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Abstract-Failure modes and effects analysis (FMEA) is 
typically a costly manual process. We present the EPOCH 
(Engineering Product and Operations Cross-cutting 
Hybrid) Simulation for Failure Analysis software, which 
automates generation of FMEA from design models. The 
tool performs sets of scenario-based analyses, using the 
CONFIG hybrid discrete event simulator, to generate 
reports summarizing detailing analysis results. The paper 
describes how the tool uses this simulator, and how time- 
step modeling has be extended to handle failure cases that 
violate steady state assumptions and approximations that 
are well founded for the nominal case. The automation 
supports incremental FMEA: reporting how a design 
change alters the presentation of the functional effects of 
failures, as seen over a set of operational scenarios. We 
describe the representations of failure modes, scenario 
scripts and functional labels that supports the capabilities 
of this tool. An example is presented, based on analysis of 
a propellant production plant for a planetary base. 
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1. INTRODUCTION 

With EPOCH, we address some current limitations of 
FIVEA-issues of making FMEA practical, reusable, and 
less labor intensive, and limitations of coverage and 
consistency. 

FMEA in Current Practice 

In contemporary practice for space systems, FMEA is a 
costly manual process. Typically, the design engineers 
write up one worksheet listing each failure mode. The 
reporting is to the ‘box level,’ where the box is an Orbital 
Replaceable Unit (ORU) or a similar assembly level- 
essentially, to the level where any failed unit can be 

pulled and replaced. The engineers list all the failure modes 
they consider relevant to the box’s operation, and describe the 
effects (functional losses, sensor indications) at the box’s 
interface. They choose descriptive but unstandardized names 
for the failure modes and for the effects. (As a typical 
example, a broken wire might be labeled either “Loss of 
Current” or “Loss of Voltage.”) 

For the Effects Analysis, a group of engineers investigates a 
system (or a subsystem)-usually fkom 5 to 30 ORUs. They 
look at each failure mode in turn, and describe how the failure 
effects propagate to the other system ORUs. They seek 
generally to show that each failure mode gives some off- 
nominal sensor signature (diagnosability analysis,) that the 
signature is unique (isolatability analysis) and to show that 
there is redundancy or an operations path to restore the lost 
function (recovery analysis.) 

This approach leads to several problems. The analyses are 
labor intensive. The work product, the FMEA report, is not as 
standardized as other downstream applications require. System 
failures, which may occur without any component failure 
(e.g., sneak circuits,) are omitted. There is little reuse of earlier 
analyses of similar equipment. The analysis is performed 
once, fairly late in design. If the design changes after the 
FMEA (or because of it,) the FMEA is usually not repeated. 

Generating FMEA AutomaticallpMuch of the FMEA process 
can be automated. There are existing, commercial products for 
electrical-domain FMEA in the automotive industry. In 
EPOCH, we seek to adapt and extend these methods to the 
fluid-handling domain for space vehicles and equipment. 

2. BACKGROUND 

CONFIG Bare and Propellant System Model 

We use the CONFIG hybrid modeling and simulation 
environment to develop and run the automated test cases that 
produce the FMEA reports [l], [2]. CONFIG supports fast 
scenario-based simulation of systems in operation. It has been 
used to perform dynamic system-level validation of advanced 
control s o h a r e  for the Lunar Mars Life Support Phase III 
Test at Johnson Space Center, where four crewmembers lived 
in a closed chamber for 90 days with recycling of air and 
water [3]. The advanced autonomous agent software 
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augmented low level control with a flexible executive and 
a planner, to manage storage and transfer of gases among 
chambers in the test. CONFIG is currently being used to 
gain early understanding of the in-situ propellant 
production (ISPP) system designs for Mars missions, and 
to explore alternative redundancy designs that would use 
advanced software for control and fault management. In 
Figure 1, the graphical interface to the CONFIG 
environment shows a model for an ISPP design. This 
ISPP design includes a COz acquisition system that uses 
freezer technology (cc02), a Sabatier reactor for 
conversion of COz and Hz to methane and water, an 
electrolysis based 0 2  generation system (HzO-CELLS) 
and a zirconia-cell based system (Z-Cell) for generation 
of O2 and carbon monoxide. The system includes 
cryogenic storage of liquefied gases. 

For EPOCH, CONFIG models and simulations need to 
represent not only nominal operations and processes, but 
also thc effects of failures and other problems. 

