

Software Interface Failure Modes and Effect Analysis Based on UML

Chenguang Hou, Qihua Wang
China Aero-Polytechnology Establishment

Beijing,China,100028
houcg1982@hotmail.com

Abstract—Software is widely used in equipment control,
signal processing, communication and other fields. In
today’s world, we should pay more attention to its
quality needs. Interface is one weak-link in large-scale
software design. In order to improve software quality,
we need to enhance interface quality work, including
management, analysis, design, test methods etc. FMEA
(Failure Modes and Effect Analysis) is a common
quality analysis tool which has been used in software
developing progress, but the progress is ineffective.
Unified Modeling Language (UML) is a standardized
modeling language. It provides a unified tool for
software developers of different domains. Even if
quality engineers do not involve in software design, they
can understand software functions and design it by
UML files. In this paper, we apply FMEA to software
interface quality analysis, analyze the problems in the
previous SFMEA application, investigate the possibility
of SIFMEA based on UML Unified Modeling Language

, discuss the feasibility of using UML diagrams and
introduce the approach and steps of SIFMEA utilizing
different UML diagrams. At last, the method’s
effectiveness is proved by an flight control system
example.

Key Words—software interface; FMEA; UML

I. FOREWORD

In the last twenty years, on-board electronic equipments
have experienced different stages from hardware-intensive
to software-intensive. The avionics software of F-22, which
was developed in 1980’s, has more than 2000KLOC codes.
And JSF, which was developed since 1990’s, has more than
6000KLOC codes. It’s obvious that the proportion of

software in on-board equipments have risen quickly.
Large-scale software development is a complex systematic
engineering. It’s necessary to decompose the top-level
requirements to contractors, teams and engineers. After all
the modules were developed, they were assembled together.
By the connection of interfaces, software modules build up
an integral system. However, different contractors may have
distinctive develop modes, develop engineers and
management ways, the quality of software modules is
different with each other. So interfaces become the
software’s weak link [1] , we often found many bugs during
integration testing.

The reasons of above phenomena include: 1)
contractors were not aware of the significance of software
interface quality, they were absorbed in schedule and cost,
but didn’t realize that quality also can help them save time
and money; 2) lack of efficacious software quality analyse
technology, now usable software quality analyse technology
can’t be combined with software design process.

It’s well known that quality is the inherent attribute of
product. In order to improve the quality of software, we need
to do quality work as early as possible, utilize design &
analysis technology to improve software quality.

In this paper, we use the Unified Modeling Language
(UML) in Software Interface Failure Mode and Effect
Analyse (SIFMEA). During every phase of software
development, carry on SIFMEA utilizing UML design
documents. This method helps quality engineers to do
SIFMEA at the beginning of requirement analysis, and
throughout the whole software develop process.

II. UML & SOFTWARE DEVELOPMENT

Unified Modeling Language (UML) is a standardized

2011 International Conference of Information Technology, Computer Engineering and Management Sciences

978-0-7695-4522-6/11 $26.00 © 2011 IEEE

DOI 10.1109/ICM.2011.375

215

2011 International Conference of Information Technology, Computer Engineering and Management Sciences

978-0-7695-4522-6/11 $26.00 © 2011 IEEE

DOI 10.1109/ICM.2011.375

215

2011 International Conference of Information Technology, Computer Engineering and Management Sciences

978-0-7695-4522-6/11 $26.00 © 2011 IEEE

DOI 10.1109/ICM.2011.375

215

modeling language. It was created and managed by OMG
(Object Management Group). UML can be used for
modeling data, structure, behavior, architecture, etc. By
using UML, developers can focus on the product model and
structure, no matter what language and algorithm used. After
the UML models were established, they can be transformed
into codes automatically.

System models are represented by diagrams in UML. A
system model has two different views. Static view
emphasizes the static structure of the system using objects,
attributes, operations and relationships. The structural view
includes class diagrams and composite structure diagrams.
Dynamic view emphasizes the dynamic behavior of the
system by showing collaborations among objects and
changes to the internal states of objects. This view includes
sequence diagrams, activity diagrams and state machine
diagrams. Different UML views establish models from
different aspects(Table 1). UML provided a unified tool for
software developers from different domains, design, test or
integrate. We can use UML views in whole software
development process.Even though quality engineers didn’t
involve in softwere design, they can understand software
function and design by UML.

Table1 Point of Different UML Views

View point of view

Use case diagram function of system, inner relation, system &

user relation, mission scene

Class diagram relation between classes

State diagram state of object, the affect of event to state

Sequence diagram interaction between objects real-time

requirements

Activity diagram actions and results

III. UML-BASED SIFMEA

FMEA is a quality and reliability analysis techniques
widely used in equipment reliability analysis, its
effectiveness has been verified in industry. Today, the
importance of software quality has earned widespread
respect. So FMEA has also been applied to software
interface reliability analysis[4]. However, it’s still difficult to
use this technique to improve software quality. One

important reason is that software quality engineers don’t
familiar with the software product usually, when they get
software interface development documentations, they may
find they are irregular, so the FMEA work can’t be done
effectively.

UML is a general modeling language, it builds a bridge
between software developers and quality engineers. The
main advantage of SIFMEA based on UML is that software
quality engineers can quickly learn about the design of
interface by UML views, so the FMEA work can be carried
out effectively. Another advantage is that FMEA can
combined with design through software development.

