
2009 WEE International Advaniee Computing Conference (IACC 2009)
Patiala, India, 6-7 March 2009

O)peration Level Safety Analysis for Object Oriented
Software Design Using SFM\EA

Pankaj Vyas R. K. Mlittal
Lecturer, Conqputer Science andInfrmnation £vstem Proessor, Mechanical Engineering and Coniputer Science
Birla Institute of Technolgy and Science, Pilani. Birla Institute of Tehnolog and Science, Pilani.

pan&inku~cbity pilaniac.in ic t isnlii a

Abstract approach for the application of SFMEA for object oriented
based software design. The analysis process is applied at

Recent trends have indicated the increased use of object method(s) or operation(s) of classes identified dluring design
oriented technology not onily for the design and phase of object oriented life cycle. The rest of the paper is
development of traditional softare but also for safety organized as follows. Section 2 gives an overview of related
critical software. There has been an ongoing effort fbr the and background of published works in the fields of SFMEA
application of traditional well documiented and well tested as well as its application in vanous phases of software
hardware safety and reliability analysis techniques to development life cycle. In the Sectioln 3, the reason fbr
software. Software Failure Modes and Effects Analysis applying the software FMEA process at operation-level or
(SFMEA) is one such technique that has been adopted from method-level is discussed. In Section 4, the proposed
its hardware counter part Failure Modes and Effects approach for applying software FMEA at method level is
Analysis (FMEA). Despite differences in operational failure described and rules for identifying various failure modes ae
modes between hardware and software, the recent research discussed. The application of the proposed approach is
has shown the usefulness of the technique in software explained in Section 5 by taking methods of a sample
development process. This paper aimrzs to.: (i) highlight the MessageQueue class as examples. Section 6 will conclude
application of SFMEA in object oriented design process the paper by highlighting the irmportance of software FMEA
and (ii) use the results of analysis obtained from previous process at software design phase.
step at implementation phase fbr improving robustness of
the code. 2. Background and Related Work

1. Introduction The application of FMEA to software has so far remained a
manual, time-consuming and labor intensive activity.

Object oriented technology is being explored mnore and Despite this wealkess the research in the past has indicated
more for its aplipcations in safety critical systems and the great importance of the process in every phase of
Unified Modeling Langnage (UML) has become the software lifecycle. The work described in [1] has provided
universal standard for modeling the static as well as examples of various software failures. Lutz and Woodhouse
dynamic aspects of both traditional and safety critical [2,4] recommended use of SFMEA in conjuncition with
software. In recent years, there has been an ongoing effort another well known backward safety analysis techniqe
for improving and enhancing the quality of the sakfty known Software as Fault Tree Analysis (SFTA) for
cntical software by applying traditiolnal hardware safety analyzing the requirements of critical space craft software.
analysis techniques like Failure Mode and Effects Analysis Lutz [5] applied SFMECA and SFTA for the safety analysis
(FMEA) to software k-nown as Software Failure Modes and of two space instrtuments Mars Microprobe Project and
Efcts Analysis (SFMEA) [1]. SFMEA is bottom-up Earth Orbiting System's Microwave Limb Sounder.
approach which starts from basic failure events and then Chunping et el. [3] described an automated alnalysis method
investigates its effect on system. When the criticality of the and software package tool for SFMEA and explains its use
effects is also considered, the technique is called a Software in digital fly control systems. Goddard [6] provided a
Failure Modes, Effects and Criticality Analysis (SFMECA). sunmnary overview of two types of SFMEA. system
SFMEA and SFMECA are pnmarily used to discover software FMEA and detailed software FMEA. Goddard also
software design defects during software developmenit, outlined the importance of applying system software FMEA
SFMEA is an extension of FMEA developed in the 1970s to in early phases of software life cycle most suitably at
provide a systematic form of failure analysis that could reqiremetnt analysis. The detailed examples of functional
improve reliability. The applicationt of SFMEA or FMEA analysis, interface analysis and detailed analysis of software
focuses on two important aspects: (i) How any using SFMEA can be foundd in [7]. Detailed survey of
hardware/software component can fail and (ii) What will be various SFMEA techniques and standards can be traced to
the con}sequences(Ds) or effects on the system as whole. te wWorks dkescribied by Haapanlenl an:d Helmunenl 18].
For harldwae syst;ems FMIEA is well documented, G:uichet and BaronL 19] have applied FMIEA to perform
a;utomnated and has been suported by ric&h body of r:esear:ch. mnessage level lrisk anaysis for UMIL based syst;ems and
But for softare systemns the techn:ique is nlot yet desc:ribed elevenl possible error or: failure moedes for:
standarndized and no universally acc>epted stanldard exists for mnessages. Oza:rinl 110] analz;ed the assembly laugnage code
application ofT thRe process. This paper p3resents a novel u:sin:g SFE3\EA and oultlined the& plrocedure for performningS

