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Abstract
We outline relevant characteristics of the vehicle diagnosis domain and requirements for
diagnosis support. We argue that a combination of a model-based and a fault-tree approach will
meet the requirements. We motivate and specify the task of automated modeling and develop a
method to derive linear algebraic models of a given device. Models are derived by performing
series-parallel analysis and by applying Cramer’s Rule in a tractable way in cases when sp-
analysis fails. The models are used to predict observations under arbitrary multiple-fault
assumptions as a basis for fault-tree induction. The models can also be used for purely model-
based diagnosis. We sketch how to derive a fault dictionary from a model and how to induce a
fault tree with an ID3-like algorithm.

1 Introduction

The research presented in this paper was conducted at a research division of a leading car manufacturer designing
a knowledge-based system for car diagnosis. The knowledge bases should cover all faults of the electrical,
electronic, mechanical, and hydraulic components of a car usually encountered in the workshop, such that the
system can guide the workshop technician to the faulty component. We will first outline some relevant
characteristics of our domain:

C1 Hybrid devices with feedback loops A car is a hybrid device containing electrical, electronic, mechanical,
hydraulic and pneumatic components. Often, the functionality of the device is achieved by feedback
coupling of many such components.

C2 Software-controlled devices A considerable portion of the behaviour relevant for the diagnosis of the device
is coded in the software of the electronic control units controlling e.g. the motor, or the automatic
transmission.

C3 Limited observability of physical quantities Many of the quantities predictable by purely physical (i.e. not
functional) models of the device like torque, numbers of revolution, or hyraulic volume flow are not and
cannot be measured in the workshop. Instead, the technician observes the overall behaviour (function) of a
device, e.g. whether the up-shift from position Neutral to Drive works properly, whether the engine
sounds fine, and so on.

C4 Non-obvious tests As a consequence of C3, the technician has to perform smart tests appropriate to detect
the fault modes of the components. The design of such tests (experiments) often requires subtle
knowledge about the behaviour of the device as well as common-sense understanding of safety conditions
and manageability in the workshop.

C5 Non-physical knowledge Developers of the handbooks used by  technicians in today’s workshops take into
account a "model" of the technician: They ascribe certain skills to him, try not to bore him with too
detailed instructions while supporting him with helpful explanations and pictures when things get
complicated. Besides this model of the technician, a developer uses other non-technical sources of
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knowledge to design a diagnostic strategy. For example, the costs of a repair are charged to the customer,
to the workshop or to the car manufacturer, depending on the outcome of the diagnosis. This outcome
depends on the diagnostic strategy applied in the workshop and hence can be influenced by the diagnostic
expert.

C6 Broad coverage of faults Any approach proposed to assist the workshop technician should not only provide
a framework for some selected but for all relevant faults. Here, a fault is considered to be relevant, if it
occurs in the workshop with a reasonable probability. Under this definition, single faults are more relevant
than most multiple faults.

C7 Uncertain and changing knowledge Knowledge acquisition (for paper handbooks as well as for knowledge-
based diagnosis systems) has to be performed during the development of the device. Any method for
knowledge acquisition should thus account for a situation with uncertain or changing information.

C8 Economy Knowledge acquisition (for paper handbooks as well as for knowledge-based diagnosis systems)
has to meet certain economic constraints: If knowledge acquisition with method A takes one man year and
with method B 10 man years, method A might be preferable for economic reasons, even if method B
results in a broader coverage of faults.

C9 Automated Modeling If a knowledge acquisition method requires explicit models of the device, the
processing of a model has to be completely automated: A developer will not accept a tool that asks him
e.g. to solve x = f(x), to do some ordering of equations, or to add missing energy constraints to a model.
Also, the developer will refuse to model a device by e.g. functional decomposition, or by specifying
different levels of abstraction, or by applying any similar sophisticated modeling technique known in the
fields of AI or simulation. Ideally, from a developer’s point of view, a device should be modeled by a
simple device diagram and very little more.

Given these characteristics we conclude that a pure model based approach will not meet all the requirements: C1
... C6 imply that we will need rich models, which almost in turn conflicts with C9. C9 forces us to restrict
ourselves to models that can be derived and processed automatically. On the other hand, C7 and C8 give us a
strong recommendation to use models compatible with C9 whenever possible.