Component failure can produce problem inputs elsewhere in 
the system. These result in cascades of failures and off- 
nominal component states. Analysis should be possible when 
detailed performance data is unknown. 

Discrete changes in behavior can result from certain types of 
failures and problem inputs that trigger a sudden change. 
These can change the control regime, the system 
codiguration, or the capacity or performance of a system 
component. For example, discrete changes can result from 
bursts, shorts, errors or uncommanded actions. Changes in 
control, capacity or performance can also be continuous, 
gradual and nonlinear. These types of changes can result from 
buildups, wear, leaks and drifts. Some failures result in 
unchanging component states. Examples are components that 
are stuck, not adjustable or have no output. Some failures 
involve random variation in measurements or inputs. For any 
failure, the magnitude of the effect may be determined by the 
magnitude of the failure. 

Figure 1. CONFIG Model of In-Situ Propellant Production System 

The CONFIG hybrid discrete event / continuous simulator 
has been designed to meet these simulation needs. The 
hybrid models support approximation and simulation of 
discrete change, continuous dynamics and nonlinear and 
nontemporal relations. The hybrid models represent both 
discrete changes (commands, and things that happen over 
very short times, such as solenoids closing) and the 
continuous dynamics of tanks filling and temperatures 
changing. The discrete event basis gives a simple interface 
to operations scenarios, and to standard methods for 
stochastic variation. CONFIG uses a discrete time-step 
approach much of the time, to synchronize changes 
throughout the system of connected local models. 

Models are composed of coupled local models from object- 
oriented libraries. Components have multiple modes, with 
each mode having state equations to generate behaviors, and 
conditions governing mode changes. Object-oriented model 
types for devices support modeling of components. Object- 
oriented activities support modeling of controllers, human 
operator procedures, actions and schedules. Modular 
coupled local component models with multiple behavior 
modes support dynamic changes in system configurations 
and operating modes of components. 
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CONFIG simulates complex flow regimes - multi- 
component mixtures, mixed-phase flows, variations in 
pressure, temperature and fluid density. Fluids are 
represented as first-class objects, with specialized methods 
for their behaviors. This is in contrast to the electrical 
domain, where the flow variables (voltage, current, power 
and resistance) may be taken to be state variables of the 
conductors. The same underlying facility supports 
computation for both fluid and electrical flow at the 
abstracted level of effort, flow and resistance. 

In each simulation step, both local and global calculations 
produce the system behavior. Locally, the component 
behavior is calculated from its inputs and its state. 
Externally triggered and internally driven transitions result 
in changes in value assignments, with time delays. 

Previous Work 

In model-based reasoning in the past 10 years, there has 
been significant progress in qualitative and functional 
modeling. Initially, the dominant concept was that device 
function was an intrinsic characteristic of the behavior of the 
device, requiring a separate functional model from a 
qualitative behavioral model [4], More recently, the 
dominant concept of function is as a role in a design, or as 
the indicators of that role. The indicators of function are 
selected effects of a device that are relevant to a purpose or 
service of the design [ 5 ] ,  [6] ,  [7]. These functional effects 
descriptions can be mapped to states in qualitative 
simulations of device behavior [SI. 

The concept of function as mapping to simulation effects 
has led to practical approaches for automated design 
analysis and FMEA. The FLAME system was developed to 
automate FMEA for automotive electrical systems [9], [lo], 
and has since been commercialized as AutoSteve. Price and 
Taylor have also demonstrated an approach to constructing 
fault trees on the basis of the automated FMEA results. 
FLAME uses functional labels to abstract and interpret the 
results of sets of qualitative circuit simulations that test the 
operation of the system, with and without failure modes. 
Engineers identify failure modes of components and their 
effects on the system, and rank the severity, detectability 
and likelihood of the effects. FLAME models the 
components and their failure modes as simulation objects. 
Engineers select functions from a set of standard functional 
labels and match them to selected states in the simulation. 
The states are indicators that the functions are occurring. 
The functional label is mapped to a logical relation on a set 
of model variables. 

FLAME models generate simulations of both nominal and 
failure behaviors, as the behavior of the circuit is exercised 
by changing switches and sensor states. In effects analysis, 
failure modes are imposed on the circuit during automated 
qualitative simulations. The functional labels interpret the 
simulated circuit behavior, to highlight the consequences of 
failures for system functions. The behaviors are reported in 

terms of functions, missing functions, malfunctions and 
sensor indications. The function differences between the 
nominal behavior and the off-nominal behaviors are the 
Effects Analysis. 

