLISP and INTERLISP, each of which are in
actuality far more than just a programming language but provide a complete programming
environment. The unfortunate lack of standardization came to an end in the early 1980s
when these two dialects, along with useful aspects of other minor variations, were brought
together to form the now standard COMMON LISP. Versions of COMMON LISP are
now available for all types of machine, from mainframe to PC, with only minor

modifications required for transport of programs from one machine to another.

Programming in LISP is highly interactive. It is a functional language; to initiate a
'program' the user calls the highest level function of his 'program' which calls other
functions according to its definition. This function calling, which may be recursive,
continues until the primary LISP functions called primitives, with which LISP comes
equipped, are reached. These primitives, operating on data structures as well as providing
control, are evaluated, and the function call structure then 'unwinds'. Every function in
LISP has arguments and returns a value, this is the 'purest' LISP way of passing
information between functions, although LISP supports the full range of conventional
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programming capabilities. A LISP 'program’ consists of a collection of function

definitions.

Data Structures

LISP objects are either symbols or symbol structures. Primary objects are called
ATOMS which are represented by simple symbols, eg a word, a number or the special
values T and NIL, which represent the logical values true and false respectively.

Most data structures in LISP are lists. A list is defined as a set of zero or more
elements each of which may be an atom or another list. This provides a very powerful
mechanism for defining complex hierarchical data structures.

Variable assignation in LISP may be simple binding of an atom to a value, but this
value may be any LISP object, data or function. Powerful mechanisms for data
abstraction are provided, for example properties, eg the symbol MAN may have the
properties bank-balance and address; each of these properties of the symbol MAN can
have an appropriate value which can be assigned or retrieved by the access functions PUT
or GET. One of the strengths of LISP is that data abstraction is very easy to implement
by writing access functions for user defined data structures.

Functions

A function takes the form of a list. Prefix notation is used such that the first element
of the list is the function name, and the rest of the list comprises the arguments that the
function is to process, returning a value. Some examples of LISP functions are:

 List functions - operate to access, change or add to lists

» Predicates - to test a condition and return T or NIL

LISP comes with a set of primitives - built in functions. The user progresses by
constructing a hierarchy of functions based on these primitives. This provides for
functional abstraction (c.f. procedural abstraction). As data (lists) and functions (lists)
take the same form syntactically, operations can be conducted on functions by functions.
One advantage of this is in manipulating knowledge about procedures; functions may be
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created for a particular task and then evaluated. One example of the value of this is in
manipulating knowledge about procedures.

Control Structure

LISP supports the full range of conventional control structures, eg iteration and
conditional testing but as it is a functional language it is more natural to write recursively.
This is an important concept, best illustrated by a simple example, a recursive definition of
a factorial function:

To calculate Factorial(N)
If N=1 then — Return the value 1

Else — Return value given by evaluating N*Factorial(N-1)

The LISP Environment

To illustrate that working in LISP can be more than just using a programming
language, it is instructive to look at the features of a LISP environment, as available on a
purpose built Al workstation, such as those available from SUN, APOLLO or XEROX.

The first requirement is for an editor. LISP editors are written in LISP, and one such
as EMACS provides for effortless editing of complex list structures (which are the
programs). As functions are identical in syntax to data, powerful editing functions may
be defined, possibly custom built by the user. Thus editing and evaluating (program
execution) may be carried out side by side for application development.

LISP workstations support high resolution graphics, using window based systems
similar to that used on Apple computers. The workstation may have the in-built
capability to display graphs which represent, for example, the call structure of the user's
functions or the network or tree representations of data structures, eg a hierarchical
classification or a semantic net. This facility is also very useful for graphically displaying
the propagation of inference in rule based systems.

105



IKBS tools may be embedded in the LISP language (or vice versa). This may be
simply a ready built rule maintenance and inference structure or a fully fledged expert
system shell, ie an ES without the knowledge. One example is the LOOPS system
available in INTERLISP on the Xerox 1108. The value of the integrated development
environment lies in the ability it gives the user to construct, manage, evaluate and use a

knowledge base interactively .

Applications of LISP

LISP has been the primary tool for Al research and IKBS development, particularly in
the US. Applications include:

* Implementing Rule Based Systems

* Symbolic Pattern Matching

* Object Oriented Programming

* Transition networks, eg Parse Trees defining natural language grammar

* Semantic Networks

PROLOG

PROLOG shares with LISP the characteristic of symbol manipulation, however,
PROLOG stands for Programming in Logic. It is designed to answer questions
(establish goals) using a knowledge base consisting of facts and rules. PROLOG works
using predicate logic in the form of clauses representing either facts or rules which
provide the knowledge of a particular domain (see 3.5.2 Predicate Logic). Establishing
goals is done by a built-in inference mechanism which combines backward chaining with
a simple backtracking strategy. PROLOG supports list structures but not with the same
ease and facility of LISP. A large number of conventional programming abilities are also
available (although the theory of computability states that any language which supports
certain primitives can perform any computation task). Advanced environments are
available for PROLOG programming, one example is the Knowledge Craft environment
which uses a SUN workstation.



Whilst LISP predominates in the United States AI community, PROLOG has been
more popular in the UK, at Edinburgh University for example, and in Japan, where it is
said to feature strongly in the Japanese 5th generation project.

Other Al Languages

There are a number of other languages for programming in Al, many of which are
derivatives of LISP and PROLOG:, for example LOGO, POPLOG, KRL, FRL,
SMALLTALK etc. The more notable of these languages are aimed at a particular method
of knowledge representation processing or programming. FRL was developed for
manipulating Frame-Based knowledge representations (Section 3.5.2). SMALLTALK is
an object-oriented programming environment.
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3.5 KNOWLEDGE BASED SYSTEMS

3.5.1 Introduction

Although the term is still not one that has a widely accepted definition an Expert
System (ES) may be defined as a computer system which could conceivably replace a
human expert in a particular task. We would expect the ES to be characterised by similar
attributes to the expert:

* Competence - high quality results in minimal time

* Knowledge - should be incorporated

* Works like an expert - rules of thumb rather than detailed theoretical knowledge
* Highly competent in a narrow specialised domain

* Gradual degradation of performance beyond the boundaries of the domain

* Able to offer explanations and justifications for the conclusions reached

* Able to supply a measure of confidence in the conclusions reached

* May make mistakes

In practice, many "Expert" systems do not approach the competence of a human expert
but the majority of these systems are characterised by their emphasis on the explicit
representation of Knowledge. They might be more accurately termed, then, Knowledge
Based Systems (KBS). As may be seen from the definition of a KBS, systems covered
by the terms ES and KBS may be considered to be in two sets which have elements in

common.

Knowledge Based Systems

Frost [1986] gives the following definition of knowledge:

"Knowledge is the symbolic representation of aspects of some
named universe of discourse"

According to this definition a KBS will contain a knowledge base comprising such a

symbolic representation and we would expect it to be written in a symbol processing
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language. This representation may be illustrated by considering a rule-based system,
which is generally composed of facts about a domain and rules which relate those facts.
Contrasting a KBS with a conventional Database (DB):

Knowledge Base - contains explicit facts and explicit rules (a lot of them)

Data Base - contains explicit facts and implicit rules (a very few)

This contrast also illustrates a difference between KBS and conventional computer
programs, written in FORTRAN, PASCAL etc. In a conventional program the
knowledge is stored implicitly in the form of the coded statements of the program; any
alterations require a code change . In a KBS, knowledge is stored explicitly in the
knowledge base as, for example, a set of rules or a graphical structure (eg network), and
can be altered and analysed separately from the mechanism that processes the knowledge
(called the inference mechanism) The knowledge of the system may therefore be
considered to be modifiable rather than hard-wired. It can be managed independently of
the procedures used upon it.

The term Intelligent KBS may also be used to define this type of system. This refers
to a KBS which performs intelligently. A discussion of intelligence is more appropriate
in the section on Al 3.6

Overview of Section 3.5 - Knowledge Based Systems

An overview of the contents of this section on KBS, and the references quoted herein,
may be gained from Figure 3.3b in the literature overview. KBS are best characterised
by considering the different approaches by which they represent knowledge, as "all else
follows". 3.5.2 considers knowledge representations whilst 3.5.3 considers how these
knowledge bases are used in practice. This latter section on knowledge processing
focuses on rule-based systems as these are the most common form of KBS and ES and
may be used to illustrate more general principles.

A vital step in constructing a KBS is the acquisition of the knowledge to put into it.
This is discussed in 3.5.4

109



3.5.2 Knowledge Representation

In developing a Knowledge Based System the choice of Knowledge Representation
(KR) formalisms is the most important design decision. This choice determines, to a
considerable extent, the options that are available for representing and reasoning with the
domain knowledge. This section examines the major different types of knowledge
representation which may be encountered. These are:

Natural Language

Data Bases

Formal Logics N
Production Rules =
Semantic Nets =
Frames

—— Modular

| Structural

Object Orientated Programming
Scripts J

There are no clear boundaries between different KR schemes, and they share many
factors in common. It is sometimes possible to translate directly from one representation
into another, eg from frames to predicate logic. Methods of processing one type of
knowledge may be useful in processing others, for example search and conflict resolution
strategies of propositional logic are often directly applicable to rule based systems.

Each representation has its strengths and weaknesses and each is appropriate for a
particular task, ie a particular means of knowledge processing. For example, Frames may
be used for representing objects and production rules for reasoning about them.

The different KR schemes may be divided into four groups:
Natural Language - not a formal KR method therefore of limited use
DataBases - storage of large amounts of simple data with little semantic content
Modular KR - representing "bites' of context free knowledge
Structured KR - reflecting the structure of the domain represented

Natural Language
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Natural language possesses great expressive power, and is readily understood and used
by the vast majority of people. So why not use natural language for knowledge

representation in a KBS?

Any language may be defined by its syntax and its semantics:

Syntax - a set of rules which describe the way in which legal expressions may be
formed in the language, ie defines the construction of sentences in natural language
(the concept of a syntax is similar to that of a grammar)

Semantics - defines the attribution of meaning to legal expressions in the language

In order to use a language of representation and inference in a KBS, this language
must have a rigidly defined syntax and semantics; it is then referred to as a formal
language. Computers cannot work with non-formalised data.

Natural Language (in this sense, for example, general English) cannot be used for KR
as no one has yet succeeded in formally defining its syntax and semantics. The
understanding of natural language is one of the core problems investigated in AI work
(section 3.6). It is, however, possible to define a syntax (a grammar) which defines a
subset of natural language. From such a grammar it is possible to construct semantic
interpretation mechanisms for translation of an expression in a language into another
language or other knowledge formalism. However, grammar of this type will only
define a single sentence at a time; this sentence is not considered in the context of the
body of text of which it forms a part, or the belief system underlying the semantic
interpretation of the sentence. For this reason it is described as a context-free grammar.

Consider the following passage:

"My car has broken down. It is the one by the lamp-post with the flat tyre"
The second sentence illustrates:

Context Dependency: "it" refers to "my car" which is described previously.

Global Interpretation: One has to know that a car may have a flat tyre but that a lamp-
post cannot.
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These are major problems with natural language, and even of subsets with formal
syntax. Semantic interpretation of legal expressions is context dependent requiring:

(1) Construction of a model of the universe according to previous and following

sentences.

(2) Availability of a belief system or general knowledge base of the universe as a

whole.

Although progress has been made in the development of context-dependent natural
language understanding, the second problem, defining general knowledge of the universe,
is obviously intractable. This implies that for the foreseeable future, natural language
understanding will be restricted to knowledge of narrow domains using a sub-set
language. Pseudo-natural languages are of considerable value in the human-computer
interface, and many application programs make good use of them, for example database
query languages. In KBS, a grammar based system may be used to translate internal
knowledge representations into a pseudo-natural language so that they may be more
readily understood by the user.

Databases

Data base technology is well developed in the storage of information, its retrieval,
modification , sorting etc. However this type of knowledge consists of a large number of
simple facts with very few rules for representing knowledge about these facts. These
rules are implicit in the Database Management System (DBMS) which manages the data.
It is possible to represent entities and relationships between those entities but not much
else, for example there is no provision for explicit inference knowledge or for
representing alternatives, implication or negation. However, large amounts of data are used
in KBS and it is useful to be aware of the various DBMS techniques for handling this
data. These include record structure types, relational and binary relational DBMSs.
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Formal Logic

There are many different types of logic including classical propositional logic, first
order predicate, sorted first order predicate, non-monotonic, modal, temporal and
intensional, each with their own uses in formal reasoning and theorem proving. All types
of formal logic are languages of representation with two characteristics:

1) A rigidly defined syntax for defining 'legal' expressions, which may be expressed
graphically, or in text format. A good example of a syntax definition is that of the
language PASCAL.

2) A rigidly defined method of manipulating expressions in order to facilitate
reasoning, for example modus ponens, which states that: from A and A ->B we can
infer B.

It is useful to consider two basic forms of logic as they have an important bearing on
the structure and manipulation of other knowledge representation formalisms. These are
propositional logic and predicate logic.

Propositional Logic
Expressions in propositional logic are constructed from atomic formulas (assertions
which have truth values) and the logical connectives:

A = AND

v = OR

-~ = NOT

- IMPLIES

It is important to note that the atomic formulae in propositional logic are semantically

indivisible, consider:
(Calvin has a tail) A (Calvin is furry) — (Calvin is a cat)

Each of the bracketed terms is a self contained statement which cannot be divided. Itis
not possible, from this statement, to generalise to the statement that all furry things with
tails are cats. Another expression would have to be defined in order to show that Hobbes
is a cat for the same reasons as Calvin. This is the chief disadvantage of propositional
logic: there is no facility for expressing specific knowledge about entities, general
knowledge of classes of entities (entity-set membership) or relations between entities.
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The expression: A A B — C may be rewritten as: If (A and B) Then C. This is the
representation used in production rule based systems, which use the modus ponens
manipulation rule to support reasoning. In a rule base, A and B may be complex terms in
themselves and are not necessarily semantically indivisible. In considering rule
representation in the section which follows it is important to remember that some methods
of inference, such as forward and backward chaining, and search, such as breadth first,
depth first, backtracking and more complex search strategies, were originally developed to
handle logical reasoning.

Predicate Logic

Predicate logic essentially overcomes the semantic indivisibility of the atomic formulas
of propositional logic through their replacement by predicates, eg:

1)  cat(Calvin)
2) owner(Calvin,Sue)
3) Vx[[furry(x) A has-tail(x)] — cat(x)]
4) Vx3Jy[pet(x) — owner(x,y)]
1) Denotes that the entity Calvin is a member of the entity-set 'cat'.
2) Defines a relation between two entities
3) For all x, if x is furry and x has a tail then x is a cat. This illustrates two principles:
Generalization - any entity may be considered for x
Implication - from one formula we can infer another

4) For all x there exists a y such that if x is a pet then y is the owner of x. This
illustrates the implication of the existence of new entities.

The logical connectives for predicate logic are those for propositional logic plus V -
meaning "for all", and 3 meaning "there exists".

Predicate logic has a relevance to more sophisticated knowledge representations. The
knowledge represented by simple frames or semantic nets may be directly translated to
predicate logic. PROLOG uses this logic in the form of Horn clauses [Robinson 1987].
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Both propositional and predicate logic are useful representations when it comes to
explaining the behaviour of a particular application of KBS, as here for fault analysis.

Production Rules

A production rule defines a small self contained chunk of knowledge about a particular
subject. This knowledge is in the form of implications which may be used to generate
new facts based on existing ones. Consider the rules in Figure 3.5.2a.

FIGURE 3.5.2a Production Rules and their Representation

IF (fuel system is failed) OR (ignition is failed THEN (car-run is no)
IF (fuel-pump is failed) THEN (fuel-system is failed)

IF (battery is failed) OR (coil is failed) THEN (ignition is failed)

fuel-pump is failed ——® fuel-system is failed |—

|—’ car-run is no

coil is failed

ignition is failed }—

battery is .failed

This tree representation of the relationships between concepts may be constructed first,
and the equivalent rules derived from it.