978- 1L-4244-2928-8/09/$25.00 © 2009 IEEE 1675

Software FMEA. For the smooth and easy use of the 4. Proposed Approach
software FMEA process Ozarin also advocated to use of
database tools. Use of FMEA for UML based applications Our approach presented in this section is based upon the
can be found in [9, 1 1]. The earlier use of software FMEA is previous works described in [10, 11, 12, 14, and 15]. Our
either manual [7] or computer aided [3, 1 1]. Recent research approach extends the idea of method-level analysis to object
indicated the automated attempts for the code level analysis oriented software design phase. Our approach will also
[13, 15 and 16]. Neal and Price [15] used fault propagation describe the details for the identification of various failure
model for the automated analysis. The effort is going on for modes for the methods.
automating the Software FMEA process by using the
dependence relations among software components. 4.1 Assumptions for the Proposed Approach
For last two decades the focus of research for Software
FMEA process has been for the code level analysis. Very The proposed approach is based on the following
little published work exists for the application of SFMEA assumptions:
for software design phase. Many researchers stressed upon 1. The operation or method under consideration has a well
the application of Software FMEA to earlier phases of defined protocol for its correct usage consisting of the
software development life cycle [2, 6]. Moreover SFMEA attributes: Precondition Invariants, Post condition
process at design phase can help the developers to improve Invariants, and Proper Signature containing an ordered
the robustness of the code written at implementation phase. formal list of parameters.

2. Operation's behavior is implemented in a pseudo code
3. Operation level Safety Analysis type description language as mentioned in the example of

Section 5.
Why operation level or method level SFMEA? In object 3. Pseudo code description of the method is virtually divided
oriented systems classes are group of operations or methods. in two parts: constraint checking part and actual logic
Hect [11] noted that when a method does not execute in part. All method constraints are checked upon entry in the
accordance with its specification then software can fail method and after that actual logic will execute.
under some condition. Methods have been considered 4. Our approach is not considering variable failure modes as
equivalent to a part of hardware system where failure can mentioned in [7, 10] rather it will only focus upon the
occur under certain conditions. Ozarin [12] discussed the functional aspects the method. Variable Failure modes
relative merits of performing analysis at four different can be considered when method code is implemented in
levels: Method-level analysis, Class-level analysis, Module- any high level language i.e. code level analysis or post
level analysis and Package-level analysis and also stressed implementation analysis.
that for SFMEA process to be more accurate and fruitful 5. It is assumed that whenever invoked then method
then it should be performed at the lowest level of analysis performs its task T in finite time, there is no time
i.e. Method-level. During object oriented design the constraint.
methods are the more suitable candidates for the application 6. Operation or method under consideration is neither
of the process. The other reason for selecting methods is handling any concurrent operation nor is being shared
guided by 'how we test an application and fix the bugs'. among various clients.
While testing an application if error is encountered a search
is carried out to locate the piece of code where error 4.2 Identifying Method or Operation Failure Modes:
occurred or more specifically the instructions of the method.
As SFMEA is to be applied in design phase, choice of Based upon the various types of operations or methods that
methods seems to be the suitable option. a class can have and constraints and parameters that an
Classes have methods that provide implementations for their operation can have we have identified the four types of
operational responsibilities. Whenever, objects failure modes for a method: Precondition Violation Failure
communicate either by sending signals or by passing Modes, Parametric Failure Modes, Method Call or Invoke
messages, it is internally linked to a method call. Methods Failure Modes, Post Condition Violation Failure Modes.
that perform safety critical tasks are generally viewed as These are described below:
agents fulfilling a contract for performing its operational A. Precondition Violation Failure Modes: The
tasks safely. Methods may/or may not have formal guidelines mentioned in the following steps can be used
parameters and/or return values. UML's Object Constrained to define pre condition failure modes for the methods
Language (OCL) provides semantics for defining pre I(a) Check what will be the method response if invoked
conditions, post conditions for methods, class invariants for with precondition violated. If there is no built in check
classes and range and type constraints for formal in the method pseudo code then make precondition
parameters. For successful application of SFMEA for violation as failure mode else if method raise the alarm
methods we have to identify failure modes for various types in the form of exception say E then make precondition
of methods and while identifying the failure modes we have violation and !raise(E) (i.e. precondition is false but
to focus on how method is going or is to be implemented. exception mechanism fails) as the failure mode.
So for this purpose we have used Pseudo code Description raise(E) is used for raise exception E and !raise(E) is
Language (PDL) which is independent of any high level used for not raising the exception E]
language. 1(b) The other failure mode can be in the form of a situation