Matching the classical fault-tree approach against the above characteristics we conclude: C9 is matched perfectly
since the approach uses no models at all. C1 ... C5 are matched as with a fault tree we can "code" arbitrary, in
particular non-physical diagnostic knowledge. C6 is matched if we assume that only single faults and very few
multiple faults known in advance are relevant1. C7 and C8 recommend strongly not to use fault trees.

The above scorings are nearly complementary. Therefore we try to combine the two approaches in order to end
up with an approach matching all the given requirements.

We combine the two approaches by deriving (see C8) portions of the fault tree of a device from simple (see C9)
device diagrams. Where this cannot be done because the diagnostic knowledge needed cannot be derived from
such a diagram (C1, C2, C4, C5), the diagnostic expert has to complete the fault tree by hand. A simple truth
maintenance mechanism not described in this paper couples derived portions of the fault tree with the diagrams
used, such that a certain class of changes of the diagram will cause an automatical update of the fault tree (C7,
C8). For several reasons (C3, C4, C5) the diagnostic expert needs explicit control over the test sequences
occuring later in the workshop. Post-editing a derived fault tree gives him this freedom in a way that could hardly
be achieved with a purely model-based approach.

The rest of the paper is organized as follows: In the second section we describe our modeling technique, which
represents the main contribution of this paper. In the third section we shortly sketch the derivation of fault trees
from automatically derived models with an algorithm similar to Quinlan's ID3 [Quin 86].

                                                
1The technical diagnosis and repair handbooks used in our domain today actually only treat a fraction of all single
faults, mainly because of the costs (C8) of producing and maintaining more sophisticated handbooks. Thus an
exhaustive, automated treatment of the "trivial" single fault case could already be regarded as a substantial
improvement. Recall also that the probabilities for independent coincidence of single faults multiply, i.e. multiple
faults are, while probably hard to locate, in general much less likely, than single faults.
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2 Automatic modeling for workshop diagnosis

A key observation is that in the workshop scenario considered here - car diagnosis - measurements are often
performed in steady states of the faulty device. Voltage and resistance are measured in steady states (i.e. in states
achieved e.g. by opening and closing certain switches and plugs, such that the observed values do not vary in
time). The same holds for hydraulic and pneumatic pressure measurements, motoroil level, number of revolutions
of an engine in idle state etc. Such steady states can often be modeled by resistive networks.

Because of the physical parallelism of voltage, pressure, force, torque on the one hand, and current, volume flow,
velocity, and angular velocity on the other2, hydraulic, pneumatic, and mechanical devices can be modeled by
resistive networks as well. However, the values predicted by non-electrical models are often by far more difficult
to observe in the workshop (C3). In the electrical case, the instruments to measure voltage and resistance3 are at

hand in every workshop today. Table 1 outlines the parallels in the different physical domains4. In the following
we will focus on electrical networks although our techniques also apply to the other physical domains.

electrics hydraulics translational
mechanics

rotational
mechanics

voltage u pressure p force F torque τ
current i flow Q velocity V angular velocity ω
battery oil pump source of force motor
wire pressure line rack shaft
resistance
lightbulb
coil

oil filter damper bearing
with friction

switch pawl
relay shift valve
diode check valve freewheel
Z-diode clutch
transformer pressure line with two

different cross sections
lever mechanics gear wheel mechanics

Table 1: Analogies in different physical domains

2.1 Automatic modeling: specifying the task

A device diagram is a graphical representation of the device made for humans (see e.g. Fig. 1). A diagram is
composed by a human fault-tree developer by choosing and connecting predefined component diagrams. A
component diagram defines a graphic representation of a component as well as a set of quantities representing
observable facts under given fault assumptions. Using the diagram, the developer states also, which of the
quantities are actually observable in the workshop, what preconditions have to be satisfied (in terms of
propositions about quantities) before an observation can take place and at what expences this can be done. A
model is a function, derived completely automatically (C9) from the diagram that is able to predict observable
quantities under given fault assumptions. So a model can be regarded as a function f with

observed value  =  f(fault assumption, observable quantity)

Automatic modeling is the derivation of such a computable function from a given device diagram. A fault
assumption assigns a mode of behaviour to each component. The function f or model can be evaluated to fill a
fault dictionary, also called fault relation here. This relation correlates the observations possible in the workshop
with possible component faults. You might think of the relation as implemented by a table. Models are one of the
possible sources of entries in that table.