We have pursued this approach to automated FMEA, by 
applying functional labels to hybrid quantitative simulation. 
Qualitative simulation was sufficient for FLAME’S 
automotive electronics FMEA. But quantitative simulation 
is needed for analysis of space systems, in which there are 
subsystems handling fluids. 

Chandrasekaran and Josephson [ 5 ]  propose that functional 
descriptions also include the conditions and connections in 
the environment and system that are necessary for the 
device to achieve the intended effects. We have pursued this 
aspect of functional description, by including scripts for 
simulation scenarios as part of the specification for an 
automated FMEA. These scripts manage dynamic 
simulation scenarios that produce the sequence of conditions 
and configurations that are necessary for achieving 
functions in nominal operations. Scripts also manage the 
insertion of perturbations in failure scenarios. These 
dynamic simulation scenarios exhibit the complex 
interactions that are involved in achieving functions or 
producing undesirable failure effects. It is these complex 
interactions that analysts have difficulty understanding in 
manual FMEA. 

3. EPOCH APPROACH 

Goals and Domain Requirements 

To meet the requirements of FMEA for space systems, 
EPOCH extends the approach and the representation 
developed in FLAME. We seek to represent both sudden 
failures and gradual degradations. Many failures in the 
space domain have variable magnitudes. A one cc/hr leak 
will have different symptoms than a one liter/sec event. We 
want to capture cascading system effects and interactions. 

We are applying our models to the early design of the ISPP 
system for Mars missions. There is no detailed ISPP design 
yet. The incremental FMEA can be of particular use in 
trading off “what-if’ design options early in the design 
sequence. We also seek to support follow-up analysis after 
design changes are accepted. 

We also aim for process improvements; the functional 
labeling approach should yield more standard terminology 
for the FMEA report. 

CONFIG inferfaceour team used CONFIG as the EPOCH 
simulation engine. Its hybrid discrete event / continuous 
design supports reuse of the models. We are familiar with it 
and are able to modify and enhance it [l]. However, 
EPOCH is conceptually separate. We have endeavored to 
keep a clean interface between the two programs. The 
EPOCH scripts call out events as 4-tuples of device :failure 
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mode : magnitude : time. The code that installs these events 
the simulation agenda must be specific to the simulator, but 
should be similar to any other discrete event simulation 
environment. 

Scripts 

EPOCH produces FMEA by generating system behaviors 
under simulation scenarios that mimic actual operation. The 
scenarios are encoded as a set of EPOCH scripts specifying, 
in several pieces, the simulation run. This includes: 
1) The name of the script and the model to which it 

applies. 
2) The initial conditions for the simulation (as initial 

variable values and component modes.) 
3) Events to be placed on the event queue. Each event is 

realized as a variable or a mode-transition taking a 
value at specific time. These capture both expected 
operational actions and perturbations (failures or 
stresses.) 

4) A set of values controlling the simulation, such as how 
long the time-steps will be. 

5 )  A simulation HALT event. 
6) Logging information (what variables and functions to 

log, when, to what file.) 

express results that follow the naming used in the functional 
allocation. 

EPOCH implements and detects malfunctions just as it does 
for functions-a function reached when it is not wanted nor 
expected is a malfunction, and a function that is never 
wanted or expected is always a malfunction. 

EPOCH functional label objects include: 
1) The function name. 
2) A conditional expression defining when the function is 

achieved. This is a logical expression, composed of 
arithmetic and logical equations on 
a) Component variable values and modes. A function 

may be composed hom values spanning multiple 
components. (The implementation allows a 
functional label to be defined once for a class of 
components and instantiated multiple times.) 

b) Sub-functions. (It is useful to be able to compose 
functions together, especially as this follows the 
decomposition in the functional allocation.) 

3) A set of model-numbers that relate the conditional 
expressions to alternative designs. A function may be 
implemented differently in different designs. This 
conditionalization allows a single function definition to 
cover all the model alternatives. 