when precondition is satisfied but its corresponding
exception is raised.

16y76 2Z009 IEEE InternadJtionHal Advanc Coptn Cofrec (LC 209

B. Parametric Failure Modes: To identify parametric column defines how the corresponding failure mode has
failure modes the following guidelines can be used: been identified. Table 1 includes only one failure mode for

II Check constraints on parameter values. Do not focus on the constructor method i.e. when cap parameter is 0 and the
their types at the moment as type checking is InvalidCapacityException is not raised. The opposite failure
implementation level issue. Exclude any parameter mode for constructor method i.e. when cap is not equal to 0
constraint if it is covered by precondition of the method and InvalidCapacityException is raised is not considered
For any other parameter constraint check the method because cap is local parameter and active inside only
response. If no protection is provided in the method constructor method. Table 2 shows two failure modes for
pseudo code then consider constraint itself as the failure the removeFirst(method i.e. size(= 0 && !raise(*E2) and
mode else if the method raises any alarm in the form of size(0 && raise(E2) where E2 is
exception then include two failure modes for two cases QueueEmptyException. First thing to be noted for
(In the first case constraint is false and its removeFirstO method is that it is invoking sizeO method to
corresponding exception is not raised and the second is determine the output of the condition. It may be possible
constraint is true but corresponding exception is raised) that size(may return the wrong result then it may effect the

C. Method Call or Invoke Failure Modes: To identify outcome of removeFirst(method. The same approach is
this type of failure modes consider the following two applied for the add(method also. The third additional
sub cases: failure mode which is msg = null is parametric failure mode.

(a) A method ml invokes method m2 of the same class or It is included here because this particular case is not the part
super class then include following failure modes in the of the precondition of the add(method. One important
list of failure modes ofml question still needs to be answered as why there is no failure

111(a) ml invokes m2 in wrong order (if the invocation of mode indentified according to rules 111(a), 111(b), IV(a-c)
m2 is condition based) and V. The answer for this is that rules from TV(a) to IV(c)

111(b) if m2 is parameterized then make ml invokes m2 by are not applicable for addO and removeFirst(methods as
wrong parameters as the failure mode they only call the methods isFull(and size(of the same

(b) A method ml of class A invokes method m2 of B then class MessageQueue. Now suppose method removeFirst(
include following failure modes in the list of failure fails to call sizeO method then there will be two cases: First,
modes ofml the queue may be empty which is same as first failure mode

IV(a) ml fails to invoke m2 (because of lack of instance of of the removeFirst(method. The second case may be that
object of class B) queue is not empty then it does not cause any failure in the

IV(b) ml invokes m2 in wrong order (if the invocation of system. So both rules 111(a) and 111(b) are not applicable for
m2 is condition based) removeFirst(method. The same explanation holds for the

IV(c) if m2 is parameterized then make ml invokes m2 by add(method. The other entries in the table are entered
wrong parameters as the failure mode manually and this depends upon the knowledge and

D. Post Conditional Failure Modes: These types of understanding of analyst doing the analysis.
failure modes are additional failure modes. Use the
following rule to identify the post conditional failure class MessageQueue
modes {

V Check the various forms for post condition failure. Write pivate Messagef] elements;
post condition failures in to effects colunm of the private int head;
respective Failure Modes Table (as shown in Table 1, 2 private int tail;
or 3) and then do the back ward analysis in the pseudo private int count;
code to find the error for it. If the error originated from private int capacity;
the method in consideration then includes it in the /** Descriptionfor Constructor MessageQueue
failure mode list otherwise ignore it for the current @,Task constructs an empty message queue
method. @param cap: the maximum capacity ofthe queue

