
Automated Incremental Design FMEA’

David R. Throop Jane T. Malin Land D. Fleming

2101 NASA Road 1, ER2
Houston TX 77058 Houston, TX 77058-3696 Houston, TX 77058

david.r.throop@boeing.com malin@jsc.nasa.gov land.d.flemingl@lsc.nasa.gov

The Boeing Company NASA Johnson Space Center Hernandez Engineering, Inc.
2 100 Space Park Drive 17625 El Camino Real, Suite 200

28 1-483-5396 281-483-2046 and 281-483-2059 28 1-483-2058

Abstract-Failure modes and effects analysis (FMEA) is
typically a costly manual process. We present the EPOCH
(Engineering Product and Operations Cross-cutting
Hybrid) Simulation for Failure Analysis software, which
automates generation of FMEA from design models. The
tool performs sets of scenario-based analyses, using the
CONFIG hybrid discrete event simulator, to generate
reports summarizing detailing analysis results. The paper
describes how the tool uses this simulator, and how time-
step modeling has be extended to handle failure cases that
violate steady state assumptions and approximations that
are well founded for the nominal case. The automation
supports incremental FMEA: reporting how a design
change alters the presentation of the functional effects of
failures, as seen over a set of operational scenarios. We
describe the representations of failure modes, scenario
scripts and functional labels that supports the capabilities
of this tool. An example is presented, based on analysis of
a propellant production plant for a planetary base.

TABLE OF CONTENTS

INTRODUCTION
BACKGROUND
EPOCH MPROACH

DISCUSSION
CONCLUSIONS

BIOGRAPHY

PRELIMINARY RESULTS

RJ3’EREiNCES

1. INTRODUCTION

With EPOCH, we address some current limitations of
FIVEA-issues of making FMEA practical, reusable, and
less labor intensive, and limitations of coverage and
consistency.

FMEA in Current Practice

In contemporary practice for space systems, FMEA is a
costly manual process. Typically, the design engineers
write up one worksheet listing each failure mode. The
reporting is to the ‘box level,’ where the box is an Orbital
Replaceable Unit (ORU) or a similar assembly level-
essentially, to the level where any failed unit can be

pulled and replaced. The engineers list all the failure modes
they consider relevant to the box’s operation, and describe the
effects (functional losses, sensor indications) at the box’s
interface. They choose descriptive but unstandardized names
for the failure modes and for the effects. (As a typical
example, a broken wire might be labeled either “Loss of
Current” or “Loss of Voltage.”)

For the Effects Analysis, a group of engineers investigates a
system (or a subsystem)-usually fkom 5 to 30 ORUs. They
look at each failure mode in turn, and describe how the failure
effects propagate to the other system ORUs. They seek
generally to show that each failure mode gives some off-
nominal sensor signature (diagnosability analysis,) that the
signature is unique (isolatability analysis) and to show that
there is redundancy or an operations path to restore the lost
function (recovery analysis.)

This approach leads to several problems. The analyses are
labor intensive. The work product, the FMEA report, is not as
standardized as other downstream applications require. System
failures, which may occur without any component failure
(e.g., sneak circuits,) are omitted. There is little reuse of earlier
analyses of similar equipment. The analysis is performed
once, fairly late in design. If the design changes after the
FMEA (or because of it,) the FMEA is usually not repeated.

Generating FMEA AutomaticallpMuch of the FMEA process
can be automated. There are existing, commercial products for
electrical-domain FMEA in the automotive industry. In
EPOCH, we seek to adapt and extend these methods to the
fluid-handling domain for space vehicles and equipment.

2. BACKGROUND

CONFIG Bare and Propellant System Model

We use the CONFIG hybrid modeling and simulation
environment to develop and run the automated test cases that
produce the FMEA reports [l], [2]. CONFIG supports fast
scenario-based simulation of systems in operation. It has been
used to perform dynamic system-level validation of advanced
control s o h a r e for the Lunar Mars Life Support Phase III
Test at Johnson Space Center, where four crewmembers lived
in a closed chamber for 90 days with recycling of air and
water [3]. The advanced autonomous agent software

U.S. Government work not protected by U.S. copyright.