                                                
2Such pairs of variables are generalized in the bondgraph formalism by an abstract pair of variables, called effort
e and flow f, where the product e f is constrained to yield power, cf. [KaMaRo90].
3Current is measured only in rare cases during a car repair in a workshop.
4Regarding the analogy of Z-diode and clutch: The Z-voltage at which the resistance of the diode becomes zero
parallels the maximal torque that can be transmitted by the clutch before the clutch starts slipping.
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2.2 Example for the basic modeling technique

Fig. 1 shows a diagram of our examplary device. The device consists of a series connection of battery B, switch
S, wire W and lightbulb L. There are 3 points accessible for measurements labeled 0 (= GND), 1 and 2.

Let us assume, the developer has further stated that voltages and resistances, but no currents are observable
between arbitrary pairs of the 3 measurement points. Additionally, he  has declared an experimental change of the
lightbulb as a possible test (test is repair). The costs for measurements were defined as follows: There are 4
classes. Observing, whether the light is on or off is the simplest, followed by measurements involving points 0
and 2 only. Measurements involving point 1 (accessing 1 is complicated) characterize class 3. The highest costs
in our example are caused by an experimental change of the lightbulb.

This example might appear too simple. But in the domain considered here (car diagnosis) devices of rather
moderate complexity occur frequently. The problem for the developers of traditional diagnosis and repair
handbooks is not that a single independent device is too complicated, but that there are too many such devices to
consider them all in detail (C8). From the point of view of model-based diagnosis the problem is that for several
reasons (C4, C5) the diagnostic expert wants explicit control over the test sequences to be carried out later in the
workshop. Post-editing a partially derived fault tree gives him this freedom in a way that could hardly be
achieved with a purely model-based approach.

B

W

L

0

1

2

GND

r1s0 r2

r4r6

r5

r3

n4

n0

n1

n2

n3S

Figure 1: Diagram of a device and corresponding resistive net

In our modeling framework the normal and faulty behaviour of all components is represented by a resistive
network (see Fig. 1). Each component class specifies a resistive net model. In our example, the model for wire is
a resistance  with R = 0 if the wire is ok and R = ∞ if the wire is broken. A short of the wire to an arbitrary point
is modeled by a resistance R with R = ∞ if wire is ok and R = 0 if the wire is shorted. Each fault assumption
translates to a certain assignment of R-values to the edges of a net covering the assumption. Our modeling
enables us to initially cover all possible fault assumptions with a single resistive network. The battery in our
example was modeled as a series connection of an ideal source s0 and an inner resistance r6. In summary, the
voltage sources and resistances (the labeled edges of the graph) represent:

s0 battery as ideal voltage source
r1 resistance of lightbulb L; ∞, if burnt out
r2 0, if wire W is shorted to ground, ∞ else
r3 0, if wire W is shorted to plus, ∞ else
r4 resistance of wire W; 0 in the normal case and ∞, if W is broken
r5 switch S; 0, if closed and ∞, if open
r6 inner resistance of the battery

Automated modeling proceeds as follows: In a first stage we perform series-parallel analysis of the resistive net
derived from the device diagram. Successful sp-analysis results in a tree with leaves representing the edges of the
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given net. The inner nodes aggregate serial and parallel subnets and the root represents the resistance of the
whole net with respect to a given source. If sp-analysis succeeds we are done with modeling, since the resulting
tree can be used to derive algebraic expressions for all voltages and currents: Resistances of inner nodes and of
the root node are calculated in a top-down manner while the currents and voltages of leave nodes are calculated
bottom-up  using the precalculated resistances. If sp-analysis fails, i.e. the set of fault assumptions cannot be
covered by a single sp-reduceable net, we simplify the net by deleting an edge representing a resistance with only
two possible values {0, ∞}. This splits the set of covered fault assumptions into two disjoint subsets, each
associated with one of the two resulting simplified networks. The procedure continues until - in the ideal case -
all fault assumptions are covered by sp-reducable nets. We apply techniques here inspired by the ATMS
framework and reuse sp-analysed subnets valid under more than one fault assumption. Details will be presented
in a forthcoming paper. However, some nets, each associated with a non-empty set of fault-assumptions, may
remain that can neither be simplified nor sp-reduced to a single resistance. These are processed in a second stage
by applying Cramer’s Rule as illustrated below.