Functional Labels 
Failure Modes 

In a simulation, the trace of all the model variable values is 
the complete behavior for the simulated system. Such a 
trace is unwieldy. The Functional Labeling approach 
abstracts the interesting portions of behavior. For example, 
consider the case of a multiply-vented storage tank. It 
Provides Tank Venting as the OR of two instances of a 
lower level function, Provides Valve Venting. These are 
defined in turn as flow through each of two vent valves, the 
second with a slightly higher relief pressure. Compare the 
nominal case to a case with the primary vent-valve clogged. 
Although the valve-level functions will be different for the 
two cases, the tank-level function will be the similar - the 
tank is vented in both cases, but slightly later, with a slightly 
higher pressure. The effect of the primary valve closing can 
be reported in functional terms - a delay, a higher intemal 
pressure - instead of as a trace of variable values. 

CONFIG logs behaviors as traces of variable values. But 
this is too detailed for FMEA, which requires a abstraction 
from the numeric description to a functional description. For 
example, in multiply-vented tank, a trace of the flowrates 
through the two vent valves implicitly shows venting at the 
time when either flowrate goes positive. The FMEA needs 
to show how that function changes (is delayed, is not 
reached, occurs earlier) in the presence of faults. Realizing 
the function as a fnst-class object in the simulation 
facilitates that comparison. Further, by separating the 
function from the device variables, we will be able to 
compare the Venting function across different system 
designs-if we implement the system with a completely 
different kind of tank. This also allows the FMEA to 

A failure mode is a property of a component class. Its 
effects are specific to an instance of that class. A failure will 
usually drive a component variable to an off nominal value. 
It may induce a mode change as well. Failures can occur 
spontaneously (hom the viewpoint of the simulation model) 
or they may be induced. Some induced failures may reverse 
themselves if the inducing condition is removed. EPOCH 
failure modes include: 
1) The failure mode name. 
2) Its component class (which includes both a name and a 

part number.) 
3) A precondition for inducing the failure. This encodes 

the set of conditions that willforce the failure. It is not 
a condition necessary for the failure, as some failures 
may occur spontaneously. 

4) The local effects. These are the effects at the 
component level (not necessarily the same as the effects 
for the Effects Analysis.) They are normally expressed 
as a component variable being driven to an off-nominal 
value, which may in turn trigger a mode change. Either 
of these may in turn fulfil the conditions for a function 
label. Failure modes may be instantiated with a 
magnitude. A gradual degradation failure mode will be 
expressed as a time series of incremental changes. 

In addition to the above slots, which are used in the EPOCH 
analysis, there are others, taken from the FMEA worksheet, 
which are used for bookkeeping and for generating more 
informative FMEA reports: 
5 )  The Verification and Validation information (worksheet 

name, date, author, sequence number, etc.) 
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6) The worksheet’s explanatory text. 
7) Mean time between failure figures for components. 

Device 
Failure 
Function 
Criticality 
Scripts 

Effect 

The system effects in EPOCH’S FMEiAs are generated when 
a failure mode changes the occurrence of a system function. 

H20 Storage Tank 
Inflow Crimp 
Venting 
2A 
1) Initial Rapid Fill 
2) Outflow Interrupted 
Delayed 

The EPOCH Algorithm 

Approximation Timestep >> 
method Time Constant 
Steady State Works well 

Initial values Overshoots, 
creates spurious 
behaviors 

Exponential Reduces to 
steady state 

EPOCH uses four nested cycles of simulation in generating 
FMEA. 

Timestep << 
Time Constant 
Hides important 
behavior 
Works well 

Reduces to 
initial values 

The first cycle is the CONFIG simulation itself. A single 
script for the nominal case is run first. The model is 
initialized. Variables are set to initial values. Simulation 
starts. The log records the simulation-time when functions 
are (de)activated. 

The second cycle iterates over the set of scenario scripts for 
the device. Each script is run in turn, and the functional 
behavior logged. These scripts capture the base scenario 
which may include operational sequences, human actions 
and errors, and failures and stresses on the system. The base 
scenarios do not include the individual failure modes 
injected in the FMEA generation, below. 