7-3451

mailto:david.r.throop@boeing.com
mailto:malin@jsc.nasa.gov
mailto:land.d.flemingl@lsc.nasa.gov

augmented low level control with a flexible executive and
a planner, to manage storage and transfer of gases among
chambers in the test. CONFIG is currently being used to
gain early understanding of the in-situ propellant
production (ISPP) system designs for Mars missions, and
to explore alternative redundancy designs that would use
advanced software for control and fault management. In
Figure 1, the graphical interface to the CONFIG
environment shows a model for an ISPP design. This
ISPP design includes a COz acquisition system that uses
freezer technology (cc02), a Sabatier reactor for
conversion of COz and Hz to methane and water, an
electrolysis based 0 2 generation system (HzO-CELLS)
and a zirconia-cell based system (Z-Cell) for generation
of O2 and carbon monoxide. The system includes
cryogenic storage of liquefied gases.

For EPOCH, CONFIG models and simulations need to
represent not only nominal operations and processes, but
also thc effects of failures and other problems.

Component failure can produce problem inputs elsewhere in
the system. These result in cascades of failures and off-
nominal component states. Analysis should be possible when
detailed performance data is unknown.

Discrete changes in behavior can result from certain types of
failures and problem inputs that trigger a sudden change.
These can change the control regime, the system
codiguration, or the capacity or performance of a system
component. For example, discrete changes can result from
bursts, shorts, errors or uncommanded actions. Changes in
control, capacity or performance can also be continuous,
gradual and nonlinear. These types of changes can result from
buildups, wear, leaks and drifts. Some failures result in
unchanging component states. Examples are components that
are stuck, not adjustable or have no output. Some failures
involve random variation in measurements or inputs. For any
failure, the magnitude of the effect may be determined by the
magnitude of the failure.

Figure 1. CONFIG Model of In-Situ Propellant Production System

The CONFIG hybrid discrete event / continuous simulator
has been designed to meet these simulation needs. The
hybrid models support approximation and simulation of
discrete change, continuous dynamics and nonlinear and
nontemporal relations. The hybrid models represent both
discrete changes (commands, and things that happen over
very short times, such as solenoids closing) and the
continuous dynamics of tanks filling and temperatures
changing. The discrete event basis gives a simple interface
to operations scenarios, and to standard methods for
stochastic variation. CONFIG uses a discrete time-step
approach much of the time, to synchronize changes
throughout the system of connected local models.

Models are composed of coupled local models from object-
oriented libraries. Components have multiple modes, with
each mode having state equations to generate behaviors, and
conditions governing mode changes. Object-oriented model
types for devices support modeling of components. Object-
oriented activities support modeling of controllers, human
operator procedures, actions and schedules. Modular
coupled local component models with multiple behavior
modes support dynamic changes in system configurations
and operating modes of components.

7-3452

CONFIG simulates complex flow regimes - multi-
component mixtures, mixed-phase flows, variations in
pressure, temperature and fluid density. Fluids are
represented as first-class objects, with specialized methods
for their behaviors. This is in contrast to the electrical
domain, where the flow variables (voltage, current, power
and resistance) may be taken to be state variables of the
conductors. The same underlying facility supports
computation for both fluid and electrical flow at the
abstracted level of effort, flow and resistance.

In each simulation step, both local and global calculations
produce the system behavior. Locally, the component
behavior is calculated from its inputs and its state.
Externally triggered and internally driven transitions result
in changes in value assignments, with time delays.

Previous Work

In model-based reasoning in the past 10 years, there has
been significant progress in qualitative and functional
modeling. Initially, the dominant concept was that device
function was an intrinsic characteristic of the behavior of the
device, requiring a separate functional model from a
qualitative behavioral model [4], More recently, the
dominant concept of function is as a role in a design, or as
the indicators of that role. The indicators of function are
selected effects of a device that are relevant to a purpose or
service of the design [5] , [6] , [7]. These functional effects
descriptions can be mapped to states in qualitative
simulations of device behavior [SI.