Assume that the net given in Figure 1 was not series reducable (as it actually is). To apply Cramer’s Rule, the
inference mechanism  analyses the  net with its 13 unknown voltages and currents. The net has n = 5 nodes n0 ...
n4 and m = 7 edges. Therefore it can be deduced that there are (n-1) = 4 independent current equations (Σ i = 0)
and (m-n+1) = 3 independent voltage equations (Σ u = 0). Each of the 6 r-labeled edges gives us one equation of
the form u = Ri. So we get 13 equations and exactly that many current and voltage unknowns. Therefore we can
derive the following sparse matrix, representing a set of 13 independent linear equations:

i0 i1 i2 i3 i4 i5 i6 u1 u2 u3 u4 u5 u6

1 1 1
-1 1

1 1 -1
1 1

1 1 1 s0
1 -1 -1

-1 1
-r1 1

-r2 1
-r3 1

-r4 1
-r5 1

-r6 1

Empty matrix elements represent zero entries. Solving the matrix symbolically by applying Cramer’s Rule (here
performed with Mathematica) yields:

i0  = (s0/Det) (r13 + r23 + r14 + r24 + r15 + r25) (1)
i1  = (s0/Det) (r23 + r24 + r25) (2)
i2  = (s0/Det) (r13 + r14 + r15) (3)
i3  = (s0/Det) (r14 + r24 + r15 + r25) (4)
i4  = (s0/Det) (r13 + r23) (5)
i5  = (s0/Det) (r13 + r23) (6)
i6  = (s0/Det) (r13 + r23 + r14 + r24 + r15 + r25) (7)
u1  = (s0/Det) (r123 + r124 + r125) (8)
u2  = (s0/Det) (r123 + r124 + r125) (9)
u3  = (s0/Det) (r134 + r234 + r135 + r235) (10)
u4  = (s0/Det) (r134 + r234) (11)
u5  = (s0/Det) (r135 + r235) (12)
u6  = (s0/Det) (r136 + r236 + r146 + r246 + r156 + r256) (13)

where r123 is a shorthand for the product r1 r2 r3 and

Det  = r123 + r124 + r134 + r234 + r125 + r135 + r235 +
r136 + r236 + r146 + r246 + r156 + r256  (14)
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Cramer’s Rule states the following: Let Ax = b be a system of linear equations with a unique solution, i.e. A non-
singular. Then the xi can be calculated by:

 Det(Ai)
xi  =  where Ai = (A with the i-th column in A replaced by b)

 Det(A)

Each fault assumption translates to a certain assignment of 0 and ∞ to R-quantities. The generally valid formulas
(1) ... (13) can be evaluated for a given fault assumption in a simple way by computing the 0 and ∞ limits of the
R-quantities. This yields symbolic expressions for all currents and voltage drops in the net. To our opinion, this is
a remarkably compact representation of the behaviour of a device under arbitrary (also multiple) fault
assumptions. Note that we have not used any quantitative information about parameters of the device components
so far, therefore we could call this approach a qualitative one. However, because of its close relation to methods
developed in the field of computer algebra (for an introduction see e.g. [DaSiTo 88]) we find this modeling
approach best termed algebraic modeling.

If Cramer’s Rule is applied in the naive form presented above, the resulting expressions for the observable
quantities will always possess the simple and uniform structure shown in the example. But the size of the
expressions will grow exponentially in the number n of the quantities as determinants are calculated as a sum of
n! terms, where each term is the product of n matrix elements.

Therefore, Cramer’s Rule is often considered to be useless for practical purposes. This is true as long as we are
interested in numerical solutions of linear systems where simple Gaussian Elimination is known to work in O(n3).
If we are interested in symbolic solutions of large, sparse linear systems, Cramer’s Rule becomes applicable.
[Smit 79] and [Smit 81] gives a conceptually simple algorithm called FDSLEM for solving such systems based
on Cramer’s Rule. This algorithm calculates the determinant in a factorized, i.e. not fully expanded form. It
combines several sophisticated techniques to omit multiple calculations by storing intermediate results and by
always choosing an optimal row or column for the expansion of subdeterminants. Experiments presented in [Smit
79] show that the calculation of a determinant is performed in linear time at least for the given examples. These
are linear systems derived from ladder networks with 10 to 26 variables.