The third cycle investigates the scenarios as perturbed by 
failure, iterating over the failure modes. At the initialization 
for the run, a triggering for the failure is added to the other 
script events placed on the event queue. The behavior (in the 
presence of each failure) is logged for each script. For many 
scripts, the failure will make no difference in the simulated 
behavior. Under other scripts, the failure does change some 
of the functions in the behavior (by changing the time when 
they are active, or by not activating them at all, etc.) The 
logs of the failure behavior are compared to the nominal 
case. The report of differences, in their raw form, is a 
machine-readable FMEA, to something like: 
Device: H,O Storage Tank 
Script: Initial Rapid Fill 
Function: Venting 
Failure: Inflow Crimp 
Function occurs 
Base case: 23 sec 
Failure case: 278 sec 

These reports are aggregated, filtered and phrased for a 
human reading. 

The fourth cycle iterates over design increments. The 
machine-readable FMEAs are generated for alternative 
designs, and compared to the base case. 

Exponential Flow Approximation 

Adapting existing CONFIG simulation models to the 
simulation of failed conditions exposed some limitations. In 
particular, processes which nolmally quickly reach steady- 
state had been represented as discrete changes, moving to 
steady-state in a single time step. However, under some 
failure conditions, for those processes which slowed down 
the steady-state approximation became invalid. One 
approach to this problem would have been to use much 
shorter time steps in the simulation. But this would have 
made the simulations unworkably long. A better approach 
was developed to capture processes moving with 
exponential-decay towards their steady state values. 

To illustrate this exponential-flow approach we present the 
derivation for one side of the ISPP’s oxygen generation 
system. In it, liquid water is electrolyzed across a porous 
membrane. Oxygen is created on one side of the membrane 
and pressurizes a headspace. It flows out against the 
resistances in the network. In our development, we will treat 
the downstream network as a single resistance leading to a 
ground pressure. The network flow utility in CONFIG will 
likewise convert a complex flow network to a single 
resistance and ground pressure. 
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For fluid flow systems, the exponential flow approximation 
works as follows. 

Get the current contents (on mass or molar basis) and 
pressure in the component. 
Calculate the current effective external resistance and 
ground pressure. 
Under the assumption that the external resistance and 
ground pressure remain constant over the timestep, 
calculate 
a) The system time constant 
b) The steady state contents and pressure 
Then, taking flow as decaying exponentially to the 
steady state value, calculate 
a) The contents and pressure at the end of the 

timestep. 
b) The net outflow over the timestep. 
Using the external resistance and ground pressure, 
calculate the average pressure in the component 
necessary to drive the net outflow through during 
timestep. 
Set the average pressure to be the value of the ‘effort’ 
variable visible to the CONFIG flow computation 
utility. The flows and potentials throughout the system 
are updated according to a linear circuit approximation. 

4. PRELIMINARY RESULTS 

EPOCH is still being implemented and tested. The first 
work done was on scripts and on the exponential flows. 
Figure 2 shows a two-tank system used to test the 
exponential flows approximation. It has a system time 
constant of two seconds. When simulated using the Initial 
Values approximation and with time steps larger than the 
time constant, the generated behavior shows a diverging 
oscillation. Too much material flows in a single timestep, 
the pressure difference between the two tanks more than 
reverses, and even more material flows back the next 
timestep. 

Figure 2. Two connected tanks 

Figure 3 shows the trace of the first tank’s pressure, 
simulated using the exponential flows approximation. For 
timesteps at or below the time constant, the pressure the 
trace closely matches those under the Initial Values 
approximation using small timesteps. For the larger timestep 
of 4 sec, the Exponential Flows trace shows a slower 
approach to equilibrium, but does not oscillate or diverge. 

The scripts have been useful as a software testing tool. 
Exponential flows were implemented for one-, two- and 
three-port tanks. It was useful to have scripts in place that 
ran all the test models through a series of scenarios. These 

runs generated traces of whether (or how) their behaviors 
changed as the implementation was debugged. 

Figure 3. Pressure behavior in first of two connected 
tanks using exponential flow approximation, for selected 
timesteps. 

5 .  DISCUSSION 

Scripts and Coverage 

In traditional FMEA, engineers trace effects of how a failure 
propagates to adjacent or downstream components. There is 
a tacit question in this work, “Under what conditions does 
the propagation proceed?” and a related concern, “Are the 
conditions we have considered adequate to capture all the 
effects propagation at issue?” 