@preccondition cap > 0
5. Example: MessageQueue class @postcondition capacity! = 0

The example considered in this section is converted from public MessageQueue (int cap)
implementation to pseudo code form to describe the {
application of our approach. The example pseudo code is for ** Pseudocode Description
the class named MessageQueue which represents the queue if (cap is less than or equal to 0)
of messages and constraints are shown only for three {
methods: constructor of the class, removeFirst(and add(raise the InvalidCapacityException;
method. Table 1, 2 and 3 show the failure modes identified exit;
for constructor method, removeFirst(method and add(
methods. The structure of the table is selected from [14]. set size ofelements equal to capacity;
The failure mode colunm defines the failure mode for the set head equal to zero;
method, brief description of the failure modes is given in set tail equal to zero;
description colunm, causes colunmn defines the reasons for set count equal to zero;
the failure modes, effects colunmn defines the effects on the set capacity equal to cap;
system, Actions/response colunmn indicates the response of }
the system if the corresponding failure occurs and the last /* Descrzptionfor Method removeFirst()

2009IEEE InternationalAdvance Compuzting Confernce (IACC2009) 1677

@gTask removes the first elementfrom the queue and returns @param msg: Message to be added in queue
it @preccondition!isFull(i.e. queue should not befull
@param: none @postcondition getsize,evo = getsizeQOld + 1
@preccondition sizeo > 0 */
@postcondition getsize,evo = getsizeQOld -] public void add(Message msg)
*/ {
public Message removeFirsto ** Pseudocode Description
{ if(isFull(equal to true)
** Pseudocode Description {
if(sizeo is less than or equal to 0) raise QueueFullException;
{ exit
raise QueueEmptyException; }
exit; set queue[head] equal to msg;
} set tail equal to (tail + 1) % capacity;
Message msg; set count equal to count +1
set msg equal to elements[head]; return msg;
set head equal to (head + 1) % capacity; }
set count equal to count -1 gTask returns true if queue is full otherwise false
return msg; public boolean isFullO { }
} gTask returns the current count/size of the queue
/** Descriptionfor Method addo public int size({ }
@,Task adds msg at tail end ofqueue }

Table 1: Failure Modes for constructor MessageQueue(

Failure Mode Description Causes Effects Action/Response How Identified
cap = 0 && Capacity is equal to Failure of Exception Capacity of the Check for the capacity before exiting By applying rule 1(a)
!raise(*El) 0 but invalid Handling Mechanism queue will be zero the method.

capacity exception is
not raise

El 4 InvalidCapacityException, raise(El) stands for raising exception El and !riase(El) stands for not raising exception
El

Table 2: Failure Modes for removeFirst(Method

Failure Mode Description Causes Effects Action/Response How Identified
size(= 0 && Size of the queue is Failure of Exception Count of the queue Check for the count value each time By applying rule 1(a)
!raise(*E2) equal to 0 but Handling Mechanism or will become before decrementing.

QueueEmptyExceptio size of the queue is not negative and any
n is not raised properly updated dummy value as

message can be
returned

size(t= 0 && Size of the queue is Count not updated Remove operation Check the value of count after every By applying rule 1(b)
raise(E2) not equal to 0 but properly after last addition failure successful add and make sure it is added

QueueEmptyExceptio in the queue properly
n is raised

E2 - QueueEmptyException,
Table 3: Failure Modes for add(Method

Failure Mode Description Causes Effects Action/Response How Identified
isFull(= true Queue is full and Failure of Exception Msg will be added Check for count and capacity values if By applying rule 1(a)
&& !raise(*E3) queue full exception Handling Mechanism to head by they are equal do not add

is not raised overwriting the
previous value

isFull(= false Queue is not full and count not updated after last Add failure msg Check the value of count after delete and By applying rule 1(b)
&& raise(E3) queue full exception delete will not be added make sure it is one less than the previous

is raised in to the queue count
msg =null Passed message is msg parameter may not be Null message Check the value for message before By applying rule II

null properly initialized by the added to queue adding OR include it in precondition of
caller the message

E3 - QueueFullException
colunm of Tables 1, 2 and 3 can be used for improving the

6. Conclusions robustness of the code. There are two main weaknesses of
the software FMEA process that have been observed. First,

The application of our approach described in this paper has the process has so far been a manual, labor intensive and
demonstrated the importance and usefulness of the time consuming activity. Second, the process considers only
technique for object oriented software design phase. In the a single fault at a time. Many researchers advocated the use
implementation phase of the software life cycle, Action of the process for software life cycle but no universally

1L678 2009 IEEE Interastitona Advance Comutn Conferene (4C 2009)

accepted standard exists for applying the process at various
phases of life cycle. So the future research directions should
be directed to achieve the following:
o The application of the process should be made easy and
less labor intensive by the development of an automated
analysis tool.
o There is a need to define the procedures for the
application of the process to various phases of software life
cycle.