state

     fault
     assumption
observation

no
fault

wire W
broken

wire W
short
to plus

wire W
short
to ground

light
bulb L
burnt out

S closed
S open

light
light

�
l

l
l

�
�

l
l

l
l

S open
S open

S closed

r20
u20
u20

C
0
A

∞
?
B

!
A
A

0
0
0

∞
?
B

S open
S open
S open
S open

S closed
S closed

r21
r10
u21
u10
u21
u10

0
C
0
0
0
A

∞
C
?
B
B
B

!
!
0
A
0
A

0
0
0
0
0
0

0
∞
?
?
0
B

S closed light after
bulb change

� l � l �

� =  lightbulb is on
l =  lightbulb is off
? =  value is with no model predictable
! =  measurement of r not allowed, because current is not zero
A =  r(lightbulb) u(battery) / (r(lightbulb) + r(battery))
B =  u(battery)
C =  r(lightbulb)

Table 2: Derived fault dictionary
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Our hope is that the tractability of Cramer’s Rule as indicated by these experiments extends to systems with up to
a hundred variables. This would enable us to apply this method to the modeling of real-world devices. It should
be noted however that we did not implement any of the techniques presented in this paper.

At this point we have derived algebraic expressions for currents and voltages of resistances in the net, either by
sp-analysis in stage 1 or by computing limits of the formualae derived by Cramer’s Rule in stage 2. These low-
level expressions need further processing in order to derive propositions on the level of observations e.g.  about
the behaviour of the lightbulb in different fault situations. Merging these propositions into one table and sorting
them by their costs yields the fault dictionary presented in Table 2. The rows (observation in a given state) and
columns (fault assumption) in this table are subsets of the combinatorially possible ones and were selected by the
developer while preparing the device diagram (see Fig. 1).

3 Fault-tree induction

The fault trees to be derived here are basically commented decision trees. Every path in a fault tree corresponds
to a certain test sequence in the workshop. Since childnodes of a node n in the fault tree share the same path
down to n, the test sequences to confirm or disconfirm them are equal down to node n. The comment or label of a
node specifies the fault assumptions represented by that node, i.e. the current diagnostic candidates.

at least one fault
in the device

device
is ok

wire short
to plus

wire broken or
short to ground
or light burnt out

wire short
to ground

wire broken or
light burnt out

wire 
broken

light 
burnt out

light on, when closed
and light off, when switch open NO YES

YES

NO

NO

NO

YES

YES

light is on, when 
switch closed, or on
when switch open

switch closed 
u20 = 0

switch closed and
r21 = 0

Figure 2: Fault tree derived from the diagram

For deriving the fault tree we start with the case "everything is ok, no fault" and deduce the test to confirm or
disconfirm this case. All other cases are confirmed or disconfirmed in the order resulting from balancing the gain
of information and the costs of a test in some reasonable way. The derivation proceeds in a straigtforward manner
according to the ID3 algorithm as described in [Quin 86]. For our example we get the fault tree shown in Fig. 2.

Note that the example presented here could of course be mastered by a purely model-based approach. For a
motivation of the use of fault trees recall our arguments given in Section 1.
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It is not specified by ID3, in which way the costs of a test are balanced with the information gain of the test, since
[Quin 86] considers only the information gain based on calculations of the entropy, not costs. Because there are
no real-time constraints while deriving a fault tree (in this respect our situation differs from a purely model-based
approach), we can apply computationally expensive techniques to do this. For example, we could apply the A*
algorithm by defining a cost function f(n,test) = g(n) + h(n,test). g is the cost to confirm node n, and h is an
optimistic estimation of the remaining costs, if we choose the given test. The function h introduces information
not covered by other approaches purely based on one-step look-ahead entropy, as e.g. described in [KleWil 87].
Basically, h will help us to prevent a situation, where we postpone an expensive test although a look ahead would
show that we have to execute it anyway.

However, these problems are far from having been solved and will be subject of further investigations.

4 Conclusion and future work

We outlined the relevant characteristics of vehicle diagnosis and presented a method to derive a fault dictionary
from a given device diagram by performing series-parallel analysis and by applying Cramer’s Rule in a tractable
way in cases when sp-analysis fails. The derived fault dictionary serves as a basis for fault-tree induction with an
ID3-like algorithm.

Current research concerns empirical validation of the methods presented here. Further research will extend the
modeling techniques  to piecewise linear models in order to cope with non-linear componentes like diodes, and to
models with state to model e.g. a fuse, whose resistance becomes ∞ after a short time span ∆t when the actual
current exceeds a certain limit or  a relay that will open or close after ∆t if the actual current through its coil
exceeds a given limit.
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