EPOCH makes these conditions explicit, as the set of test 
scripts. This sharpens the latter concern: “Are the scripts 
adequate to test the propagation of failure effects?” We 
have no proof of completeness for a set of scripts, but we 
adapt current practice to provide a measurement of 
completeness. A minimal set of scripts exercises each 
function at least once, when run in the base case (with no 
failure present except ones in the script). But some functions 
(such as redundancy, warning, safing) are only exercised 
under failure. Some scripts will then include failures to 
trigger these functions, and the FMEAs of those scripts will 
show the effects of multiple failures. 

This resembles the coverage issue for software testing. One 
yardstick for software testing is the extent to which code is 
exercised. The analogous measure for model testing is the 
extent to which the different device modes are exercised. It 
is not that a set of scripts must exercise every mode for 
every component; a valve may be installed under 
circumstances where no plausible script could cause 
backflow. But a logging of unexercised modes should force 
the engineer to confront the question: “Are you aware that 
you’ve never tested this backflow mode?” Such reporting is 
planned for EPOCH but not yet implemented. 
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Software testing tests code against a specification, but many 
accidents and major losses have been due to flaws in 
software requirements [l l] .  The specification can be 
incomplete because features of the software are not included 
in it, and it can be incorrect because system complexity and 
interactions are not accounted for in design. An analogous 
potential incompleteness weakness for EPOCH is the 
omission, from the analysis or the model, of "unintended" 
functions or malfunctions that are permitted by the devices 
in the system design. 

Another potential weakness is incorrect specification of an 
operational scenario to achieve an intended function, based 
on flawed design understanding. This failure to achieve the 
function can be observed in the scenario-based simulation, 
and corrected. Another incorrectness weakness is failure to 
map functional labels to the functions that the designer 
intended. Consider a car with the kind of headlamps which 
swivel downward and are covered when not in use. If our 
Provides Highbeam Light functional label omitted a check 
on the headlamp's orientation, then the FMEA would show 
that a failure of the swivel mechanism would not interfere 
with Provides Highbeam Light. 

Functional Labels 

Functional labels share the same question of coverage and 
suitability: what is the right set of functional labels for a 
device? If the design is sufficiently mature, the functional 
allocation should give a nearly complete accounting of the 
device's functions. Adopting these as the functional labels 
assures a common functional terminology. Hopefully, the 
functional allocation will have named functions in a way 
that makes the FMEAs comprehensible. 

The FMEA worksheets provide functional labels for those 
malfunctions that are not simply the negation of allocated 
functions. For example, maintaining fluid purity is not 
normally a function allocated to a piece of piping, but it may 
still have a malfunction of contamination. 

In a qualitative simulator like FLAME, the named 
qualitative states often match the function of concern. In a 
numeric simulation, the functions must be mapped from 
numeric values to device states. The challenge is to keep 
taming the additional tasks for the engineer. Selecting 
function names from a previous electronic source (such as 
the functional allocation or FMEA worksheet) is a essential 
to keep the FMEA specification task manageable. 

Models 

The EPOCH work has driven insights about the FMEA 
process. Traditional FMEA does not capture the behavior of 
components when they are given off-nominal inputs. For 
instance, a FMEA worksheet for a pump captures its failures 
and its outputs under those failures. But the pump designer 
is not normally asked to document the pump's behavior and 
outputs when the input power is over voltage, or when its 

cooling fails, or when the input fluid is corrosive. Although 
the traditional FMEA process may call for this knowledge 
on an as-arises basis, it is not systematically generated. 

Automating FMEA requires this knowledge. The 
component models need to respond to off-nominal inputs 
when the conditions arise during simulation. Including this 
knowledge can add significantly to the data gathering and 
model validation effort. However, successfully 
incorporating these behaviors greatly enhances reusability 
of component models. It also increases the sensitivity of the 
analysis to problem inputs and cascading effects. 

6. CONCLUSIONS 

FMEA can be automated for space systems, using numeric 
simulation, analyzing systems with complex fluid flows. 
Scripts of operational scenarios exhibit the complex 
interactions that are involved in achieving functions or 
producing undesirable failure effects. These scripts make 
FDIR coverage issues explicit. The failure effects report can 
be cast in terms meaningful to the engineer. Functional 
labels use the same terminology as the FDIR worksheets 
and the functional allocation. Incremental design FMEA is 
a straightforward extension of the automated FMEA 
approach. The change in the activation of these functional 
labels gives a high-level comparison between design 
alternatives. The list of device-modes not activated during 
FMEA generation is a key to completeness problems in the 
test scripts. 
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