IV. STEPS OF SIFMEA BASED ON UML

A. Choice of software interface needs to analyse

There are many interfaces in software, which one
should we choose to analyse? There are three aspects need to
consider:
1) The type of interface

Interfaces are different from each other in complexity,
so the difficult level of design and implementation are
different. Generally speaking, complex interfaces usually
have more bugs than others. Expecially some particular
interfaces, often have some special requirements in design,
need to pay more attention.
2) The important degree of interface

Different interfaces have different fuctions in system, so
they have different important degrees. Some interface are
used for transporting core data, some only transporting
secondary data. The more important the interface is, the
greater its impact is once it is failure. So we’d better choose
important interface to analysis first.
3) Design experience

When we choose the interface, we can found whether
our designers have the design experience, or whether there
are similar interfaces showing good quality in last test or
use.

B. Determine the analysis grade and assumptive
conditions

 SIFMEA can be divided into functional FMEA and
detail FMEA. We can determine analysis grade by two

216216216

aspects. One is the importance of the interface, generic
interface can usually do functional FMEA, important
interface needs to do detail FMEA. Another is the schedule
software develop. For example, during requirements
analysis phase, we can develop functional FMEA by using
case diagram and primary class diagram, when there are
detailed class diagram, activity diagram, sequence diagram
and code, we can do detail FMEA.

Input data of on-board software is closely related to its
mission conditions. Before FMEA, we should assume the
conditions, include mission phase, environmental
conditions, etc. If the software has several mission
requirements, we should develop FMEA separately.

C. Find possible failure modes

Utilize UML views and software development
documents, find out possible failure modes of software
interfaces. UML views are the descriptions of software
interface from different points, so it’s necessary to use all of
them to find failure modes. During this work, we may found
views are related to each other. For example, the failure
mode of sequence views may be found in the interface’s
activity diagram.

D. Analyse failure reason and effect

After get the possible failure modes, we need to find out
the failure reasons and effects. Failure reasons maybe data,
component or environment. Failure effects can be divided
into three grades: the output of interface, local, system.
When we analyse local and system effect, the views of

associated interfaces and system are useful.

E. Determine the severity of failure

See GJB/Z 1391-2006.

F. Fill out the FMEA table

Fill out the FMEA table with analysis results.

V. EXAMPLE

Following is an example of SIFMEA based on UML.
Flight control system is a safety-critical system of aircraft.
There are many interfaces in flight control system, for
example man-machine interface, sensor interface, actuator
control interface, etc.[6]

During requirements analysis phase, software developer
established use case diagram of flight control
system(Figure1(a)). We can found the interface between
flight computer and actuator is a critical interface.

 (a) (b)

Figure1 Use case and Activity diagram of flight control system

The activity diagram of interface between flight
computer and actuator is shown in Figure 1 (b). We can
develop function SIFMEA using that two views:

Table 3 Function SIFMEA

Failure modes Failure

reason

mission Failure effects Severity Corrective

measuresInterface effects Local effect System effect

DA no inputs Sensor

failure

flight No outputs Control system is

open loop

Flying qualities

decline

 redundant

sensor

AD module

failure

flight No outputs Control system is

open loop

Flying qualities

decline

 DA module

back-up

Interface output too

high or too low

Parameter

drifting

flight Outputs Deviates

the real value

Actuator is not in

place

Flying qualities

decline

 Calibrate

ouputs

Outputs not smooth Environmen

t disturbance

flight Outputs not

continual have

burrs

Actuator is unstable Flying qualities

decline

 Add filter and

smoother

217217217

During different mission phases, aircraft
needs different control laws. So flight control
software should switch between different
control modes. If the switch progress was
performed instantaneous, that may cause control
surface tremble. In order to improve flying
qualities, it’s necessary to increase a fade in-out
step, and then the aircraft can switch smoothly
from one mode to another.

During detailed design phase, developers
established activity diagram and sequence
diagram of fade in-out step(Chart 2).

 (a) (b)

Figure 2 activity diagram and sequence diagram

We can develop detail SIFMEA and fill
FMEA table (Table 4).

Table 4 Detail SIFMEA

Variable Failure

modes

mission Failure effects Severity Corrective

measures Interface effects Local effect System effect

Too high or

too low

flight Output too high or too

low

Deflection too big or too

small

Flying qualities

decline

 Add limiter

No inputs flight No inputs Actuator don’t Action Plane out of control Add Monitor

Too big flight Outputs change too

fast

Actuator flutter Flying qualities

decline

 use reasonable

N

Too small flight Outputs change too

slow

Can meet the control

requirements

Flying qualities

decline

VI. CONCLUSION

This paper introduced SIFMEA based on
UML in software quality control. Our analysis
shows that SIFMEA based on UML diagrams is
feasible. The procedures of SIFMEA using
UML was listed. Its effectiveness is proven by a
flight control system example.

Most quality analysis tools are statistical,
their main weak point is separation with
software design. UML is a standardized software
modeling language. The application of UML in
software development process is more and more
widely and modeling methods will become
standardized. Quality engineers can join in
software development from requirement
analysis to test, so SIFMEA based on UML will
combine with software design more easier than

before and make FMEA more effecctive.

REFERENCES

[1] Nathaniel Ozarin. The role of Software Failure Modes and

Effects Analysis for Interfaces in safety- and mission-critical

systems. IEEE International Systems Conference. April.2008

[2] Herbert Hecht, Xuegao An, Myron Hecht Computer

Aided Software FMEA for Unified Modeling Language Based

Software RAMS 2004

[3] GJB/Z 1391-2006 Guide to Failure Mode, Effects and

Criticality Analysis

[4] Chenguang Hou Qihua Wang, Zhanyong Ren, One Test

Case Generation Method for SW&HW Reliability Co-testing,

ICRMS 2011

218218218