The rules are similar in form to implication statements in propositional logic and the
same logical connectives apply: AND, OR, NOT, IMPLIES. However the propositions in
the rules (bracketed terms) need not be atomic, they may represent anything the user
wishes, here attributes of objects. A more general form of production rule is [F C THEN
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A. Cis a condition to be met, usually a pattern of facts (using operators AND and OR) to
be matched to existing data. If C is satisfied, the rule "fires". A is an action to be taken if
the rule fires, this may involve adding new (implied) facts to the database of facts or the
undertaking of a procedural task, such as querying the user.

The structure of a simple rule based system may be that shown in Figure 3.5.2b. The
mechanism which applies the rules to the facts existing in the database is the rule
interpreter, or, more generally, an inference engine. The process is one of inferring goals
(desired conclusions) from data (initial assertions)

FIGURE 3.5.2b Architecture of a Simple Rule Based System

Initial Facts ————» Database ——# Ultimate Conclusions

pattern matching new assertions

v

Rule Interpreter

T

RULES (knowledge base)

Reasoning With Rules

There are two main ways of reasoning with production rules, these are illustrated with
respect to the simple forms of rule representation above:

1) Forward Chainin

1. A set of assertions is provided in the database.

ii.  The conditionals of all rules are matched against the assertions.
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iii. For each rule that matches, the action of the rule is executed, adding new

assertions.

iv.  ii and iii are repeated until the goal assertion appears in the database or no rules
can be matched.

Forward chaining is sometimes referred to as 'data driven search', as reasoning is
forward, from data to goals by chaining rules together transitively. This chaining is
illustrated in the left-to-right tree structure of Figure 3.5.2a.

2) Backward Chaining

i. A goal is selected. This goal is an assertion to be established as true or false (eg

car-run is no)
1. The action parts of all rules are matched against the goals in the rule base

il. For each rule that matches, an attempt is made to establish the truth of the
conditional statements of the rule. These may be initial facts - can query the user -
or conclusions of other rules - these are sub-goals to be established and are added
to the database.

iv. ii and iii are repeated until the goal is established (by finding sufficient true primary
assertions) or proven false.

Backward chaining is sometimes referred to as goal-directed search. In practice an

inference engine may combine both forward and backward chaining.

At any one iteration of the matching of rules to assertions in the database there may be
more than one matching rule. The question then arises as to which rule to apply first.
This is known as conflict resolution. There are a number of strategies, from selecting the
first rule that comes along, to making a best guess based on pseudo-probabilistic data
associated with each rule.
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As shown in the tree structure in Figure 3.5.2a the rules define a state space for the
universe of discourse. This is referred to as the search space and in systems of any
complexity which may contain many generalised rules, the search space may be very large
indeed (cf chess example).

Consider the backward chaining approach above. In order to establish the goal the tree
is searched from the goal to the primary assertions but how is this searching to take
place? There are two approaches, illustrated in Figure 3.5.2c:

* Depth first search: each node at a given level is investigated fully before the
consideration of the next node at the same level.

* Breadth first search: all nodes at a given level are investigated before moving down
to the next level.

FIGURE 3.5.2¢ Search Mechanisms

Depth First Breadth First

These strategies are both exhaustive and in the case where the search space is very
large this is impractical. A more ad hoc strategy may be more appropriate, using rules of
thumb or general, experiential knowledge to guide the search; this is known as heuristic
search [Clancey 1985].
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Structural Knowledge Representation Formalisms

Production rules allow us to represent information about a domain but they do not
permit the structuring of this knowledge to reflect the way in which the domain
knowledge is structured. Such topological KR schemes include semantic nets, frames,
conceptual dependency structures and scripts.

Semantic Nets

A semantic net is a graphical representation describing concepts or entities and the
relationships between them. An example is given in Figure 3.5.2d.

FIGURE 3.5.2d A Simple Semantic Net

destroy
_
'\ cat ———— mammal
i of set
action i$:a
today d& event ——————P» Calvin
agent number of legs
Object size
wallpaper small

Nodes are used to represent entities in the net and binary relations are shown by named

arcs.

The basic semantic net representation has been developed in various ways, eg extended
semantic nets or partitioned semantic nets.
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Frames

A frame consists of a collection of assertions about a particular entity type. These
assertions, or attributes of the entity are held together as shown in Figure 3.5.2e. Each
attribute consists of a named slot which may be filled by a value.

FIGURE 3.5.2e Frames

CAT FRAME - — l CALVIN'S FRAME
instantiation
small mammal small mammal
is-a
size
name name .
0-18 @ = = 14 T & Calvin
number of legs number of legs
temperament temperament

default:4 sweet 4

Of particular significance is the notion of a stereotype frame. This is, in essence, an
empty frame characterizing a given type of entity. When the slots of the frame are filled
in order to describe a particular entity , the frame is said to be instantiated.

The slot value of a particular frame may be initiated by the user or may have a default
value, or choice of values specified in the stereotype frame. Where the slot value is
predefined as the stereotype (eg small size for cat) this is referred to as a generic value,
common to all instances of the frame. This value may be a simple attribute of the entity
or it may indicate a relationship to another entity; in this case the value is a pointer to
another frame. Such a relational slot may indicate set membership by pointing to a frame
representing the set of all such entities. A slot may also have a procedure associated with
it - this is called a demon, as it is automatically activated whenever a certain condition
pertains to the slot, ie it is instantiated, changed or accessed. For example, the demon
may be intended to check the slot value to avoid conflict with other similar entities.
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One commonly used attribute in frame systems is the 'is-a' relationship pointing to
another frame. If we say that <x is-a y>, then x is a specialization of the more general
object y. For example, w and x may be the frame for cat and dog respectively whereas y
may be the frame for a mammal. Here both <w is-a y> and <x is-a y>, both cats and
dogs belong to the general class of mammals. The formulation of an is-a hierarchy
allows for the inheritance of properties by the child frames from the parent frames,
where <child is-a parent>. In our example both the cat and dog frames will inherit slots
from the mammal frame, for example the property warm-blooded, has lungs etc.

Matching

If an unknown object is encountered it may be matched against the stereotype frame to
see if it conforms to an existing object type. This may lead to either a positive match or a
best match, in each case the next aim is to fill any needed but empty slot values in the
object by a kind of guesswork using the slot values of existing instantiations of that

stereotype.

Inference
There are various means of inference available in frame based systems:

* When a match is made we may infer that the object belongs to the general class of

the matching stereotypes, allowing attribution of generic values.
* The is-a slot defines generic inheritance of properties

* Analogies may be drawn between objects, eg a hamster is like a very small cat but
does not live for very long. Some rules for hamsters may be applicable to cats.

Object Orientated Programming

The notion of object orientated programming arose out of the representation of objects
as frames. The expressive power of object orientated programs relies on exploitation of
the demon properties to allow for objects to communicate by message passing.
Messages are procedural instructions which may be sent by the user to an object, from
object to object or object to user.
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In more advanced object orientated programming each object has a message interpreter
which tells it how to decode a message it receives and then to put it into action. Action
may involve retrieval or changing of object attributes, sending messages to other objects,
or engaging in defined tasks. This raises the possibility of creating a real-world
simulation by defining objects to represent world entities and their behaviour with respect
to each other and to external events.

Scripts

A script is a structured set of assertions, actions and procedures representing a
particular sequence of events. It is based on the idea of conceptual dependencies,
originated by Schank [Schank 1977]. Conceptual dependency structures are essentially
sophisticated semantic nets involving a complete ontology of entities, actions, conceptual
tenses and dependency between concepts. Scripts are used for reasoning about
procedures. One example of their use in inference is that if a script is begun we can infer
that the rest of the script will follow.

3.5.3 Knowledge Processing

The previous section considered various ways of representing knowledge and included
a description of the ways in which this knowledge can be used to reason about a domain.
In this section advanced techniques of Knowledge Processing (KP) are discussed with
specific reference to rule based systems, as these are by far the most common Expert
Systems. The topics discussed here are: reasoning with uncertainty, the use of
partitioned knowledge bases and the representation of control knowledge.

Reasoning with Uncertainty

Expert Systems reason about a subject at a high level of abstraction, using rules of
thumb or more generally, heuristics. Heuristic knowledge is that of experience and may
not be deterministic; it may consist of a belief in a certain implication, with a certain
strength behind that belief. For example, consider the rules:

1. IF pound falls THEN interest rates rise

2. IF interest rate rises THEN mortgage rates rise
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The first rule is not necessarily true, an expert would express a certain degree of belief,
perhaps a probability that it would be the case. The second rule however is almost
certain. Another source of uncertainly arises where data may be incomplete, unreliable or

vague, eg is tall, feels cold.

There are two main types of uncertainty reasoning methods, probabilistic inference and

fuzzy logic.

Probabilistic Inference

These methods are based on Bayes Theorem for conditional probability. In a rule
based system this involves assigning probabilities for:

* initial assertions or data
« probability of implications ie X—Y with a probability of P

* a priori probability of the outcome, ie the prior probability that Y is true,
independent of any evidence

Bayes Theorem provides a means of computing the probability that a hypothesis (H) is
true based on evidence (E) related to that hypothesis:

p(E:H)p(H)
iP(E:Hi)P(Hi)

p(H:E) =

p(H:E) = probability of H being true given that evidence E has been observed
p(E:H) =  probability that E will be observed given that the hypothesis H is true

p(H) = a priori probability of the truths of the hypothesis, independent of any
evidence E, eg the prior probability of throwing a 6 with a die is

1/6

n = the number of possible exclusive and exhaustive hypotheses
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Bayes Theorem was used by the author in a simple expert system for the identification
of wild mushrooms. In this case each Hypothesis is that the mushroom to be identified -
the specimen - is a given species, and each piece of evidence is a characteristic that the

specimen may exhibit.

In practice the way in which uncertainty is handled may not be based on true
probabilities, but is rather pseudo-probabilistic, eg '"probabilities” are not strictly
calculated according to Bayes Theorem. This is not so important as long as it works,
after all building expert systems is often a pragmatic process. A good example is
MYCIN - which made use of ad hoc certainty factors and calculations.

Fuzzy Concepts

An alternative approach to reasoning with uncertainty is based on the degree of belief
associated with assertions or implication, in the form of certainty factors. Consider the
rule IF X THEN Y with certainty C:  This certainty factor (CF) commonly ranges from
-1 to +1 , indicating, respectively, a total lack of confidence in the implication or a 100%
belief in it.

The initial assertions on which the rules are based may also have an associated
certainty factor. These different factors may be combined arithmetically to determine a
certamty for the implied assertions (Y in this case)

Fuzzy logic also includes the concept of associating a term with a range of possible
values. For example the terms hot, warm, mild, cool and cold each refer to a range of
temperatures.

Control Knowledge

In large knowledge bases containing many rules it is extremely time-consuming to
consider all the rules at all times when only a subset of them is required for the task at
hand. This kind of thinking leads to rules about rules, these are called meta-rules and
may be used to store control knowledge as a knowledge base, with all the advantages that
brings. For example, a meta-rule might be:
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IF problem is (engine will not run)

THEN use ignition system and fuel system rules to establish (engine will not run)

Partitioned Knowledge Bases
Blackboard Architectures

It may be the case that a problem is too complex for one expert system to solve by
itself. It may be advantageous to partition a knowledge base into several constituents,
each with a particular bearing on a problem, for example we might have one KBS that
decides on the possible occurrence of faults in a system and another that determines how
these faults may propagate. In these cases there is a need for communication between
knowledge bases. A blackboard is a separate data structure which may be added to or
modified by a KBS. The individual KBS may observe the blackboard waiting for the
appearance of information which is in its domain and then act on that information to make
changes of its own to the blackboard.

3.5.4 Knowledge Acquisition

[Davis 1979, Kahn 1985, Rada 1985, Waterman 1981]

There are two general approaches to the acquisition of knowledge for inclusion in

Expert Systems. These are
1) Direct Acquisition - being told.

2) Learning - acquiring or selecting the rules describing the domain by exposure to

examples.

1) Direct Acquisition [Boose 1984, Hayes-Roth 1983]

The direct acquisition of knowledge requires the elicitation of that knowledge from an
expert, and the encoding of the knowledge in a representation suitable for a KBS. An
expert, or alternative source of knowledge, is therefore required. This is the conventional
way of constructing expert systems, described in section 4.4.
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2) Automated Learning [Michalski 1980, Rada 1985]

The subject of machine learning is one of the main problems tackled in Al research but
here the aim is to develop general models of learning behaviour. In ES development we
are interested in acquiring specific knowledge about a domain and we may well have
concrete examples of the tasks which we want the system to perform. To this end,
automated learning, learning by induction from examples, takes the following form:

1  The data for an example problem is provided.
The ES attempts to solve the problem.

The solution of the system is compared with the example solution.

S WN

If the solution is correct, reinforcement of the reasoning used is carried out. If
the solution is incorrect, the reasoning used is reduced in importance.

Thus a simple learning program may be provided with a subset of all the rules possible
for a given domain (mapping of data to solution) and may weight those rules using a
probabilistic or certainty factor principle in order to leamn. The general principle behind
learning of this nature is simple modification of implication through feedback.

Presenting an ES with data and solutions gives no clue as to how the solution is to be
reached, unless single step inference is used. It may be advantageous to precede the
learning process by the direct acquisition of knowledge identifying key concepts and
interrelationships. This identifies "stepping stones" between the data and solution thereby
"fleshing out" the mapping of rules from one to the other and defining sets of rules which
may be applicable.

More recently there has been considerable interest in the use of neural networks which
gain competence in a task by a process of pure learning from example and direct
modification through feedback. This is, however, outside the scope of this work.
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3.6 ARTIFICIAL INTELLIGENCE

3.6.1 Introduction

Artificial Intelligence (Al) is based on the assumption that the best way to understand
intelligence is to attempt to reproduce it. More specifically, the aim is to artificially
produce evidence of intelligent behaviour, whatever that is. This reproduction is, by
default, conducted by computer. It is interesting to contrast Al with experimental
psychology. An analogy may be drawn with physical systems. There are two basic
approaches to understanding a physical system, the empirical and analytic: either to
conduct experiments on it, or to develop analytical models of it, in the physical case
mathematical models for numerical simulation. The two different approaches of Al and
experimental psychology were always somewhat at odds until the late 1970s when the two
fields were brought together, along with linguistics, formal logic and philosophical
considerations to form the new discipline of cognitive science. An understanding of
cognitive science is useful in Expert Systems work as this science attempts to answer
questions concerning how people perceive and reason about the universe, for example,
what models of the universe do people have in their minds and how does an expert
perform a particular task.

Al research has focused on the following principal problem areas:

* Natural Language - recognition and synthesis

+ Thinking and Reasoning - problem solving, theorem proving, planning
* Learning

* Representation of knowledge

* Computer Vision

* Real world reasoning

A lot of Al work is somewhat tangential to building IKBS. Aspects such as computer
vision are clearly not applicable but more generally there is a strong difference of
emphasis in the two subjects. In KBS empbhasis is on quantity, quality and diversity of
explicit knowledge used to solve a particular set of problems in the real world. In contrast
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Al attempts to produce general models of particular aspects of intelligence. This often
involves developing a neat and complete symbolic computer program to solve a set of
problems in a very simple artificial world. This is aimed at demonstrating the success of
a particular theory of some aspect of intelligence, reasoning method or view of the world.
In other words these models are widely applicable but only support reasoning in a very
simple domain. However it must not be forgotten that practically all developments in
Expert Systems owe their existence to Al research. Al concepts, theories, taxonomies,
ontologies, models, representation and reasoning techniques provide new and extend
existing IKBS methods.

This section focuses on particular areas of Al research principally representing and
reasoning about physical systems in the real world. As it turns out, this appears to be a
small part of Al but is gaining in significance as a result of the upsurge in ES/IKBS.

3.6.2 Reasoning About Physical Systems

Reasoning about physical systems in Al uses symbolic rather than numerical models
and may be referred to as qualitative reasoning (QR) A volume of the journal Artificial
Intelligence was devoted to the discussion of qualitative reasoning about physical systems
in 1984 [Bobrow 1984]. and this section discusses briefly these approaches with
expansion on those topics relevant to the problem at hand.