The concept of function as mapping to simulation effects
has led to practical approaches for automated design
analysis and FMEA. The FLAME system was developed to
automate FMEA for automotive electrical systems [9], [lo],
and has since been commercialized as AutoSteve. Price and
Taylor have also demonstrated an approach to constructing
fault trees on the basis of the automated FMEA results.
FLAME uses functional labels to abstract and interpret the
results of sets of qualitative circuit simulations that test the
operation of the system, with and without failure modes.
Engineers identify failure modes of components and their
effects on the system, and rank the severity, detectability
and likelihood of the effects. FLAME models the
components and their failure modes as simulation objects.
Engineers select functions from a set of standard functional
labels and match them to selected states in the simulation.
The states are indicators that the functions are occurring.
The functional label is mapped to a logical relation on a set
of model variables.

FLAME models generate simulations of both nominal and
failure behaviors, as the behavior of the circuit is exercised
by changing switches and sensor states. In effects analysis,
failure modes are imposed on the circuit during automated
qualitative simulations. The functional labels interpret the
simulated circuit behavior, to highlight the consequences of
failures for system functions. The behaviors are reported in

terms of functions, missing functions, malfunctions and
sensor indications. The function differences between the
nominal behavior and the off-nominal behaviors are the
Effects Analysis.

We have pursued this approach to automated FMEA, by
applying functional labels to hybrid quantitative simulation.
Qualitative simulation was sufficient for FLAME’S
automotive electronics FMEA. But quantitative simulation
is needed for analysis of space systems, in which there are
subsystems handling fluids.

Chandrasekaran and Josephson [5] propose that functional
descriptions also include the conditions and connections in
the environment and system that are necessary for the
device to achieve the intended effects. We have pursued this
aspect of functional description, by including scripts for
simulation scenarios as part of the specification for an
automated FMEA. These scripts manage dynamic
simulation scenarios that produce the sequence of conditions
and configurations that are necessary for achieving
functions in nominal operations. Scripts also manage the
insertion of perturbations in failure scenarios. These
dynamic simulation scenarios exhibit the complex
interactions that are involved in achieving functions or
producing undesirable failure effects. It is these complex
interactions that analysts have difficulty understanding in
manual FMEA.

3. EPOCH APPROACH

Goals and Domain Requirements

To meet the requirements of FMEA for space systems,
EPOCH extends the approach and the representation
developed in FLAME. We seek to represent both sudden
failures and gradual degradations. Many failures in the
space domain have variable magnitudes. A one cc/hr leak
will have different symptoms than a one liter/sec event. We
want to capture cascading system effects and interactions.

We are applying our models to the early design of the ISPP
system for Mars missions. There is no detailed ISPP design
yet. The incremental FMEA can be of particular use in
trading off “what-if’ design options early in the design
sequence. We also seek to support follow-up analysis after
design changes are accepted.

We also aim for process improvements; the functional
labeling approach should yield more standard terminology
for the FMEA report.

CONFIG inferfaceour team used CONFIG as the EPOCH
simulation engine. Its hybrid discrete event / continuous
design supports reuse of the models. We are familiar with it
and are able to modify and enhance it [l]. However,
EPOCH is conceptually separate. We have endeavored to
keep a clean interface between the two programs. The
EPOCH scripts call out events as 4-tuples of device :failure

7-3453

mode : magnitude : time. The code that installs these events
the simulation agenda must be specific to the simulator, but
should be similar to any other discrete event simulation
environment.

Scripts

EPOCH produces FMEA by generating system behaviors
under simulation scenarios that mimic actual operation. The
scenarios are encoded as a set of EPOCH scripts specifying,
in several pieces, the simulation run. This includes:
1) The name of the script and the model to which it

applies.
2) The initial conditions for the simulation (as initial

variable values and component modes.)
3) Events to be placed on the event queue. Each event is

realized as a variable or a mode-transition taking a
value at specific time. These capture both expected
operational actions and perturbations (failures or
stresses.)