7. References

1. Reifer, D. J., "Software Failure Modes and Effects Analysis," IEEE
Trans. Reliability, vol. 3, pp. 247-249, Aug, 1979.

2. Lutz, R. R., and Woodhouse, R.M., "Experience Report:
Contributions of SFMEA to Requirement Analysis, " In Proc. 2nd
International Conference on Requirements Engineering (ICRE'96),
Colorado Springs, Colorado, USA, pp. 44-51, April 1996.

3. Chunping, H., Peiqiong, L. and Yiping, Y., "The Application of
Failure Mode and Effects Analysis For Software in Digital Fly
Control System," In Proc. 16& AIAA/IEEE Digital Avionics Systems
Conference (DASC), Irvine, CA, USA, pp. 8-13, Oct. 1997.

4. Lutz, R.R. and Woodhouse, R.M., "Requirement Analysis using
Forward & Backward Search," Annals of Software Engineering, vol.
3, pp. 459-475, 1997.

5. Lutz, R.R., "Applying Adaptive Safety Analysis Techniques," In Proc.
10o International Symposium on Software Reliability Engineering.,
Boca Raton, Florida, USA, pp. 42-56, Nov. 1999.

6. Goddard, P. L., "Software FMEA Techniques," In Proc. Annual
Reliability and Maintainability Symposium (RAMS 2000), LA, USA,
pp. 118-123, Jan. 2000.

7. Bowles, J. B. and Wan, C., "Software Failure Modes and Effects
Analysis for a Small Embedded Control System," In. Proc. Annual
Reliability and Maintainability Symposium (RAMS 2001),
Philadelphia, Pennsylvania, USA, pp. 1-6, Jan. 22-25, 2001.

8. Haapanen, P., and Helmunen, A., "Failure Mode and Effects Analysis
ofSoftware-BasedAutomation Systems", STUK-YTO-TR, Aug. 2002.

9. Guiochet, J. and Baron, C., "UML basedFMECA in risk analysis". In
Proc. of the European Simulation and Modeling Conference
ESMc2003, Naples, Italy, October 2003.

10. Ozarin, N. and Siracusa, M., "A Process for Failure Modes and
Effects Analysis of Computer Software," In Proc. Annual Reliability
and Maintainability Symposium (RAMS'03), Tampa, Florida, USA,
pp. 365-370, Jan 2003

11. Hecht, H., and Hecht, M., "Computer Aided Software FMEA for
Unified Modeling Language Based Software," In Proc. Annual
Reliability and Maintainability Symposium (RAMS'04), LA, USA,
pp. 243-248, Jan. 2004.

12. Ozarin, N., "Failure Mode and Effects Analysis During Design of
Computer Software," In Proc. Annual Reliability and Maintainability
Symposium (RAMS'04), LA, USA, pp. 201-206, Jan. 2004.

13. Snooke, N., "Model-based Failure Modes and Effects Analysis of
Software," In Proc. 15i International Workshop on Principles of
Diagnosis ,DX-2004, Carcassonne, France, pp. 221-226, June 23-25,
2004.

14. Lauritsen, T., and Stalhane, T., "Safety Methods in Software Process
Improvement," In Proc. 12i European Conference on Software
Process Improvement, EuroSPI 2005, Budapest, Hungary, pp. 95-
105, Nov. 9-11,2005

15. Price, C. and Snooke, N., "An Automated Software FMEA," In Proc.
International System Safety Regional Conference (ISSRC 2008),
Singapore, April 2008

16. Dong, W., et al., "4Automating Software FMEA via Formal Analysis
of Dependence Relations," In Proc. 32nd Annual IEEE International
Computer Software and Application Conference (COMPSAC 2008),
Turku, Finland, pp. 490-491, July 28 -Aug 1,2008.

2009 EEEInternationalAdvance Computingb Conferece (IACC2009) 1679