Some general points about qualitative reasoning emerge from a consideration of the
literature.

1) The behavioural description of the system must be compeositional; the behaviour of
the system is derivable from the structure of the system, ie the components,
component behaviour models and the interconnections between components.
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2) Causality
Differential equations which describe a system only impose constraints on the
dynamics of system variables and do not describe the causality (the flow of cause-
effect) within a system. In qualitative models causality should be seen to propagate
through the system from component to component via connections.

3) Discrete vs continuous variables

In mathematical models variables are continuous, ie they may have any value within a
given range. In qualitative reasoning, variables have discrete values (eg high, normal
low) which must map onto a range of equivalent continuity. This implies that QR is
most readily applicable in the case of discrete systems such as digital electronics
rather than continuous systems such as process plant. For this reason a large amount
of work has been carried out on digital systems whilst successful modelling of
continuous systems has been confined to a few simple examples.

4) Quantity Space

The term quantity space refers to the different values that a variable may take. In Al
QR this is generally restricted to a simple set, eg {-,0,+}, or even {0,1} for digital
systems. Obviously this is insufficient for chemical processing systems, consider the
HAZOP Guide Word quantity space, defined in Table 2.4.3a where the variable
"flow" has the following quantity space: {no, more, less, as-well-as, part-of, reverse,
other-than}. The concepts embodied in these guide words are too complex for any
simple homogeneous quantity space. This is a serious problem with the very neat but
restricted QR systems which have been proposed.

5) Function

It may be useful to reason about the function of an object as distinct from its structure
and behaviour. [Rasmussen 1979a]. For example, the function of a relief valve is to
prevent damage to the vessel which it is protecting; we may reason that failure of the
valve implies the existence of a hazard to the vessel.
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6) Primitives
Qualitative reasoning about causality in physical systems may be characterised by the
primitive elements of the representation from which causality is determined. These
are either variable centred or device centred representations.

i) State Variable Centred Representation [Kuipers 1984, Bandekar 1989]

In this paradigm the ontological primitives are state variables with qualitative
constraints describing their interdependence. These models may be depicted
graphically as a network of nodes corresponding to state variables, with
bidirectional arcs between the nodes indicating the permitted qualitative values
they may have with respect to one another. These variables and their interactions
may be decided upon by collecting the differential equations that describe a device
and replacing them with their qualitative equivalents in a manner similar to that
used by Andow [Shafaghi 1984] and Taylor [Taylor 1982] in developing models

of process devices.

This methodology bears a striking resemblance to that of Lapp+Powers [Lapp
1979] who use variable digraphs to represent interactions between process
variables. In variable digraphs, however, directed edges are used to indicate the
flow of causality from one variable to another whereas state variable networks
represent constraints between variables. Causality is derived from the variable
network by a process of constraint propagation or techniques known as causal
ordering [Kleer 1986]. Alternatively causal ordering may involve references to
the boundary variables of the system and the topology (digital schematic, P&ID)
of the system.

There are three basic levels of causal dependency that may be defined between
variables:

1) Pure constraints on variable values. Individual variable values are tied
together such that the existence of one variable value implies the existence of
others, and vice-versa. The constraints may be defined as sets of consistent
variable values. Note that there is no information regarding the direction of
causal propagation.

EG (A:low, B:high) (A:high, B:low)
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2) Bidirected causality. A change in one direction of a variable value implies a
change in a certain direction in another, and vice-versa. Again, the direction of
causal propagation is not defined.

EG (A:increase, B:decrease). If A increases, B decreases. If B decreases, A

increases.

3) Directed causality. In a one-way causal link the direction of change in one
variable is directly responsible for the direction of change in another. This is the
method used in the variable digraphs of Lapp and Powers. Note that causal
propagation is defined.

EG If A increases, this causes B to decrease.

In addition to these methods, it is clearly possible to directly describe causal links
between events defined as variable values. EG If {A high} occurs, this causes
{B low}. This is not, though, a variable centred representation.

The state variable network approach suffers from the same problem as the variable
digraph method in that synthesis of the graph involves almost as much effort as
direct synthesis of the causal analysis. The graph must first be synthesised from
the structure of the system. This has not yet been demonstrated for physical
systems of any complexity.

i1) Device Centred Representation

In this methodology the system is described in two ways:
Topology - The identity of the system components and their interconnections.

Component behaviour Models - representing input/output information.

Again, this approach is almost universally confined to modelling causality in
digital systems. Digital devices are easy to identify as they are discrete in both
topology (at both an ontologically primitive and abstract level) and behaviour
(defined by formal logic). Although chemical processing systems do contain
equipment which may be regarded as discrete devices, eg valves, transducers, with
clearly defined Vo and failure modes, a device based method is somewhat
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stretched when it comes to handling complex entities such as streams, reactions,
VLE, flow/pressure in pipes, mass transfer etc.

A very important consideration in device model selection is that the model must
not contain embedded assumptions which make its behaviour dependent on the
context in which it appears. This context dependency is an important
consideration in process systems where flows of material and energy may be
misdirected.

Conclusion

The chief disadvantage of Qualitative Reasoning as a means to solve problems of
causality in physical systems is that it essentially attempts to construct direct symbolic
models of the world. There are two problems with this:

1) To be comprehensive, symbolic models must approach the complexity of
mathematical models, indeed the symbolic models are derived from differential
equations developed in the conventional way. QR must ultimately be rejected as a
solution for the same reason that full mathematical models of chemical process
systems are not generally produced - it is too expensive and time-consuming. In
the development of rules for generic unit models though, prior consideration of

differential equations may prove useful.

2) This type of QR is restricted to reasoning about physical systems in very basic
mechanical terms; there is no diversity of knowledge and certainly no expertise -
that higher level or heuristic knowledge that characterises the way in which a
human expert would approach the problem.

Although QR as a methodology is not directly applicable to the problem at hand, the
concepts introduced, defined and classified and the general aspects of the models of
representation and causality discussed prove very useful. Particular concepts have been
directly applied in the suggested expert system design:

« Compositional behavioural description.
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Discrete variable quantity space.

Primitives - device and variable centred.
Representation and propagation of causality.
Distinction between structure, behaviour and function.

The QR principle of deriving symbolic models from mathematical models is of
value in developing causal unit models.
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CHAPTER FOUR
EXPERT SYSTEM DESIGN METHOD

4.1 HARDWARE

Potential Hardware for Al programming is discussed in Section 3.4.1. The choice of
hardware for this research was largely decided by availability. Initial work was conducted
in LISP on the University Harris mainframe (this LISP was actually written in
FORTRAN!) and later transferred to Birmingham University's DEC20 INTERLISP. At
this time the new LISP standard, COMMON LISP, had just been formulated [Steele
1984] and became available for the IBM PC/XT and AT. It was suggested that one of
these machines should be acquired for this research and an IBM PC/AT was obtained,
along with Gold Hill Computers Inc. Golden Common Lisp (v1.0).

In 1987 the University purchased a DEC Cluster system, supporting a version of
COMMON LISP and the expert system building language OPSS5. Although some
development work was carried out on this machine, a mainframe is not the ideal tool for
building expert systems, and it was felt that the range of alternatives provided by OPS5
was too restricted for a general exploration of the problem at hand.

The ideal tool for this kind of work is a personal workstation, unfortunately one was
not available.
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4.2 SOFTWARE

There are two basic choices: programming language or Expert System building tool.
LISP was chosen for the following reasons:

1) It is by far the most dominant vehicle for Al work, particularly in the USA, and has
been for thirty years.

2) LISP is well suited to the mechanics of knowledge representation and processing
(3.42 & 3.5)

3) Although a PROLOG program can, in theory, do anything that a LISP program can, it
is far easier to maintain complex, user defined symbol structures in LISP. This was
felt to be an essential requirement as it was soon determined that the symbolic
representation of process plant by computer is the key to reasoning about it.
PROLOG, of course, has the advantage of an in-built inferencing mechanism, but it
was preferable not to impose any one reasoning method on the research.

4) Many Expert System building tools are written in LISP or PROLOG. Each tool
imposes its own way of doing things on the system builder, although alternatives may
be provided. In order to retain maximum flexibility this option was rejected. At the
beginning of this research the only Expert System Shells available were either too
rudimentary or too expensive.

4.3 GOALS OF THE RESEARCH

This research was initiated by the suggestion of David Lihou [Lihou 1980c] that it
might be possible to identify general rules for the determination of causes and
consequences of deviations when conducting a HAZOP. In the context of the rapid
upsurge in Expert Systems, the initial direction of the research was formulated, namely
rule-based HAZOP synthesis. For reasons which are discussed in detail in Chapter 5 the
research evolved into more global consideration of the generic problem of fault
propagation in process plant.
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4.4 EXPERT SYSTEMS DESIGN METHODOLOGY

Although the field of Expert Systems is still a very young one, for the development of
complex systems two design principles emerge [Hayes-Roth 1983]:

1) The process of design is an iterative one.

2) The initial goal should involve attempting to solve a small representative problem in the
domain to a high degree of competence, rather than trying to capture all the domain
knowledge at once. After a small problem has been tackled satisfactorily,
generalization may proceed. (A disadvantage of this approach is that a smaller problem
may have proportionately more unknown boundaries).

These principles are illustrated in Figure 4.4a

For the above reasons a small, representative problem was selected. This was the
Ammonia Let-Down HAZOP [Lihou 1982d] which is reproduced in full in Appendix 1.
The process of designing an Expert System to solve this problem certainly proved to be
an iterative one. In outline, this was a gradual division of the problem into more
manageable sub-problems. The evolution of the proposed solution is discussed in
Chapter 5.
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FIGURE 4.4a A Flowsheet for Expert System Design
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CHAPTER FIVE

IKBS DESIGN EVOLUTION

5.1 INTRODUCTION

As discussed in Chapter 4 it is generally accepted that, in building Expert Systems of
any complexity, one should first select a representative example problem and attempt to
solve this problem before generalizing. With this in mind, the Ammonia Let-Down
System (ALDS) was selected as an example; particular emphasis being placed on the
causal analysis of the Two Phase Splitter. This item of equipment was considered to be
of sufficiently low complexity to facilitate experimentation using the modest means
available. The fact that the IKBS would have to be generalised meant that the entire
ALDS, along with other example designs, eg Hydrocarbon Reactor and Solvay Process
were also considered when building the Knowledge Bases.

The process of evolution which led to the proposed design for an IKBS which is
presented in the next chapter may be considered to be a process of successive refinement
of the initial conception of the solution to the problem, shown in Figure 5.1a. This
involved breaking down the problem as a whole into a number of smaller sub-problems.

FIGURE 5.1.a Initial Conception of the Solution to the Problem

| Causal Analysis]

STRUCTURE

THEN

Rules:
Process Plant Representation IF {process plant pattern}
THEN {statement of causality}
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Any rule based system for causal analysis must have the overall characteristics shown
in Figure 5.1a:

1) A symbolic representation in the computer of the process plant under analysis.

2) Rules with +conditional < A generalised pattern of a part of process plant to
be matched against the plant under analysis.

* action « Statements of events and causal links to be
applied to the plant under analysis.

Figure 5.1b gives an Overview of the Design Evolution process which involves the
parallel consideration of the two characteristics of process plant representation and causal
knowledge as above.

Process Plant Representation

From very early on in the life of the research it was realised that the development of a
systematic method of symbolic representation of chemical plant is the key to any kind of
reasoning about it. This is intuitively obvious as such a problem representation is not
only a requirement for describing any particular plant but, in this case, is also of
considerable complexity compared to that required in many expert systems.
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FIGURE 5.1b Overview of the Design Evolution
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Consider a system for medical diagnosis. Here the case-specific data for a problem to
be solved may consist of a fairly simple set of statements about the symptoms exhibited
by the patient; the underlying structure and behaviour of the system, ie the body functions,
are taken for granted by the medic. In process plant reasoning, the case specific data must
represent the structure of the plant - its P&ID, and the operating specifications: Flow
rates, Temperatures, Equilibria, control system behaviour, phases and chemical species. It

is also necessary to explicitly represent the functioning of the plant. Clearly this is an

order of magnitude more complex than the simple medical example.
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Section 5.3 discusses the development of a system for representing process plant
which followed the path illustrated in Fig 5.1b. Various types of representation system
were investigated and the relative merits of "High Road" or abstract knowledge and "Low
Road" or detailed knowledge were considered. A means of hierarchical decomposition of
the P&ID into systems and primitive objects was developed along with a frame based
representation system for those objects. A system of stereotyping plant objects was
investigated to represent consistently the same object in different contexts.

These ideas were combined to form a hierarchical classification of generic process
plant object stereotypes, providing a systematic and manageable symbolic representation
system for chemical plant. Further work involved rule based reasoning and enhancement

of the representation.

Causal Knowledge

Section 5.4 discusses in detail the development of a method of causal analysis. The
first requirement for causal analysis is a means of representing events and cause-effect
relationships between them. A similar frame based system to that used for plant objects
was developed using a classification of different kinds of events.

The central decision made concerning the derivation of causal information from a
description of the plant was to split this derivation into two parts; definition of events that
could occur in a given plant, and definition of the causal links between those events.
Although these two tasks may involve the repetition of knowledge and are certainly more
complicated than a single task, this division is justified in Section 5.4

Another key decision that was made was to separate the inference of causality from
structure from the process of constructing a final fault analysis. Therefore, instead of
directly producing a fault analysis, a causal structure specific to the plant under
investigation is produced; from this causal structure a fault analysis may be produced.
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5.2 FAULT ANALYSIS

5.2.1 Fault Analysis Knowledge

The knowledge which characterises a fault analysis divides neatly into three groups: the

data provided for a given analysis, the reasoning used to conduct the analysis and the end

result of the analysis. These may be sub-divided further as shown in Figure 5.2.1a.

Figure 5.2.1a Fault Analysis Knowledge
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Data

The first step in a HAZOP is the assembly of information relevant to the plant or
design under consideration. This information, case specific data which describes the
structure of the process, may be divided into two categories:

1) Topology

Commonly represented as a P&ID , the topology of the system is an explicit
representation of the identity of plant items and their interconnections. Often
implicit within this representation are assumptions relating to the behaviour of these
items, for example the configuration of control devices, a control valve may be air-
to-open or air-to-close. The control strategy may be implicit, eg a flow control loop
may be assumed to be time independent and not pulsed.

2) Operating specification

These specifications detail the process under consideration, including:
» Materials - composition, flowrate, temperature, pressure etc

» Equipment - operating and design ratings, pressures, temperatures,
materials of construction etc.

» Flow - mass transfer, heat transfer
« Control - specification and bands in the control systems

Reasoning

The reasoning used in a fault analysis consists of a structured procedure, knowledge of
possible process deviations and of how these deviations are causally interdependent.

Procedure

For HAZOP a procedure is followed for considering all process items and lines and all
deviations which may occur . This is detailed in Section 2.4.

Events

Process Deviations are defined by using the Property Word / Guide Word /
Component system described in 2.4 (Table 2.5.4b). The particular key words used are. of
course, dependent on the context of the deviation they represent, ie the item of equipment
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where they occur. Failure modes of items of equipment may also be drawn from tables
as discussed in 2.4 and given in Appendix 2. Credibility of events is also a consideration.

Causal Knowledge

Once an event is identified it is necessary to determine by causal reasoning its causes

and consequences. This causal reasoning takes place at two levels:

* Experience: A given pattern may be recognised by the expert and, drawing from

experience, he is able to describe directly the causality.

* Theory: In more complex, or novel situations, recourse may be made to

fundamental generic knowledge of chemical engineering operations,
processes and equipment behaviour.

Sources of Fault Analysis Knowledge

Various potential sources of knowledge for constructing an expert system for fault

analysis were identified:

(1

(€))

3)

4)

®)
(6)

)

An Expert. The normal route for the construction of an expert system involves
the elicitation of the knowledge of an expert. Unfortunately one was not

available.

An example Fault Analysis. The example selected here is the Ammonia Let-
Down System (ALDS).

Equipment failure mode and event tables, and decision tables, used to define the
valid events that may occur.