4) A set of values controlling the simulation, such as how
long the time-steps will be.

5) A simulation HALT event.
6) Logging information (what variables and functions to

log, when, to what file.)

express results that follow the naming used in the functional
allocation.

EPOCH implements and detects malfunctions just as it does
for functions-a function reached when it is not wanted nor
expected is a malfunction, and a function that is never
wanted or expected is always a malfunction.

EPOCH functional label objects include:
1) The function name.
2) A conditional expression defining when the function is

achieved. This is a logical expression, composed of
arithmetic and logical equations on
a) Component variable values and modes. A function

may be composed hom values spanning multiple
components. (The implementation allows a
functional label to be defined once for a class of
components and instantiated multiple times.)

b) Sub-functions. (It is useful to be able to compose
functions together, especially as this follows the
decomposition in the functional allocation.)

3) A set of model-numbers that relate the conditional
expressions to alternative designs. A function may be
implemented differently in different designs. This
conditionalization allows a single function definition to
cover all the model alternatives.

Functional Labels
Failure Modes

In a simulation, the trace of all the model variable values is
the complete behavior for the simulated system. Such a
trace is unwieldy. The Functional Labeling approach
abstracts the interesting portions of behavior. For example,
consider the case of a multiply-vented storage tank. It
Provides Tank Venting as the OR of two instances of a
lower level function, Provides Valve Venting. These are
defined in turn as flow through each of two vent valves, the
second with a slightly higher relief pressure. Compare the
nominal case to a case with the primary vent-valve clogged.
Although the valve-level functions will be different for the
two cases, the tank-level function will be the similar - the
tank is vented in both cases, but slightly later, with a slightly
higher pressure. The effect of the primary valve closing can
be reported in functional terms - a delay, a higher intemal
pressure - instead of as a trace of variable values.

CONFIG logs behaviors as traces of variable values. But
this is too detailed for FMEA, which requires a abstraction
from the numeric description to a functional description. For
example, in multiply-vented tank, a trace of the flowrates
through the two vent valves implicitly shows venting at the
time when either flowrate goes positive. The FMEA needs
to show how that function changes (is delayed, is not
reached, occurs earlier) in the presence of faults. Realizing
the function as a fnst-class object in the simulation
facilitates that comparison. Further, by separating the
function from the device variables, we will be able to
compare the Venting function across different system
designs-if we implement the system with a completely
different kind of tank. This also allows the FMEA to

A failure mode is a property of a component class. Its
effects are specific to an instance of that class. A failure will
usually drive a component variable to an off nominal value.
It may induce a mode change as well. Failures can occur
spontaneously (hom the viewpoint of the simulation model)
or they may be induced. Some induced failures may reverse
themselves if the inducing condition is removed. EPOCH
failure modes include:
1) The failure mode name.
2) Its component class (which includes both a name and a

part number.)
3) A precondition for inducing the failure. This encodes

the set of conditions that willforce the failure. It is not
a condition necessary for the failure, as some failures
may occur spontaneously.

4) The local effects. These are the effects at the
component level (not necessarily the same as the effects
for the Effects Analysis.) They are normally expressed
as a component variable being driven to an off-nominal
value, which may in turn trigger a mode change. Either
of these may in turn fulfil the conditions for a function
label. Failure modes may be instantiated with a
magnitude. A gradual degradation failure mode will be
expressed as a time series of incremental changes.

In addition to the above slots, which are used in the EPOCH
analysis, there are others, taken from the FMEA worksheet,
which are used for bookkeeping and for generating more
informative FMEA reports:
5) The Verification and Validation information (worksheet

name, date, author, sequence number, etc.)

7 - 3 4 5 4

6) The worksheet’s explanatory text.
7) Mean time between failure figures for components.

Device
Failure
Function
Criticality
Scripts

Effect

The system effects in EPOCH’S FMEiAs are generated when
a failure mode changes the occurrence of a system function.