Flowsheets from the literature for conducting fault analyses, used in the
formulation of the methods for producing cause and symptom equations and
fault trees from the intermediate step of the causal analysis.

Rules for the construction of fault trees, eg those given in section 2.5.3.

Learning. The problem was considered to be too complex to even consider a
learning system. In developing a learning system it is first necessary to identify
a paradigm for reasoning; this is the subject of this research.

Various knowledge sources were consulted and borne in mind when developing
knowledge base rules, including:
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(i) Case studies.

(i) Rules gleaned from the literature.

(iii) Fault Tree Synthesis Methods - manual (2.5.3)
- automated (2.5.4)
(iv) Fault Diagnosis Methods -(2.7)

(v) Background Knowledge of Chemical Engineering Operations.

5.2.2 Manual Fault Analysis
Fault Analyses must meet two criteria:

1) True: The analysis must be a faithful reflection of the way in which the real world
chemical plant behaves.

2) Veridical: The analysis must be internally consistent, following a logical and
consistent method of describing causality. This is critical if the analysis
procedure is to be copied by an automated system.

In practice, any number of experts who tackle the same problem will all produce
differing analyses.

The veridicality of the example Cause and Symptom Equation (CSE) HAZOP - the
Ammonia Let-Down System (ALDS), has been subjected to particular scrutiny in an
attempt to elucidate the structure of the reasoning behind the analysis. This close
examination reveals that, in common with other analyses, the expert very much "makes it
up as he goes along". Each equation that is developed relies on the context of the
previous equations. The meaning of each event described in the equations is also strongly
dependent on context. These points are illustrated in the analysis of the Cause Equations
for C1, the Two Phase Splitter in the ALDS, the paper containing this is included as
Appendix I:
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C1 Cause Equations

1
m
C1 (level no) = LT1(stuck high) + LCL1(giving more flow) * LAL1(FD)
[ [
LCL1(giving more flow) = LIC1(set low) + LCV1(open too much) + V3(open)
LAL1(FD) = LSL1(set low or stuck high) + LAL1(failed) + LAL1(ignored)
2

@
C1(level less) = LT1(indicating high) + LIC1(set low) + V3(open)

C1(level more) = L2(blocked)+LT1(ind low)+(LIC1(set high)+L2(BV)+L2(RV))*LAH1(FD)

LAH1(FD) = LSH1(set high or stuck low) + LAH1(failed) + LAH1(ignored)
L2(BV) = Vi(blocked) + LCV1(blocked) + V2(blocked)

L2(RV) = LCVi(insufficiently open)

(1) Stuck High is not in the Failure Mode Table.

(2) The condition LCL1(giving more flow) is not clearly defined. In this context it
actually means "giving too much flow", compared to the desired equilibrium value
with respect to the inflow to Cl1. LCLI(giving more flow) would, in fact, be
caused by LT1(stuck high).

(3) LAHLI as defined on the P&ID has been split into two devices for the purpose of
the analysis: LAL1 and LAH1.

(4) LIC1 (set low) would most likely cause (C1 level less). LICI(set zero) or
LIC1(set low low) would perhaps be more appropriate here. The fault analysis
does not distinguish between those conditions such as LIC1(set low) which would
give a new but stable condition, and LT1(stuck high) and V3(open) which would
lead to an unstable plant condition until C1 is empty.

(5) In this context, LCV1(open too much) is used as a primary failure. Taken in
isolation, the event LCV1(open too much) may be thought of as a command fault,
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©6)

@)

®)

perhaps caused by a control loop failure. The correct failure mode here is
LCV1(stuck open more), which is a primary failure of the valve and not a

command fault.

For cause equation 1, V3 is treated as a part of the control loop LCL1, which is not
really the case. Additionally, V3 may fail open to varying degrees of internal
leakage. The control loop would then either:

(i) Be capable of compensating for the leakage by throttling back LCV1, in
which case the level in C1 will be maintained at the set point.

(i1) Be incapable of compensating sufficiently, ie LCV1 will close and the vessel
will empty.

V3(open) is therefore unlikely to cause Cl(level less) as in cause equation 2, and
would rather result in no change to the level or zero level.

Cl1 level may change in the following ways:

(i) Decrease to, and then stay at, zero.

(i) Stabilise at a lower level.

(ii1) Stabilise at a higher level.

(iv) Increase to a maximum, where liquid enters the gas offtake.

The guide word system in the ALDS paper does not allow for condition (iv), but
only for Cl(level more). (iv) might be termed C1(level max).

L2(BV) and L2(B) will cause C1(level max) whereas LT1(indicating too low) will
cause Cl(level more).

The failure LT1(stuck low) is not included here and would cause Cl(level max).

The human factor is introduced here as it is assumed that if LAHI is not ignored,
an operator will intervene to prevent the condition C1(level no).
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5.3 THE REPRESENTATION OF PROCESS PLANT

5.3.1 Introduction

This section is concerned with the development of a systematic method of representing
the structure of a chemical plant. That is, a plant is considered to consist of a number of
interrelated physical objects - vessels, lines, valves, control devices, materials etc. The
development may be looked at in four ways:

1. Alternative Representations of process plant objects.

2. Establishment of stereotypes - generic objects to be instantiated according to each
particular occurrence of that type of object.

3. Levels of abstraction - consideration of high level or low level knowledge and the
possibilities of symbolic modelling - discussed in section 5.5.

4. Reasoning about plant structure using rules - discussed in Chapter 6.

This section (5.3) is concerned with the evaluation of the symbolic representation
system as in (1) and (2) above.

5.3.2 Alternative Representations

It is clear that a chemical plant is far too complicated to be adequately described by a
loose set of assertions. The topology of the plant suggests that these assertions should be
grouped to reflect the different elements in the plant and must describe their physical
interactions. For this reason, a Frame Based system was chosen (Frames are discussed

in section 3.5.2).

Attempts were made to devise frames to represent the objects in the ALDS P&ID; the
Two Phase Splitter P&ID is shown in Figure 5.3.2a. Frames were devised for high level
objects such as the vessel Cl, lines and control systems; an example of an early frame for
C1 is shown in Figure 5.3.2b. It became clear that these types of system frames are too
general to describe adequately the different possible combinations of the elements that
could make up the system and the range of potential ways in which they may interact; it is
necessary to represent the individual devices that make up a control system for example.
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FIGURE 5.3.2a Two Phase Splitter P&ID
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FIGURE 5.3.2b Example of Early Frame
(Cl1 (identity (:= vessel system))
(boundary (inflow (:= L1))
(outflow (:= L2 L5)))
(contains (bulk phase (:= G1 L1))

(bulk interface (:= Gl L1))))

(here G1 and L1 refer to process fluid bodies of gas and liquid respectively)

The decision was made to define vessels, lines and control systems as systems, which
have a frame representation at this level, but which also contain objects detailing the
internal structure of the system. For example a line system contains valves which are
joined together by flow paths.

This suggests the possibility of a hierarchical decomposition of a P&ID into systems,
sub-systems and the objects contained within them, each of these to be represented by a
frame. There are a number of problems to be solved, principally;

1) How to represent the internal processes of vessels ? This is clearly more complex
than representing the individual objects that comprise a control system or a line.
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2) How to represent the interconnections between objects ?

Consideration of these questions led to the establishment of three principal object
types: system, node and arc. Systems are as above, containing nodes at places of interest,
these nodes being interconnected by arcs. These three basic types of object are reflected
in the final hierarchical decomposition of the Two Phase Splitter shown in Figure 5.3.2c.

FIGURE 5.3.2c Hierarchical Representation of the Two Phase Splitter
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5.3.3 Stereotypes

Once a particular set of frames was worked out for describing objects in the ALDS it
became necessary to generalise these representations. This involves the construction of
stereotypes, generic objects stored in a permanent library to be instantiated to represent
objects in a specific case.

The construction of generic or stereotype frames for the specific case of the ALDS
does not, in itself, present any serious problems. The question arises, though, of how to
organise and manage the different object stereotypes. This organization centres on the
identification of each stereotype as being a unique generic object. The initial scheme was
to have a library of completely independent stereotype definitions. Each definition was
uniquely identified or mapped by two slots - the TYPE slot and the IDENTITY slot;
examples of this kind of stereotype are given in Figure 5.3.3a.

FIGURE 5.3.3a Type / Identity Stereotypes

(Cl (type (:= system))
(identity (:= vessel)))

(LCV1 (type (:= device))
(identity (:= control valve)))

For the management of any library of stereotypes it is desirable to classify these
stereotypes. An example of an early classification using the type and identity slots is
given in Figure 5.3.3b.
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It is clear from these attempts to classify the different types of process plant objects
that a number of natural classifications may be incorporated. For example, a control
device may be a sensor, a processor or an actuator. A sensor, in turn, may be a switch, a
level transmitter, pressure transmitter etc. From experimentation with different
classification methods it was decided to drop the identity slot system in favour of a full
hierarchical classification of process plant objects based on their type designation. The
final hierarchical classification which was decided upon is shown in Figure 5.3.3c.

For clarity, only those objects within the ALDS system are desribed in the hierarchy
(eg no temperature variable is given). In addition:

(1) Inheritance may take place through more than one path, eg a valve is both a line-
node and a device.

(2) An alarm is included as an actuator as it may elicit manual intervention.
(3) LINE-ARC refers to arcs which represent potential material flows.
(4) COMPOUND refers to a chemical component.

The representation of the hierarchical classification of stereotypes and the attribution of
properties to these stereotypes is discussed in Chapter Six but it is relevant to present
some of the benefits of this approach.

1. Completeness

Any specific object to be represented is described in the hierarchy, in relation to
similar objects of its type. This helps in achieving a representation system capable
of describing all plant objects and in accommodating new stereotypes in an

organised fashion when the representation is generalised to include other plant.
2. Inheritance

In frame based systems terminology, the hierarchical classification is the first step in
an IS-A HIERARCHY. We may define, for example, a stereotype frame for a
sensor. All objects which are subclassified as of type sensor, such as transmitters
and switches, may inherit attributes from the sensor frame. This is invaluable in
constructing an organised system for attribution of objects, and in ensuring the
completeness of the representation of any particular plant.
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FIGURE 5.3.3c

Hierarchical Classification of Process Plant Objects
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5.4 CAUSAL REPRESENTATION AND KNOWLEDGE

5.4.1 The Representation of Causality

From a consideration of the events that may occur in a chemical plant the following
event type classification has been developed:

Type EVENT is of sub-type:  * FAULT
* FAILURE
* DEVIATION
* GLITCH

There are three kinds of causal relationships between events:
Causation
eg el >e2 Direct expression of cause-effect
Constraint
eg el <—>e2 Events el and e2 are bound to occur together
Event Set
eg E={el,e2,e3}

The event E is said to represent a set of process conditions which covers the more
detailed events el, €2, e3. All these events are constrained.

5.4.2 Causal Knowledge

5.4.2.1 Determining Cause-Effect from Structure

In order to produce statements of causality from a structured description of the process
it is necessary to define rules which map the relationship of the object space to the event
space. The overall picture of this is shown in Figure 5.4.2a.
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FIGURE 5.4.2a Rules Deriving Causality from Structure

[Causal Analysisl

r 3,

THEN

STRUCTURE

Rules:
Process Plant Representation IF {process plant pattern}
THEN {statement of causality}

The Search Space in a rule based system is mapped out by considering all possible
ways in which the rules can link up in going from data to goals. This linking is defined
by the transitivity of the rules:

IF A THEN B
IF B THEN C  ->GivenA, infer C by transitivity

The entire search space for rules of this kind may be visualised as a network or tree, cf
decision trees which are sometimes created in the construction of an Expert System; the
tree is subsequently transformed into rules. Construction of the decision tree or mapping
out the entire search space is the only way to deterministically ensure the desired answer
for all problems.

The rules for generating causality from structure, as in Figure 5.4.2a are of the form:
IF A THEN x-->y

IF B THEN w->y

Here A. B are structure patterns, X-->y is a statement of causation, x, y being events.
The search space for these rules is determined by the event space, or causal structure
created by the consequents of the rule. Ordinary rule transitivity may occur if the
antecedent of the rule is an event space pattern, eg {IF x->y then y->z}; this will
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produce more causal relations. If the other two types of causal relation described in
5.4.1, constraint and event set, are also included the event space becomes very complex
indeed. Early experimental KBSs using the Two Phase Splitter example produced of the
order of seven hundred events.

The conclusion that may be drawn from this discussion is that it is impractical to
attempt to deterministically evaluate the action of the rules, ie to attempt to produce a pre-
ordained solution (here the ALDS CSEs) from a structural description. Even if this were
done, there is no guarantee that the rules so formed would be readily generalised - it is
obviously beyond practicality to map out all possible search spaces for all possible
problem PIDs. The rules so formed are likely to be distorted by the requirement to reach
the desired exact solution.

The implication of these conclusions is that it is extremely difficult to produce directly
a fault analysis using a rule based system by simply constructing a rule base. Generally,
expert systems work by inference and not determination as the search space is too large to
be mapped out. The approach to this problem involves constructing an IKBS that is
thought to be capable of expressing the knowledge needed to solve the problem and then
successively refining that knowledge. The implications of this discussion on the goals of
the research is discussed in Section 5.5.3.

The solution adopted to the search space problem is to construct an event space or
causal representation and to derive the causal analysis from this. This representation
consists of events defined by the rules, interrelated by the three causal links - Causation,
Constraint and Event-Set. The production of a given fault analysis from this

representation is discussed in the next section (5.4.3).

If the causal representation is not deterministically produced then it is very difficult to
ensure its correctness. One way of doing this is by refining the rule base but this process
can only go so far. Another approach is to try to structure the causal representation
according to the particular chemical plant under consideration. One way of doing this is
by the prior definition of the events that may occur in a plant. This is explained in the

following section.
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5.4.2.2 Event Definition

In a HAZOP, events that may occur in a design are defined, using keywords, prior to
any consideration of cause-effect. The existence of these keywords along with some
experimentation suggests that it is considerably easier to identify those events which may
occur in a plant than to determine how these events will propagate. This is the approach
adopted in the proposed design described in Chapter Six; the possible events that may
occur are determined separately from possible causal relations, ie the production of the
fault analysis, proceeds as in Figure 5.4.2b.

FIGURE 5.4.2b Overview of Causal Analysis Production

Event Definition f————

[Strucrural Representation — Causal Analysis |
Causal chrescmation]———

This prior determination of all events that may occur in a process is linked to those
events which will appear in the final fault analysis. This has two principal advantages:

1. All events that must appear in a comprehensive fault analysis, such as HAZOP

using cause and symptom equations, are known.

2. Duplication of knowledge actually occurs because it is necessary to mention events
again in the causal rules. However, as valid events are known, the causal rules may
be generalised without having to ensure that the events they generate would actually
occur, eg it is possible to relate all effects of a valve position without regard for the
fact that a closed valve cannot fail closed; the event failed closed will not appear in
the final fault analysis as it is not in the Valid Event Set.
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5.4.3 Production of the Fault Analysis

The production of the Fault Analysis in the proposed design is described in Section
6.6. The analysis is produced by assisting the analyst using the Structured
Representation, Valid Event Set and Causal Representation. However, other possibilities
have been examined. One of these is to use general rules to assist in the elicitation of
applicable cause-effect from the Causal Representation, by a process of Heuristic Search.

Heuristic Search

The use of heuristic search in rule based systems is discussed in Chapter Three.

Experience suggests that, in deciding upon the causes of a given event, an expern
analyst makes an "educated guess" at those causes. Should a given cause prove not to be
straightforward, the analyst may resort to detailed forward tracing of cause-effect to prove
the link.

The "educated guesswork" as to possible causes is the kind of expertise expressed in
the rules for CSE HAZOP developed by Lihou, illustrated in Figure 2.4.5b. These rules
essentially describe where to look for the causes of a particular event. This suggests that
they may be employed for heuristic search of the causal representation. The procedure
would be something like this:

* Select an event for which causes are to de determined.
» Employ heuristic rules to identify the location and type of the possible causes.
» Use the Valid Event Set to narrow this list of possible causes.

» Use the Causal Representation to establish propagation from the candidate causes
to the selected event.

Gradual degradation of the performance of the system could be included by reliance on
any other fault propagation revealed by the Causal Representation, ie by considering fault
propagation from events which have a causal link, but which are not identified by heuristic

rules.
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5.5 DISCUSSION

5.5.1 Levels of Abstraction

The different kinds of knowledge used for solving a problem in a particular domain
may be considered to occupy an abstraction spectrum. At one end of the spectrum is the
highly detailed theoretical knowledge that underpins the domain, and at the other end of
the spectrum is knowledge at a high level of abstraction, heuristic knowledge which makes
large-scale generalizations about the domain. These two types of knowledge may be
referred to as "low road" or detailed knowledge, and "high road" or abstract knowledge,
respectively. The type of knowledge which characterises the expert approach to the
problem is generally the more abstract or high road knowledge.

The methods developed for automated FTS described in Section 2.5 are all
characterised by their use of detailed or low road knowledge. Exclusive use of low road
knowledge has here been demonstrated to be unworkable as, to put it simply, "the whole
1s more than the sum of the parts". For example, it is a very laborious process to deduce
the dynamic behaviour of a control system, particularly under fault conditions, from a
consideration of the behaviour of the devices and the process flows that make up the
control system. Lapp and Powers, for example, get around this problem by using abstract
rules governing the global behaviour of control systems to guide their FTS algorithms.

In the context of the problem at hand, abstract knowledge may be considered to be that
referring to the overall behaviour of systems and items of equipment: The expert looks at
a piece of equipment and, from experience, is able to write down the general behaviour of
the equipment. However, in a novel situation or a particularly difficult one the expert may
fall back on the underlying theory behind chemical engineering processes and use a study
of the detailed behaviour in order to arrive at a picture of the general behaviour.

It follows from this discussion that neither abstract nor detailed knowledge is, on its
own, sufficient to solve the problem. It is desirable to use abstract knowledge as it is, by
nature, more economical, but in situations where this knowledge is not applicable, detailed
knowledge of cause-effect is necessary. This duality of knowledge is also necessary in
meeting an important characteristic of successful Expert Systems - they degrade gradually
at the boundaries of their capability rather than just say "don't know".
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5.5.2 Symbolic Modelling

If all the items that comprise a chemical plant are considered as objects, then to deduce
the behaviour of the plant it is necessary to have behaviour models of the objects
themselves. This is the methodology which underlies the component model based
methods of Fault Tree Synthesis described in Section 2.5.3. As an example, a model of
the behaviour of a transmitter might be as shown in Figure 5.5.2a. This model describes
the input / output behaviour of the device (quantity space {-, 0, +}) which is conditional
upon the normal or failed state of the device. The model has the advantage that it also
defines the modes of failure of the device.

FIGURE 5.5.2a Partial Model of a Transmitter

T= T: =
normal indicating stuck
too high high
Transmitter s vls vls vls
.o"‘ - - - 0 = +
....... Signal ETC
@" 0]0 0l + 0]+
Variable il i +1* pl 10

This representation of a device as an object with a clearly defined set of inputs and
outputs suggests that a symbolic simulation of an object may be created; given input
variables and the object state, the simulation would produce the outputs. This could be
implemented using Object Orientated Programming, as discussed in Section 3.5.2.

In this paradigm the behaviour of each object is defined by its "message handler". In
the case of the Transmuitter in Figure 5.5.2a, the message handler would regard the inputs
of the device (ie the variable value) as incoming messages, and would send the appropriate
output message to the device to which its output signal is connected. Messages are
instructions that are sent between objects and between the user and objects. Causal
propagation is achieved by using messages. Messages may be sent by an executive to set
fault states in the symbolic model. If fault propagation is initiated at one point in the
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model, it is passed on by messages from one object to another. This effects a symbolic

simulation of the chemical plant.

Although this methodology has the attraction of being a purely modular approach, it was
not explored further for a number of reasons:

1. Difficulty in developing generic object models which are context free. It is also
difficult to develop some objects at all, particularly for vessels where the process
may involve very detailed analysis of the behaviour of the vessel.

2. A symbolic model of this nature would work from cause to effect only. A failure is
chosen and this failure propagates through the model. In order to determine the
causes of a particular event it would be necessary to consider all possible fault
states of the model, of which there would be an unmanageably large number.

3. The methodology is too "low road" or detailed in nature and suffers from
consequent problems of complexity and opaqueness (ie cannot see the wood for
the trees). A more abstract level of knowledge is required.

4. All the information present in the symbolic models may be represented as rules.

As some rules are necessary anyway it makes sense to use rules only.
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5.5.3 The Goals of The Research

As mentioned previously (Chapter 4) the goal of the research has evolved from its
initial proposal to automate HAZOP in the form of logical equations using expert systems
methods. There are a number of reasons for this:

1) It is clear from an analysis of the literature that the problem of fault propagation in
process plant is a generic one [Andow 1980b], facing similar problems and tackled by
similar approaches. An analyst who is generally proficient in, for example, HAZOP, is
likely to be reasonably adept at similar techniques: FTA, FMEA, ET, CCD and Fault
Diagnosis. This implies that a means of automating any one of these analyses would
form a suitable basis for tackling them all.

2) The process of conducting a fault analysis provides the analyst with a deep
understanding of the system under consideration. The reputation, experience and
proven competence of the expert analyst provides some guarantee of the completeness
and accuracy of the analysis; this is very important as these techniques are usually
carried out in the context of high risk operations. For these reasons, even if fully
automated synthesis were possible today, full reliance would be unlikely to be placed
on it for the foreseeable future. Therefore there is a need for assistance in fault
analysis.

3) The nature of expert systems is such that they operate by inference rather than
determination. In other words, they attempt to locate the most likely solution to a
problem. In fault analysis it is necessary to have a high degree of confidence in the
correctness of the analysis; any expert system would have to have a proven track record
before it became acceptable. The only way to have a deterministic Expert System is to
map out the entire search space (eg using a decision tree - Section 3.5.2) which, for any
real problem, is too large to be practicable. Search space considerations are discussed
in Section 5.4.2

4) As may be seen from the critical look at fault analyses in section 5.2.2 any manual

analysis must meet two basic criteria:

i) Correct - the analysis must accurately reflect fault propagation in the system under
consideration.

ii) Veridical - The analysis must be internally consistent. This criterion is not usually
met as often an analyst makes it up as he goes along. This is a big problem for
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automated synthesis which requires a formal and structured method for conducting

the analysis.

For these reasons the nature of the research has evolved from consideration of
automated HAZOP synthesis to the provision of support for fault analysis in general.
This involves the synthesis of a general causal structure from the initial plant
representation. Interpretation of this causal structure is dependent on the nature of the
required fault analysis. Where the interpretation is for HAZOP, the initial proposal is
fulfilled.

The architecture of the Knowledge Based System intended to solve the problem has
naturally gone through a similar process of evolution. It is characterised by the fact that
fault analysis is a difficult problem even for humans. Attempts to reduce the complexity
of the problem by subdivision, and by analysis of the expert approach to it, have identified
that many different types of knowledge and reasoning are used. This is reflected in the
final design which contains six knowledge bases representing the division of the problem

as a whole into a number of more manageable sub-problems.
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CHAPTER SIX

THE PROPOSED DESIGN

6.1 INTRODUCTION

This chapter describes the proposed design for an IKBS for assistance in Fault
Analysis of chemical plant. In order to minimise the complexity of the description, the
KBS is described as it applies exclusively to the Ammonia Let-Down System (ALDS)
and in particular the Two Phase Splitter (TPP). In other words, only the representation
system and rules that are necessary for the analysis of the ALDS are discussed. This
chapter gives an overview of the design followed by a description of the various stages
involved, from the initial description of the plant through to the fault analysis:

6.2 Anoverview of the architecture of the proposed IKBS.

6.3 Describes the representation of the structure - topology and operating
specifications - of a chemical plant.

6.4 Describes the definition of the events that may occur within a process.
6.5 Describes the inference of causal relations between events in the process.

6.6 Discusses the production of the fault analysis based on the previous stages.
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6.2 OVERVIEW OF PROPOSED ARCHITECTURE

Figure 6.2a gives a pictorial overview of the architecture of the proposed IKBS.

From Figure 6.2a there are 5 stages that may be identified:

(1) Structure Input

Case specific data, here for the Two Phase Splitter, is input by the user according
to an initial structure syntax to produce an initial structure representation. The
syntax consists of a set of generic, stereotype frames which are instantiated to
represent items in the process.

(2) Structure Enhancement

The initial structure representation is enhanced and completed by structural
rules which produce a final structure representation which is in accordance with
the main structure syntax. At this stage the physical description of the plant in
the computer is considered complete.

(3) Event Definition

From the final structure representation of the process, event definition rules and
generic event definitions are used to determine a valid event set: those events
that may occur within a process that an analyst would consider "significant"; these
events appear in the final causal analysis.

(4) Causal Definition

Causal rules are applied to the final structure and the valid event set to produce
a causal representation which reflects the propagation of faults within the plant.
This data structure consists of a network of events connected by causal relations.

(5) Causal Output

The user is assisted by a causal interpreter which uses the final structure, the
valid event set and the causal representation in producing the causal analysis.
The causal interpreter is one of a number of modules, each of which is designed to
cope with a particular form of fault analysis. There is one for Fault Tree Analysis,
one for HAZOP, one for FMEA etc.
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Of great importance is the idea of a syntax for knowledge representation, to which any
given piece of knowledge must conform; this is a similar idea to the establishment of the
central data structures such as records and fields in a database application. A general
paradigm for the representation of process plant objects and rules for reasoning about
them is presented in the following sections.

The initial definition of the plant and the results of rules applied in the KBS involve the
production of assertions about objects in the symbolic "world". If this process of making
assertions is considered as a language of description, there must be a formal definition of
that language, a syntax, in order to facilitate symbolic reasoning in the language. The
structural description of a chemical plant and any rules reasoning about that plant
description must talk in common terms in the language. This knowledge management is
achieved by the use of knowledge representation syntaxes. These are essentially generic
definitions of objects and attributes that may exist in the representation of and the rule

based reasoning about a chemical process.

However it is one thing to be able to make assertions about objects and another to
decide which particular assertions are applicable to a given object and which are not. An
incorrectly defined rule may result in an invalid assertion being made about a particular
object. To help prevent this, all objects which may exist in the symbolic world have
generic definitions, covering all possible attributes, to which they must conform.
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6.3 STRUCTURE - REPRESENTATION AND ENHANCEMENT

6.3.1 Introduction

In order to reason about causality in a chemical plant, it is first necessary to represent
the structure of the plant, ie its topology and operating specifications. An overview of
the way this is done is given in Figure 6.3.1a.

FIGURE 6.3.1a Overview of the Process of Structural Representation

Structural
Rules
Case Initial Final
Specific Structure Structure
Data
O Input / Qutput
Initial Main
Structure Structure D Case Specific Information
Syntax Syntax
D Permanent Knowledge Bases
® Structure Input @ Structure Enhancement

The two main identifiable steps are:

1) Raw, case specific data, consisting of the plant topology and specifications are input
by the user, assisted by and according to an initial structure syntax.

2) The initial structure is enhanced and completed by structural rules, in accordance with
and up to the standard of the main structure syntax.

The following sections of this chapter describe this process of representation as

follows:

6.3.2 - A general picture of the structural representation system.
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6.3.3 - Describes the initial structure description (1 in Fig 6.3.1a) with respect to the
ALDS Two Phase Splitter

6.3.4 - Describes the enhancement process leading to the final structure representation (2
in Fig 6.3.1a) with respect to the ALDS Two Phase Splitter.

6.3.2 Representation of Process Plant Structure

The representation of the process plant structure begins with a hierarchical systems
decomposition identifying objects of equipment and process conditions. This is best
illustrated graphically by the representation of the Ammonia Let-Down System (ALDS)
Two Phase Splitter, the P&ID and the graphical representation of which are shown in
Figure 6.3.2a.

As may be seen, there is a clear correspondence between the PID and the graph. The
graph assists in clarifying the breakdown of the PID into systems, components and the
arcs linking them. All the elements which go to make up the representation of the
physical structure are referred to as objects.

The PID is considered to consist of a hierarchy of objects; these are unit operations,
vessels, lines etc, down to the primitive components such as valves and instruments,
represented on the PID by their drawing symbols. These objects are systems, nodes, arcs,
phases, components and variables.

A hierarchical decomposition of a PID might be:
» Define the PID as the highest level system, containing:
« Unit operations as systems, each containing:
» Vessels and lines as systems, each containing:
e nodes, at  * devices (valves, instruments)
« places of interest (junctions, inflows, levels, bulk phases)
» arcs linking nodes (material flows. signals)

« Phases present at nodes and in systems, containing:
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» Compounds present in the phases of the process.

* Variables where appropriate in the process.

The bold items here are the six types of object to be found in the Two Phase Splitter:
system, node, arc, phase, compound and variable. Within each of these types of object
there is a further subclassification to identify each object uniquely. This classification is
illustrated in Figure 6.3.2b. Here each of the capitalised primitives at the bottom of the
hierarchy identifies an object uniquely.

This hierarchy is in fact an is-a hierarchy allowing for inheritance of attributes by a
given object from its 'parents' - those objects directly above it in the hierarchy. An object
may inherit attributes via more than one path in the hierarchy. For example, a CONTROL-
VALVE is-a valve and is-a actuator. A valve is-a device which is-a node which is-a
object. All items in the representation of the structure of the plant are objects. A
control-valve may have unique attributes of its own but also inherits attributes common to
all its 'parents': valve device etc. Each of the elements in the hierarchy is referred to as a
type: for example a sensor is a type of object, it may be a process-switch or another
object of type transmitter.
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FIGURE 6.3.2a Two Phase Splitter - PID + Graphical Representation
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FIGURE 6.3.2b The is-a Hierarchy of Objects
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Each object is defined in LISP by a frame. Figure 6.3.2¢ gives the frame for the control
valve LCV1.

FIGURE 6.3.2c Frame for LCV1.

(LCV1 (instance (:= control-valve))
(configured (:= air-to-open))
(source-of (:=al0))

(target-of (:=s2 a9))
(function (:= reduce pressure)))

The attributes of an object are stored as slots, containing appropriate values. In the
frame for LCV1 the instance attribute is CONTROL-VALVE. The frame is a nested
association list permitting access to attribute values via a path. The path to retrieve the
instance slot of LCV1 is (instance :=).

The intention is to permit the definition of new paths and values, and the collection of
attributable information into a hierarchy, as desired. The initial representation is kept as

simple and flexible as possible to reduce any reworking which may be necessary.

It is necessary to define an individual object in two ways; leading to two types of slot:
[1] DESCRIPTOR slots
A context free description of the object in isolation, eg {configured := air-to-open}.
[2] RELATOR slots

A context specific definition of the object in terms of its relationships with other
objects, eg {target-of :=s2 a%}.

The links from an object to others are defined by the object's relator slots. Note that
each relator has a reciprocal.
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SYSTEM-OF :=

The slot (system-of (:= X Y)) in the frame for object indicates that X and Y are
subsystems, nodes, or arcs contained within the system.

Similarly:
SOURCE-OF := A node may be the source of an arc
TARGET-OF := A node may be the target of an arc

FUNCTION MONITOR :=
CONTROLS :=  Control Systems monitor and control variables.

COMPOUND := A phase consists of one or more compounds

Although some specific examples are cited here, apart from INSTANCE, there are, in
principle, no restrictions on the descriptors and relators that may be attributed to an object
by the user as long as this process is documented in the Initial and Main Syntaxes.

This method of representation provides a facility for describing objects in the plant, but
how are we to know exactly which attributes to define for a given object we wish to
represent? This must be done correctly and in an organised fashion so that any rules will
be able to work on the plant description.

The organization of the object attributes is achieved by maintaining, separately from
any individual case, a library of generic object definitions. These generic definitions are
organised in an is-a hierarchy as shown in Figure 6.3.2b. However, there are two
conflicting requirements for the process representation:

1) It is desirable to keep the initial description of the process by the user as simple as
possible.

2) The final representation of the process must be sufficiently comprehensive to facilitate
rule-based reasoning about causality within the process.

In other words, the goal is to attain a level of description which is both necessary and
sufficient for the fault analysis that is to follow.
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These objectives are achieved by maintaining two libraries of generic object definitions,
called syntaxes, one defining the initial representation and the other defining the final
representation. A rule base is used to enhance the initial representation of the plant to
produce a comprehensive, final plant representation. This process is described in the next

two sections.

6.3.3 Initial Structure Representation

There are three stages in the definition of the initial structure representation of the

process:
1) Construct a graph of the plant (Figure 6.3.2a).
2) Identify all objects in the plant .

3) Define the attributes of each object in the plant according to the initial syntax.

The most imp;ortant step to get right here is the identification of all objects present.
Once this is done the initial syntax ensures the presence of the required attributes and
therefore that the initial representation of the process is sufficiently comprehensive. A list
of the initial objects present in the Two Phase Splitter representation is given in Figure
6.3.3a.

FIGURE 6.3.3a Two Phase Splitter - Initial Objects

system
PID ALDSPID
LINE L1 L2 LS
VESSEL Cl

FEEDBACK-LOOP ICL1
ALARM-SYSTEM LAS]1

device
LEVEL-XMITTER LT1
CONTROL-SWITCH LSH1 LSL1
CONTROLLER LIC1
CONTROL-VALVE LCV1
ALARM LAH1 LALl1
OPEN-VALVE V1 v2
CLOSED-VALVE V3

line-node

LINE-TERMINAL nl n2 n5 n6 n7 nl8

JUNCTION n8 nl3
arc

SIGNAL-ARC sl s2 s3 s4 s103 s104

LINE-ARC a5 a6 a7 a8 a9 al0 all al2 al3 al4
phase

LIQUID NH3-syngas
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GAS syngas-NH3-CH4
compound

NH3 CH4 syngas
variable

LEVEL-VARIABLE Cl-level

The initial syntax consists of an is-a hierarchy of generic objects. Figure 6.3.2b
outlines the entire is-a hierarchy, Figure 6.3.3b gives the initial syntax for nodes. The
hierarchy represents a set of generic, stereotype frames which are instantiated to represent
objects in the plant in question. The stereotype frame for a given object is defined by
collecting slots inherited by the object in the hierarchy.

As may be seen, the Initial Syntax defines relations between objects, this implies that if
we know that one object exists, eg an actuator, then there must also exist a signal arc such
that {actuator target-of := signal-arc}, cf Figure 6.3.3b. Similarly that signal arc will have
a source, which may be joined to other arcs. It follows from this that if a single object is
specified, the Initial Syntax will ensure the inclusion of others. These others will be
related to more objects, and in this way all related objects will be defined. It may be
possible, however, for some independent objects to "slip through the net" of the initial
syntax. As the enhancement of the representation continues towards the Main Syntax, as
in the next section, any missing items will be picked up as undefined and the user may be
queried to complete the list of objects. This satisfies the key requirement here, as in (2)
above, that there be a complete list of objects present.
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FIGURE 6.3.3b Initial Syntax for Nodes

LINE-TERMINAL
XOR (source-of = <line-arc)
(target-of = <line-arc>)

line-node valve <

JUNCTION

sourck-of= <line-dres- PRESSURE-TRANSMITTER

target-of = <line-arc>-

) transmitter FLOW-TRANSMITTER
source-of = <signal-arc>
function monitor = <variable> LEVEL-TRANSMITTER

node sensor
PROCESS-SWITCH

switch
configured = (XOR high low)
CONTROL-SWITCH

ocessor
control- o :
device source-of = <signal-arc>
target-of = <signal-arc> CONTROLLER

CONTROL-VALVE

: configured = XOR air-to-open
demios actuator 4/ air-to-close

target-of = <signa!~arc>\
ALARM

RELIEF-VALVE

valve
target-of = <line-arc>
source-of = <line-arc>
function = NOR reduce-pressure

CONTROL-VALVE

OPEN-VALVE
MANUAL-VALVE <

CLOSED-VALVE

The attributes - slots and slot values - that a given generic object may have are shown in
the initial syntax. Allowed slot value formulae conform to a syntax as shown in Table
6.3.3a.
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TABLE 6.3.3a Stereotype Slot Values

Value Formula Value Permitted
symbol - the symbol is the only value possible
<object> - another object in the hierarchy
<object>- - one or more objects of the defined type
AND x y ... - all of the symbols, types or formulae x y ..
ORxy .. - any one or more of the symbols or objects or formulae x y ...
XOR xy ... - any one of the symbols, objects or formulae x y ...

NOR x y ... - NIL (empty) or any one of the symbols, objects or formulae x y

The initial stereotype frame for a control valve and its instantiation as LCV1 in the Two
Phase Splitter are shown in Figure 6.3.3¢

FIGURE 6.3.3¢ Initial Stereotype and Instantiation for LCV1

control-valve LCV1
configured := XOR air-to-open air-to-close instance  := control-valve
target-of := <signal-arc> dine-arc> configured := air-to-open
source-of = dine-arc> target-of :=s2 a9
function := NOR reduce-pressure source-of := a1l
function  := reduce-pressure

Once the initial structure representation is complete, then it is possible to reason about
it by the application of rules. The first step is reasoning about the structure of the plant;
this is described in the next section.
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6.3.4 Final Structure Representation

6.3.4.1 Overview

This section describes the transformation of the initial structure representation into the
final structure representation. This transformation is achieved by the application of
structural rules. These rules are compared against the structural representation and, if a
match is found, new assertions are added to the representation. These assertions take the
form of new attributes for objects or may involve the creation of new objects. The end
result of the application of structure rules must conform to the main structure syntax; this
is similar to the initial syntax but has more attributes for the objects and defines all the
necessary and sufficient slots and permissible values for those slots which are required
for further reasoning.

6.3.4.2 Structural Rules

These rules take the general form: IF <pattern> THEN <action>:

<pattern> consists of a pattern of objects and attributes to be compared to the structure
representation.

<action> consists of a set of assertions about objects in the structure, which, in the
context of any matched pattern objects, involves either the attribution of slot-value

combinations or the creation of new objects.

Perhaps the simplest rule is the one that defines the reciprocal of an already existing
relation between two objects:

IF object] source-of := object2 THEN object2 has-source := objectl

If this rule is compared against the initial structure representation for the Two Phase
Splitter, one of the matches will give:

objectl =LCV1  object2 = al0

leading to the definition of the attribute: al0 has-source := LCV1.
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There are three basic types of structural rule:

1) General Structure Rules

These rules:
* complete reciprocal relators as above
* complete the hierarchical decomposition of the structure

* define more abstract relators such as upstream and downstream relations, and
whether lines are inflows or outflows of vessels

* define the presence or absence of phases and compounds

One example of the purpose of these rules is illustrated by the last category. In order
to specify events involving contamination, {flow as well as} it is necessary to pin down all
phases and chemical species in the process representation.

2) Flow Rules

These rules define the flow or no-flow situation which may exist in lines or vessels,
deducing the situation from the structural representation of the process and the presence
or absence of phases. It is necessary to know the flow situation at, for example, a valve, to
determine the applicable failure mode for that valve. If the valve is normally open and
there is a flow present, then {valve closed} is an applicable failure mode but {valve open}
is not. If there is no flow present then any failure mode will only be an enabling failure.

An example of the simplest flow rule is:

IF {v is-a := valve } AND {v status := closed} THEN {v flow := no}

The general philosophy behind line flow rules is:

1) Decide on no-flow situations (at closed valves for example) and propagate this no-
flow situation in the relevant parts of lines.

2) Where no no-flow situation can be proved and a phase is present, assume {flow :=
yes}

This process presents a conflict resolution problem which is solved by procedural

means.
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3) Function Rules

These rules reason about the function of objects in the structural representation and
may involve the creation of new variables where appropriate. For example:

* A Control System has monitored, manipulated and controlled variables.
* A variable may therefore be defined as monitored, manipulated or controlled.

« At acontrol valve, a new variable is created; this becomes a manipulated variable of
the control system to which the control valve belongs.

6.3.4.3 ‘The Main Structure Syntax

The main structure syntax, like the initial syntax, consists of a generic is-a hierarchy of
attributes which represents generic frames instantiated as objects in the structural
representation. In fact the initial syntax is a subset of the main syntax. The main syntax
defines all the attributes that an object may have in the final structure representation. An
example, the final representation of the control valve LCV1, is given in Figure 6.3.4a.

FIGURE 6.3.4a Final Frame for LCV1

(LCVI1
(instance (:= control-valve))
(configured (:= air-to-open))
(target-of (:=s2 a9))
(source-of (:=al0))

(function (:= reduce-pressure))
(manipulate (:= LCV1-flow)))

(has-system (:= L2 LCL1))
(joined-to (:=s2 a9 al0))

(status (:= open))

(upstream-of (:= V2 n13 nl8))
(downstream-of (:= C1 n7 n8 V1))
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Once the final representation of a particular process is complete, it is possible to
consider events and their propagation within the process. This is discussed in the

following sections.

6.4 EVENTS - REPRESENTATION AND DEFINITION

6.4.1 Introduction

Generally speaking, a fault analyst is only interested in those events he considers to be
"significant”. For the study of detailed fault propagation it is necessary to consider events
at a much greater level of detail, although these events will not appear in the final fault
analysis. This section describes the different types of events in the proposed design, how
they are represented, and how they are defined for a given case study.

6.4.2 Representation of Events

In the global scheme of the knowledge representation, the highest type definition is
entity. One type of entity is an object, physically present in the chemical plant structure,
another type is an event, Figure 6.4.2a. Thus, to the KBS, every "thing" that is known
about in the knowledge bases is of type entity and may be included in a syntax,
facilitating knowledge management.
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FIGURE 6.4.2a Event Types and Syntax

— FAULT
cause = *causeform*
consequence = NOR <event>-

— FAILURE
cause = NIL
consequence = <event>-
event
location = <object>
state = *state* —— DEVIATION

superevent-of = <event>-
subevent-of = <event>-
constraint = <event>-

cause = *causeform*
consequence = NOR <event>-

—— GLUITCH
cause = NOR *causeform*
consequence = NOR <event>-

There are four types of event:

FAILURE:  This is a primary failure mode of a device, deemed to have no causes, but
must have consequences.

FAULT: This is a command fault occuring at a device, and must have causes and
may have consequences.

DEVIATION: This is a process deviation which is a command fault kind of event
occurring anywhere apart from a device and must have causes and may

have consequences.

GLITCH:  This term covers those events which are generated by the KBS as part of
detailed reasoning about causality. Glitches do not appear in any final
fault analysis.

Failures, Faults and Deviations are the events that may be defined in the valid event set
and that will appear in the final fault analysis. The Glitches represent a more detailed
reasoning about causal propagation which are included where appropriate.
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As may be seen from Figure 6.4.2a, an event is defined in isolation, ie context-free, by two
attributes:

location := <object>

- the location is the physical object where the event occurs.
state := *state*
- the state that the object enters into when the event occurs. *state*
indicates a device fault or failure, or a variation in a plant parameter such
as temperature, given as a complex and unique value set which may here

be syntactically confirmed using a structure representing the Table of
Guide Word, Property Word and Component, as in Table 2.4.5b.

Thus an event might be defined as: (eventl (instance (:= fault))
(location (:= LCV1))

(state (:= open more)))

The symbol 'eventl’ is called the identifier of the event and is an internal symbol
generated and maintained by the KBS in order to uniquely identify the frame

representation of the event. This is transparent to the user as the event appears as {LCV1
open more }.
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6.4.3 Definition of Events

6.4.3.1 Introduction

At this stage the representation of the structure of the process is complete and the next
step is to determine those events of significance: failures, faults and deviations which may

occur in the process. This is done in two ways, as shown in Figure 6.4.3a, taken from
Figure 6.2.a.

FIGURE 6.4.3a Definition of Events from Structure Representation

Event
Definition
Rules
Final Valid
Structure e
Set
Generic ] cCase Specific Information
Event
Definitions D Permanent Knowledge Bases

There are two kinds of event that require definition:

1) Those events which are context free, ie they can occur at a particular object
regardless of the particular structure in which the object exists. Examples are

device failure modes. These events are determined by GENERIC EVENT
DEFINITIONS.

2) Those events which are context dependent; in order to determine if they exist, the
context of the object which is the location of the event must be taken into account.

Examples include line flow deviations. These events are determined by EVENT
DEFINITION RULES.
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FIGURE 6.4.3b Generic Event Definitions for Devices

FAILURES:

transmitter pno Signal
Stuck Low
Stuck High
sensor Indicating Too Low
Indicating Too High
PROCESS-SWITCH
switch
FAILURES:
Stuck CONTROL-SWITCH
Set Low
Set High
Failed Safe
FAILURES:
CONTROLLER S¢Low
Set High
control-device processor No Signal
CONTROL-VALVE
FAULTS: A;'g:ff
actuato S].peos:dms Restricted
Open More Stuck Open Less
Stuck Open More
aelic ALARM Stuck Normal
FAILURES:
Failed to Danger
Failed Safe
Ignored
CONTROL-VALVE FAULTS:  FAILURES:
OPEN-VALVE  Closed Blocked
Open Less  Restricted
Open More
valve manual valv
CLOSED-VALVE
FAILURES:
RELIEF-VALVE Passing
FAILURES: Open
Failed on Demand
Blocked
Restricted
Passing
Open
Undersized
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6.4.3.2 Generic Event Definitions

From an analysis of the events defined in the ALDS case study, and with reference to
the Failure Mode Tables given in Appendix 1, it is possible to identify those context-
independent Faults and Failures which are applicable to devices in the Two Phase Splitter.
These generic event definitions are maintained in a similar fashion to the structure syntax,
by means of an is-a hierarchy, as shown in Figure 6.4.3b for devices.

Placement of these events in the context of the representation of a particular plant is
simply a matter of comparing the instantiation of objects as a particular type and
attributing to the objects the relevant events.

6.4.3.3 Event Definition Rules

In some cases it is only possible to decide on the existence of an event at an object by
considering the context of the object in the representation. This is achieved by using
rules. A rule has a pattern to compare against the representation and, if a match is found,
events may be defined corresponding to that match. An example of a simple event
definition rule and its application to the Two Phase Splitter is given in Figure 6.4.3c.

FIGURE 6.4.3¢c Example Event Definition Rule

IF v is-a:=vessel THEN e instance := deviation
Iv is-a:=level-variable e location:=v
v system-of :=1v e state :=level no
level less
level more
This Matches: v=Cl lv =Cl-level

Giving eventse = Cl levelno Cl levelless Cl1 level more
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6.5 CAUSALITY - REPRESENTATION AND REASONING

6.5.1 Introduction

To set the stage for the explanation of causal reasoning it is useful to consider the state
of the Knowledge Based System at this point, Figure 6.5.1a.

FIGURE 6.5.1a Causal Definition in the KBS

Valid
Event
Set
Final % Causal
Structure Rules
E] Case Specific Information
Causal
Representation [J Permanent Knowledge Bases

Here the final structure representation of the process is available, and a complete set of
the events which will appear in the causal analysis has been constructed. The next step is
to develop causal links between these events; this is done by the application of causal
rules. The representation system used for describing causality in the KBS and the
application of causal rules to determine fault propagation characteristics are discussed in

the next two sections.
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6.5.2 The Representation of Causality

As may be seen from the event syntax in Figure 6.4.2a, an event is defined in isolation,
ie context-free, by its location and state attributes. The representation of causal relations
between events uses three attribute types.

1) cause := *causeform*

Here the *causeform* is any Boolean form involving the logical connectives {AND
OR NOT} and has event identifiers as primitives. An example is {el cause :=
(AND e2 (OR e3 e4))}, where el, €2, e3 and e4 are event identifiers.

2) consequence := <event>-

A consequence of an event may be one or more other events, eg {el consequence :=
e2e3}

3) Event Sets

The two attributes {superevent-of := <event>-} and {subevent-of := <event>-} are
logical reciprocals, ie {el superevent-of :=e2} and {e2 subevent-of := el } are two
ways of expressing the same relation. This relationship is used when there is no
clear causal relation between two events and yet they are clearly linked. A good
example is a flow deviation in a line and a similar flow deviation at a point in the
line, eg {L2 flow no} and {LCV1 flow no}. These two events may be considered to
be, in actuality, different ways of expressing the same plant state; if either of the two
occurs then the other has also occurred. This cloudy causal definition is resolved
by considering the first event {L2 flow no} as an event-set, containing set members
{LCVI1 flow no} and the other no-flow deviations in the line L2. Thus the first
event is a superevent of the second. In the final fault analysis the second event may
be said to cause the first, as it represents an internal failure of the line. (A potential
problem of this approach is that a breach in a line may result in no flow in part of
the line, and continuing flow upstream of the breach. This may perhaps be resolved
because from the point of view of fault propagation downstream, the conclusion no
flow in the line is valid).

This concept of an event set corresponds to one of the guidelines for Fault Tree
Synthesis that are discussed, amongst others, in section 2.5.3: causality never passes
through an OR gate [Haasl 1981]. Inputs to an OR gate in a Fault Tree are identical
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to the output but are more specifically defined as to cause. {LCV1 no flow} is
identical to {L2 no flow} but is more specifically defined as to cause.

6.5.3 The Definition of Causal Relationships.

Causal relationships between events are defined by the application of CAUSAL RULES.
The general form of a causal rule is: IF <condition pattern> THEN <action-pattern>.

<condition-pattern> is a pattern of assertions about entities (objects and events) and
relations between entities to be compared against the case specific knowledge: the
final structure, valid event set and the causal representation that is generated by the
previous application of any causal rules.

<action-pattern> is a pattern of assertions about events. These may apply to events in
the valid event set or may involve the creation and attribution of GLITCHES - events
too detailed to be of interest in the final causal analysis but useful in representing

causal propagation.

Causal rules may operate not only on the structure and event set but also on the results
of previous application of causal rules - the causal representation. In terms of the
Knowledge Based System the distinction between the valid event set and the causal
representation in Figure 6.5.1a is a conceptual one; in practice they are combined into the
same data structure.

As may be seen from the previous section it is possible to define causality between

events using the cause, consequence and superevent/subevent relators.

It is possible to divide the causal relators into two groups, those which directly link
significant events (faults, failures and deviations) and those which involve the generation
of glitches. However this is a conceptual division and the rules are in fact grouped
according to the type of objects on which they operate. This grouping is effected in order
to manage the knowledge base of causal rules. The grouping of rules is as follows:
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Devices

These rules determine how the flow of causality from the inputs to the outputs of a
device is affected by the failure modes and fault of the device. For example, the
state of a transmitter, failed or operating normally, influences the relationship
between the variable it monitors and the signal that it transmits. These rules may be
thought of as representing mini-fault trees for devices.

In the ALDS case study, a large number of rules were developed for device failures
as it is appropriate to consider all the failure modes of a device at one time, ensuring
consistency, rather than just those directly applicable to the ALDS.

Transition tables, decision tables and mini-fault trees from the literature were a

valuable source of information in formulating these rules.

Vessels

These rules describe how causality propagates through vessels, for example
temperature and flow deviations from inlets to outlets. The assumption is made here
that "all other things are equal". In this particular case, only a few rules were
necessary, applicable directly to the ALDS vessel C1.

Lines

These rules describe event propagation within lines. Flow deviations may be
considered to propagate upstream and downstream from the point of initiation. Line
deviations may be considered to be superevents of node deviations. Phase and
Compound deviations are also considered. A considerable number of general rules
of this type were developed, as they were seen to be applicable to many different
flow conditions.

General

This category contains those few rules that do not fit into any of the above groups.
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6.6 PRODUCTION OF THE FAULT ANALYSIS

6.6.1 Introduction

Production of the fault analysis involves the user's interaction with the Structure
Representation and the Causal Representation which contains the Valid Event Set. This
process is conducted using a Causal Interpreter, Figure 6.6a.

FIGURE 6.6a Production of the Causal Analysis

Causal Representation

Final
Structure

| Valid Event Set |

5 Causal
9 Interpreter

D Input / Output

El Case Specific Information
CAUSAL

ANALYSIS D Permanent Knowledge Bases

The Causal Interpreter provides a procedural means of eliciting the required analysis
from the Causal Representation and Final Structure. In this case the goal is primarily to
produce Cause and Symptom Equations (CSEs).

6.6.2 HAZOP using Cause and Symptom Equations

The first step in the production of CSEs is the selection of those events for which we
wish to develop the causes and consequences. These events exist in the previously
defined Valid Event Set. This selection of events is done in a similar manner to that
described for HAZOP in section 2.4.3 and illustrated in Figure 2.4.3a. The procedure
used here is shown in Figure 6.6.2a. Symptom equations are used to describe the effects

of process deviations at the inlets to a vessel, on the outlets of the vessel.
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FIGURE 6.6.2a Production of Cause and Symptom Equations

FOR each major Vessel
FOR the vessel -
each line -
each auxiliary _3 FOR all guide words

FOR all credible deviations in Valid Event Set
(from Guide Word)

|£evelop Cause Equations I

ENDFOR

END FOR
ENDFOR

FOR all events at inlets to the Vessel

| Develop Symptom Equations |

ENDFOR
ENDFOR

There are two further procedures in Figure 6.6.2a which require description. These are
the development of Cause Equations and the Development of Symptom Equations.

Developing Cause Equations

The event for which the Cause Equation is to be developed is known, and is identified
in the Causal Representation. The Cause Equation comes about by a process similar to a
mini-fault tree analysis. The selected event is considered as an effect in the causal
representation and any causes of this event are found in the cause, superevent or
constraint slots of this event. If a cause is a Glitch it is explored for causes of its own.
The process of backward causal tracing continues until the primaries of this mini-fault
tree are all significant events (ie faults, failures or deviations), or events at the boundaries
of the system. The Cause Equation is then complete. This system generated Cause
Equation may then be examined by the user who may make corrections to it or enquire

how it came about.
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Developing Symptom Equations

Symptom Equations are produced in a similar manner to Cause Equations but in this
case propagating forwards - from cause to effect - through the Causal Representation
from the selected event, perhaps via Glitches, to consequential significant events, ie Faults
or Deviations.

6.6.3 Fault Tree Synthesis

The first step in a fault tree synthesis is the selection of a suitable top event. This may
be, for example, a hazard presented by the release of a particular material. The next step is
the breakdown of the top event into specific events which occur at plant level, eg releases
at specific locations; these events are of a class which are known to the expert system and
which may be developed further.

As may be seen from the above description, the process of generating Cause Equations
is essentially that of Fault Tree Synthesis. Here one of the identified plant level top events
is selected from the Valid Event Set and its causes explored, through the Causal
Representation, via Faults and Deviations towards primary events. This process of
successive refinement of the Fault Tree may be guided by the user at each step.

By definition, Faults and Deviations must have causes and therefore must be developed
further in the fault tree. This fact also provides a useful guide to any shortcomings of the
expert system, in cases where no further causes of a Fault or Deviation are found. This
may lead to the amendment of existing rules and structures or the creation of new ones.

6.6.4 Other Fault Analyses

6.6.4.1 Tabular Hazop

In a tabular HAZOP the expert system would be required to assist in eliciting all
causes and consequences of events derived from application of Guide Words. These
events will be given by the set of Deviations (as defined in the expert system) contained
within the Valid Event Set. The structured listing of the Deviations may be produced
using the Lihou algorithm shown in Figure 6.6.2a, which covers all vessels, lines and
auxiliaries in the P&ID.
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For each deviation it is necessary to find the ultimate causes, given by Failures or
boundary events, and ultimate consequences, given by other Deviations, Faults or
boundary events which have no apparent further consequences. This may be done by
tracing through the causal network in a "backward" and "forward" causal manner in a way
similar to that described for cause and symptom equations.

6.6.4.2 Failure Modes and Effects Analysis.

In an FMEA, a particular item of equipment is selected and an exploration of the
consequences of each of its failure modes is made. After selection of the item, its failure
modes may be derived from the Valid Event Set as those failures which relate to that item.
The effects of each failure mode may be found by tracing causally forward through the
causal network to ultimate consequences.
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CHAPTER SEVEN

DISCUSSION

7.1 INTRODUCTION

The previous chapters described the proposed design for a Knowledge Based System
and how that design came about.

This Chapter addresses two main points. The first discusses the key features of the
design and assesses the design with regard to the Case Study. The second considers the
generalization of the knowledge bases to cope with other domain problems and describes
how an operational KBS might be constructed based on the principles arising from this

research.

7.2 DESIGN EVALUATION

7.2.1 Introduction

The suitability of the proposed design for a KBS for Fault Analysis rests on two
attributes of the design:
1) The Architecture

This is the overall structure of the design, facilities for creating, maintaining and
processing knowledge bases, and facilities for communicating with the system
builder and end user. The architecture may be viewed as the Knowledge Based
System without the Knowledge, ie a "shell".

197



2) The Knowledge

The strength of a KBS is naturally dependent on the quality of the knowledge
contained therein. In this case this refers to the contents of the knowledge bases:

* Initial Structure Syntax and input procedures.
* Structural Rules.

* Main Structure Syntax.

* Event Definition Rules

* Generic Event Definitions

* Causal Definition Rules

* Fault Analysis construction Heuristics and procedures - dependent on the
particular fault analysis desired.

In developing the proposed design the architecture was intended to be a general one,
suitable for tackling a wide range of problems in the domain. The knowledge contained
within the knowledge bases, however, was constructed specifically with regard to
producing a Fault Analysis for the Ammonia Let Down System (ALDS).

7.2.2 The Architecture

The proposed KBS architecture came about through an iterative process of design,
experimentation and evaluation. This process was characterised by a gradual refinement
of the initial conception of the problem - mapping structure to causal space - in an attempt
to simplify the overall problem by considering it as a number of separate sub-problems.
There are a number of key decisions that were made in the development of the final
architecture:

1) Syntaxes

Syntaxes are necessary for the management of complex knowledge. These
syntaxes establish both the form and the content of information permitted in the
knowledge bases.
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1. Form

It is clearly necessary to formally define the syntax of expressions in the Facts
Database and Rule Bases. This is implicit in the syntaxes, eg the syntax for the
representation of events.

ii. Content

The representation of the process plant structure is, by necessity, a complex one.
It is therefore desirable to have a permanent record of the types of objects that
may be represented and the generic attributes which may be associated with those
objects. This is achieved by the use of Structure Syntaxes, enabling a systematic
means of data input and knowledge expression - new rules may be written in
conjunction with the syntaxes and may involve additions to and modifications of
the syntaxes.

2) Structure Enhancement

It is desirable that the data input by the user for a particular case is kept as simple as
possible. It is necessary, however, for the structural description on which the causal
rules operate to be as comprehensive as possible. The architecture provides for the
application of Structural Rules to facilitate enhancement and abstraction of the initial
description of the process.

3) The Separation of Events from Causation

The decision to separate the generation of events from the generation of causation
was a very difficult one to make. On the surface, this method involves the
duplication of information and appears to involve extra complexity. For example, to
decide that A—B in the Fault Analysis requires first that events A and B are
established, and second that A leads to B. Events A and B are therefore defined
twice.

The principal justification for the differentiation of event and causal definition is to
provide a robust KBS:

+ It is considerably easier to define the events that may occur within a plant than to
define causal propagation. This definition may achieve a much higher degree of
completion.
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* The Causal Rules may be written with a considerable degree of freedom and may
express general cause effect relationships or constraints. Any spurious events or
causal links that are generated will not necessarily lead to incorrect fault analysis
support as the key elements of the Causal Representation are those events defined
in the Valid Event Set.

* There are two knowledge bases that establish the existence of events. This means
that any event missing from the application of one of these knowledge bases may
be picked up by the other (although the potential for common omission does, of
course, exist).

4) The Causal Representation

For reasons which are discussed extensively in Chapter 5, the proposed design
involves the synthesis of a Causal Representation from which a Fault Analysis may
be produced, rather than the deterministic, direct production of the Fault Analysis.
This liberates the synthesis of cause-effect from the specific constraints of any
particular fault analysis method. It also permits the production of multiple fault

analyses from a single analysis of the plant.

5)

One of the initial goals of the research was to investigate the possibility of the
application of heuristic rules to a description of the structure of the process to
generate a causal analysis. These heuristic rules are, however, too general or "high
level" to be applied directly. The results of this research may be viewed as the
production of detailed structural and causal representations of a plant to which these
heuristics may be applied. In other words, the causal network provides the
foundation of "low level" knowledge on which the fault analysis is based.
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7.2.3 The Knowledge

A principal result of this research has been the identification of the particular types of
knowledge that are required to conduct a Fault Analysis. For robustness a considerable
depth of knowledge is needed, operating at both a macro and a micro scale in the

consideration of causation.

The particular knowledge bases constructed for the Case Study were obviously
intended to solve this problem as well as possible, and it is difficult to assess, from this
knowledge, the success of future application to other cases. This is discussed in section
T3

7.2.4 The Mechanics of Experimentation

Generally speaking, when researching into the design of a computer system for a
particular problem, one is freed from the necessity of building the parts of the system that
interface with the user. This means that efforts can be concentrated on writing code to
solve the core problem. In developing KBS however, the success of the system depends
largely on the knowledge input by the system builder: the Knowledge Engineer. During
this knowledge input phase, the builder acts as a user, ie it is necessary to have
comprehensive /o facilities for the building phase. For complex problems such as the
one at hand, this requires the use of a sophisticated KBS building environment using a
suitable workstation, as discussed in Section 3.4.

The KBS building environment for this research rested on the use of COMMON
LISP on an IBM PC/AT. For this reason only limited experimentation was feasible.
With reference to the overview of the KBS architecture (Figure 6.2a) it has been possible
to test the stages from the Initial Structure Representation to the production of the Causal
Representation, using the Two Phase Splitter Case Study. The input of Case Specific
Data and the Production of the Causal Analysis have been done largely by hand. Only a
brief discussion of the use of Heuristic Rules is included. These experiments stretched
the capabilities of the PC/AT to their limits.
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7.2.4.1 Representation

Representation of Plant Structure

The objects which make up the plant are represented by Frames. This is readily done
in LISP. Figure 7.2.4a gives the LISP symbol-structure representing the initial Frame for
the Level Transmitter LT1. As may be seen, this straightforward nested list is a natural
way of formally representing a Frame.

FIGURE 7.2.4a Frame for LT1

(LT1 (instance (= level-transmitter))
(source-of (= sl s4 s104))
(function (monitor (= Cl-level))))

Access functions to define, change or retrieve attributes are easily written in LISP,
using the following definition of the structure of an assertion in the Frame. (A Frame is
equivalent to a set of derived assertions - Chapter 3).

<assertion> — <object> <path> = <value>

This definition is also used in pattern matching.

The Representation of Events

The representation system used for events is structurally identical to that for objects.
All entities "known' have the same Frame type representation, although some Frames
may involve special slot value forms. The intent was to enable a single rule processor to
handle all Facts and Rules.

All entity representations are derived from or governed by syntaxes. This is done in
order to ensure the correct description of entities and to provide a framework for a
coherent system of representation.
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7.2.4.2 Rules

Rule Forms

The general form of a rule is shown in Figure 7.2.4b

FIGURE 7.2.4b General Form of a Rule

(rulename (pattern
(descriptors (----- ¥ -
(relators s ¥ e o« =33
(action
(assert {===rs Y & e ) Y)

This form bears a striking resemblance to the Frame structure in LISP. This is not
surprising given that, unless it is "pretty printed"” as above, every LISP expression looks
very much the same. It is the simplicity of syntax that provides this uniformity.

The rule may be read as: IF <pattern> THEN <action>. The <pattern> is a set of
assertions about objects to be matched to the appropriate Facts, ie Structure Description,
Valid Event Set or Causal Representation. This leads to instantiation of local variables in
the rules which may be used to execute the assertions of the rule and add to the Facts

Database.

Pattern Matching
The pattern matching of rules is best illustrated by an example, Figure 7.2.4c

FIGURE 7.2.4c Example Rule

(srulel05 (pattern
(descriptors (n is-a = line-terminal)
(1 is-a = line))
(relators (n has-system = 1)
(n source-of =a)))
(action
(assert (1 inflow = n))))
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The pattern is divided into Descriptors and Relators to simplify pattern matching. It is
fairly easy, however, to make this transparent to the user. Descriptors describe symbolic
attribute values and relators relate one entity to another.

The aim of the pattern matching is to produce a Binding Frame for the variables of the
pattern, in this case n and 1. The Binding Frame gives the different possible combinations
of the variable values which are positive matches to the Facts Database, here the Structural
Representation. For example, two Binding Frames which are produced by matching to
the Two Phase Splitter are:

((nn7) ((nnl)
(1L2) (L1
(aa?)) (a a5))

Rule Actions

Once the Binding Frame has been established, the actions of the rule, here assertions,
are executed according to the different possible rule-variable value combinations; the rule
is said to fire. This process adds new assertions to the Facts Database, adding new slots
and values to existing objects. If a variable in the assertions is not bound in the Binding
Frame then it is assumed to refer to a new object. This new object must have a defined is-
a slot to tell the system what it is; the object is created and attributed to according to the
other action assertions and is added to the Facts Database. This procedure is used for the
creation of some variables and the creation of all event objects.

In the above example rule and Binding Frame, the assertions below would be added to

the Facts Database:
(L2 inflow = n7) (L1 inflow = nl)

7.2.4.3 Rule Processing

In the experimentation a forward chaining strategy was used as the application
naturally involves the synthesis of conclusions, namely structure statements, events and
causal statements. In the Case Study the amount of matching that had to be done was
nevertheless considerable as the search space for even such a simple example is a very
large one. For any complex analysis this exhaustive rule processing may not be feasible
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and a combination of several search strategies may best be employed, in conjunction with
heuristic and meta-rules. One possible alternative would be a backward chaining strategy
driven by a specified final consequence, eg for the top event of a Fault Tree.

Each of the rule bases to be applied to the facts database is treated in the same fashion:
the body of the rule is repeatedly iterated until no more rules fire. The inclusion of NOT
clauses in the rule base occasionally calls for the retraction of some assertions. A simple
conflict resolution strategy of single pattern firing is used to eliminate looping, eg one rule
makes an assertion, another retracts it and then the first makes it again. Any rule is only
allowed to fire once for each pattern match.

7.2.5 Evaluating the Success of the Design

In the evaluation of an automated method of fault analysis it is necessary to have some
measure of the degree of completeness of the results. For a case study, the standard
against which the automatic analysis would be set is ultimately the standard of the same
analysis carried out by a human expert. One possible measure of the degree of
completeness would be a percentage arrived at through calculating:

number of failure modes of system from automated analysis

number of failure modes of system from standard analysis 100

In each case the number of failure modes of the system could be calculated by
elucidating all cut sets of all top events in a fault tree analysis.

The consistently achievable minimum percentage score required of a computer is a
matter of judgement. The subject concerns safety and loss prevention and the risks may
be considerable, requiring a high degree of confidence that all significant risk potentials
are included. However, this is also problematic in studies conducted by people. It is not
inconceivable that a computer would achieve a score of greater than 100%, thereby
outperforming a human analyst in this particular test. The computer has two main
advantages, a perfect memory and tireless high speed concentration.
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7.3 GENERALIZATION

7.3.1 Generalizing to Other Applications.

As Expert Systems work by a process of inference rather than determination it is
difficult, from a single case study and without constructing an operational system, to
assess how the system will perform when other cases are analysed. The construction of
the architecture was intended to provide a facility for analysing a range of cases, but the
knowledge contained within the knowledge bases and hierarchies was more restricted.

The construction of the Knowledge Bases was, however, done with a view to a general
picture of process plant, this is particularly true of the key part of the system: the
representation of the Structure of Process Plant. The KBS has been extended to cover the
whole of the Ammonia Let Down System of Appendix 1, including the Syngas Desorber
of Figure 7.3.1a, and a Structural Representation was defined for the Hydrocarbon
Reactor - Figure 7.3.1b.

Whilst the description of devices, pipes, control system items etc is relatively
straightforward, representation of complex plant units requires an in-depth analysis of the
internals of those units. As demonstrated in the ALDS two phase splitter, and in the
examples overleaf, it is proposed to use the system of nodes devised by Lihou [1980c¢
etc]. Here, nodes are used to represent locations of concepts of interest, such as inlets,
outlets, streams, interfaces, plates, variables, bulk phases etc.
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FIGURE 7.3.1a Syngas Desorber - Graphical Representation
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FIGURE 7.3.1b Hydrocarbon Reactor - Graphical Representation
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7.3.2 Constructing an Operational KBS

7.3.2.1 Tools

In order to construct an operational KBS the appropriate tools are required. For the
purposes of experimentation and to provide as much flexibility as possible in the selection
and construction of symbol-structures, LISP was chosen for the experimentation
described above. At the time of the initiation of the research, purpose built tools were
either too expensive or too primitive. The remarkable decline in the cost of computer
power in the last five years has led to the availability of powerful workstations supporting
integrated knowledge engineering environments. It is obviously much more economical
of effort to make use of an appropriate environment than to use a simple high level
language, such as LISP, alone.

When constructing the KBS using LISP, the author was free to use whatever
representations and procedures which were necessary and feasible. Any tool (which
would be written in LISP) will provide more restricted facilities. The KBS environment
must satisfy the following requirements.

1) Representation

A Frame based system is required with the facility to represent and manage
stereotype objects in a multiple inheritance hierarchy.

2) Rules

For the production of the Causal Representation, a simple forward chaining
inference engine is all that is required. There must also be a means of partitioning
rule bases, retraction of assertions, provision of special forms in the rules and the
creation of new object frames.

3) Embedding

Because of the special forms in the representation and rules it is necessary to write
procedures for executing and accessing these forms. This requires the ability to
write LISP code. It is necessary to be able to embed LISP procedures in rules and
to embed rule processing of independent knowledge bases in LISP procedures
which define executive actions.
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4) Management

The tool must provide facilities for knowledge management and graphical,
interactive development and display.

7.3.2.2 KBS Construction

The construction of an operational KBS would involve the following steps:

* Construct an architecture as described in Chapter Six, with the facility for
synthesizing fault trees. Fault trees provide the most comprehensive and well-
defined form of causal analysis, thereby facilitating the comparison of case study
results with the results of the expert system.

* Select an example case study, eg the ALDS, and construct the necessary
knowledge bases for that case study.

« Evaluate the results in an interactive fashion. The case study specifies the events

required and their cause-effect relationships.

* Generalise the system by a process of successive application to various
representative case studies. Each application involves extension and refinement of
the knowledge bases.

7.3.2.3 The Expert in the Expert System

In the proposed architecture, facilities are provided for the expression and use of high-
level, experiential or heuristic knowledge that characterises the expert approach to the
problem. It is necessary, however, to make use of detailed or low-level knowledge to
provide robustness. The expert can fall back on underlying theoretical knowledge of
chemical process operations when a difficult or novel situation is encountered. When
they are available, it may be desirable to make use of mathematical models or numerical

simulations.
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A human expert is able to justify his solution to a given problem and a truly Expert
system should be able to do the same. This is commonly done by reiteration of the rules
used to arrive at the goals and the facts upon which those rules operated. Here,
justification of a given pattern of cause-effect would involve breaking down that pattern
into the detail of the parts of the causal network from which it was formed. This would be
supported by the causal rules used in generating those parts of the network and the
original plant representations to which they were applied.
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CHAPTER EIGHT

CONCLUSION

Conventional data processing or algorithmic approaches to the problem at hand seem
to be doomed to failure when it comes to real-world applications. This is because they
are, generally speaking, deterministic in nature and are therefore baulked by their own
complexity in attempting to produce exact models of system behaviour. This may also be
true of the attempts in the AI community to model the behaviour of physical systems
using "naive" or Qualitative Physics. These methods approach the complexity of
mathematical modelling.

Rather than produce a fault analysis deterministically, the expert system approach
involves the implication of factors in the end analysis. Once the architecture of the KBS,
which is capable of solving the problem with the necessary knowledge, has been decided
upon, the inclusion of knowledge is often an ad hoc process. Chunks of knowledge are
expressed, perhaps in the form of rules, and the development of the knowledge bases
proceeds by an iterative process; analysing the performance of the system and
interactively developing the knowledge bases. In this instance case studies exist - those
providing fault trees being most appropriate - on which to base and evaluate knowledge

base construction.

This research has shown that the problem at hand is a very complex one, involving, in
principle, the whole domain of chemical engineering. As such it requires a complex
solution. The solution presented here involves the division of the fault analysis problem
into four stages:

* Representation of the plant under consideration
» Synthesis of events of interest that may occur
» Synthesis of cause-effect that may occur

+ Structured production of the fault analysis
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High level rules and procedures for conducting fault analyses exist. One example is
given in the rules for HAZOP described in Section 2.4. Another is the set of fault tree
synthesis guidelines described in Section 2.5. These rules are generally too abstract to be
directly applicable to the production of a fault analysis from a structural description of the
system. They require behavioural models of the system under analysis - this is provided
by the causal representation and valid event set of the proposed design.

This research has led to the development of an architecture for an expert system.
Future work would involve the following steps.

* Selection of a suitable KBS building environment.
* Implementation of the proposed architecture.

* Interactive development of the knowledge bases using case studies.

It is necessary to evaluate the success of the expert system in solving fault analysis
problems. The benchmark for this test is ultimately the performance standard of human
analysts who are recognised as experts. Unfortunately, mistakes in general, and
omissions in particular, are traits of all humans in problem solving. It is not
inconcievable, therefore, that an expert system could actually outperform a human expert
according to some measures of success; the computer has two main advantages, a perfect
memory and tireless high speed concentration.
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Table 3 - Code Numbers or Letters used in CAFOS To Record Failure of Equipment

Failure Mode Code

Equipment
Type 0 -1 1 Letters
Alarm Failed Operates IG: Ignored
| Contraller No signal Set Low Set high
3| Control Valves closed Less flow in More flow in
Loop line controlled | line controlled
ilter Fully blocked Partly Blocked L: Leaking
| Floumeter Blocked Indicating too Indicating too
low high
, | Heat Tubes fully Tubes partly L: Leaking
Exchanger blocked blocked
7| Indicator No signal Indicating too Indicating too
low High
i Level Set Low or Set High or
Switch Stuck High Stuck Low
i| Line Fully blocked Partly Blocked Full flow B: Blocked by
with Debris with Debris valves or fittings"
R: Restricted by
above
L: Leaking
.o Motor Stopped Running Slowly Running Fast
Orifice Blocked Orifice too Orifice too
Plate large or Low small or High
Density Density
Pneumatic Does not Vent Leaking to vent | Vent open
~| Trip Valve
(3 way)
5 | Pump Stopped Cavitating or Running L: Leaking
low flow M: Motor failed
= E: Electrical power
failed
T: Power tripped
+| Transaitter No signal Indicating too Indicating too
low flow high
7| Valve Closed or Insufficiently |Open or Open too |L: Non—return
blocked open or passing | much valve not seating
e
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IF {a leaves-system = 3) ;:
i
o o THEN (s arcs outgoing = a) I
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SUPERSYSTEMDECLARATION d-sh-400-499
drole-
sh400
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L '
|
1
|
I
drale- SUPERSYSTEMRANSITIVITY ;
sh-401 > sl !
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sh402
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[oo [decreasing
less normal
pormal increasing]
more]
. DECR —> NO
crule-
mf-v-104 0 | tovet lovel decreasing —> level no
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crule- vessel —-> W
af-e-105 {W crule
level| O outflow{flow asiwellias gas] = levei(lovel 0o] mass flow
105-109
outflo T

|
|
|
|
|
I

crule- g LEVEL INCREASING —> GASOUTFLOW CONTAMINATION

mf-v-108

lovel
lovel[level increasing}»  gas oudlowiflow asfwellias liquid}
vessel
MASS BALANCE: 2PHASE SPLITTER
crule-
Symploms of * gl inflow flow no/less/more
Symptoms of * gl ioflow flow nolesvmore gawliquid
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9

cnls IN WPROPA ON crule
w110 O—P mass flow
n s a flow more pd —> flow more pd 110-114
a flow more pu —> fMdw more pu
crule- ]
af1-110a 0—b> IF (a id = flow normal
a
. oiflow nofless pd) —> a(flow noless pd)
afflow nofless pu) —> niflow /nofless pu)
crule- LINEFLOWPROPAGATION
et L S a flow more pd —> flow more pd
a flow more pu —> flow mome pu
crule- IF (2 id = flow normal)
of+111a| —P0
a ~ a flow novless pd —> flow nofless pd
n flow nofless pu —> flow nolless pu
crule-
mf+112 A JUNCTIONLINEFLOWPROPAGATION
crule- \ JUNCTIONLINEFLOWPROPAGATION
mf-+113 j:
/
mf--114 _m
;-._-/l n{conc no/less/more ¢) = l(conc povless‘more c)
crule-
(o) W: CONCCHANGEPROPAGATION
wf+114a INE ! =

l{conc nofless‘more ¢) = n{cooc novlessmore cj
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mf-v-115

VESSELCONCENTRATIONCHANGEPROPAGATION e

/’\ mass flow
115-119
v /n2 n2(conc lesy/more ¢) = nl(conc lesy/more ¢)
|
|
]
1
|
|
i
|
crule- ml
wf-v-116 VLE
gl{conc more ¢) =
bg V(temp more) + V(pressure less pu) + V(pressure less pd)
1 c
glcone less c) =
V(wmp less) + V(pressure more pu) + V(pressure mors pd
Y m2
o SOLUBLE SOLUBLEGASEQUILIBRIUM
mf-v-117 GAS
X
l{conc more X) =
V(iemp less) + V(pressure more pu) + V(pressure more pd) |
v liconc less X) =
V(temp more) + V(pressure less pu) + V(pressure less pd)
crule-
wof 118 UNDARY INFLOW AS/WELL/ASGAS
—@ IF (oot (u id := gas))
1
niflow as/well/as gas) = l(flow as/well/as gas)
crole- W SQA
mi-+119

IF (oot (n id = gas))

lifiow as/wellas gas) = niflow ax/well'as gus)

i
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LINEBOUNDARY INFLOW AS/WELL/ASLIQUID crule
mf-1-120 q mass flow
—$0 120-124
‘3../’[ niflow avwell/as liquid) = I(flow awwellias liquid)
|
|
|
|
|
crule- L UNDARYOU WASWELL/ASLIQUID :
mf-l-121 |

(flow as/well/as liquid) = alllow as/well'as liquid)
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1

PRESSURERISE DOWNSTREAMOFREDUCING pressure

VALVEONFLOW AS'WELL/ASOAS A
VALVEONFLOW AS/WELL/ASGAS 300-399
crule- wlw(ﬂow as/well/as gas]
300 e —p Valve{pressure more propagating downsueam| _
i
(valve function := reduce-pressure)
crule-
0—»0
o2
crule- veszel
pv-303
|
|
PRESSUR ECHANGEPROPAGATINGDOWNSTREAM OUT OF VESSEL
crule- vessel
pv-303 ;
vessel[pressure lest/more propagating downstream]
oudflow > cutflow{pressure less/more propagating downstream|
il v E: CH: —>
p--304

Pressure Decreasing—»- Pressure Less
Pressure locreasing—p»- Pressure More
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erule
temp
200299
|
1
|
|
I
|
i
|
1
crule- vessal = i
w301 | inflow TEMPERATUREPROPAGATION VESS i
: |
inflow{temperature more/less-> vessel(lemperamre morerless] I
|
|
|
crule- Scasel TEMPERATURECHANGEPROPAGATIONOUT OF VESSEL
+v-202
vessel[lemperature less/more—P outflow{temperature less/more]
crule- LINEBOUNDARY INFLOW TEMPERATUREPROPAGATION
203 E‘ )
"] n(temp more) = l(temp more)
b INEBOUNDARYO ATION
+204 ( §} >
1 5 l(temp more) = n{temp more)
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