H20 Storage Tank
Inflow Crimp
Venting
2A
1) Initial Rapid Fill
2) Outflow Interrupted
Delayed

The EPOCH Algorithm

Approximation Timestep >>
method Time Constant
Steady State Works well

Initial values Overshoots,
creates spurious
behaviors

Exponential Reduces to
steady state

EPOCH uses four nested cycles of simulation in generating
FMEA.

Timestep <<
Time Constant
Hides important
behavior
Works well

Reduces to
initial values

The first cycle is the CONFIG simulation itself. A single
script for the nominal case is run first. The model is
initialized. Variables are set to initial values. Simulation
starts. The log records the simulation-time when functions
are (de)activated.

The second cycle iterates over the set of scenario scripts for
the device. Each script is run in turn, and the functional
behavior logged. These scripts capture the base scenario
which may include operational sequences, human actions
and errors, and failures and stresses on the system. The base
scenarios do not include the individual failure modes
injected in the FMEA generation, below.

The third cycle investigates the scenarios as perturbed by
failure, iterating over the failure modes. At the initialization
for the run, a triggering for the failure is added to the other
script events placed on the event queue. The behavior (in the
presence of each failure) is logged for each script. For many
scripts, the failure will make no difference in the simulated
behavior. Under other scripts, the failure does change some
of the functions in the behavior (by changing the time when
they are active, or by not activating them at all, etc.) The
logs of the failure behavior are compared to the nominal
case. The report of differences, in their raw form, is a
machine-readable FMEA, to something like:
Device: H,O Storage Tank
Script: Initial Rapid Fill
Function: Venting
Failure: Inflow Crimp
Function occurs
Base case: 23 sec
Failure case: 278 sec

These reports are aggregated, filtered and phrased for a
human reading.

The fourth cycle iterates over design increments. The
machine-readable FMEAs are generated for alternative
designs, and compared to the base case.

Exponential Flow Approximation

Adapting existing CONFIG simulation models to the
simulation of failed conditions exposed some limitations. In
particular, processes which nolmally quickly reach steady-
state had been represented as discrete changes, moving to
steady-state in a single time step. However, under some
failure conditions, for those processes which slowed down
the steady-state approximation became invalid. One
approach to this problem would have been to use much
shorter time steps in the simulation. But this would have
made the simulations unworkably long. A better approach
was developed to capture processes moving with
exponential-decay towards their steady state values.

To illustrate this exponential-flow approach we present the
derivation for one side of the ISPP’s oxygen generation
system. In it, liquid water is electrolyzed across a porous
membrane. Oxygen is created on one side of the membrane
and pressurizes a headspace. It flows out against the
resistances in the network. In our development, we will treat
the downstream network as a single resistance leading to a
ground pressure. The network flow utility in CONFIG will
likewise convert a complex flow network to a single
resistance and ground pressure.

7 - 3 4 5 5

For fluid flow systems, the exponential flow approximation
works as follows.

Get the current contents (on mass or molar basis) and
pressure in the component.
Calculate the current effective external resistance and
ground pressure.
Under the assumption that the external resistance and
ground pressure remain constant over the timestep,
calculate
a) The system time constant
b) The steady state contents and pressure
Then, taking flow as decaying exponentially to the
steady state value, calculate
a) The contents and pressure at the end of the

timestep.
b) The net outflow over the timestep.
Using the external resistance and ground pressure,
calculate the average pressure in the component
necessary to drive the net outflow through during
timestep.
Set the average pressure to be the value of the ‘effort’
variable visible to the CONFIG flow computation
utility. The flows and potentials throughout the system
are updated according to a linear circuit approximation.

4. PRELIMINARY RESULTS

EPOCH is still being implemented and tested. The first
work done was on scripts and on the exponential flows.
Figure 2 shows a two-tank system used to test the
exponential flows approximation. It has a system time
constant of two seconds. When simulated using the Initial
Values approximation and with time steps larger than the
time constant, the generated behavior shows a diverging
oscillation. Too much material flows in a single timestep,
the pressure difference between the two tanks more than
reverses, and even more material flows back the next
timestep.

Figure 2. Two connected tanks

Figure 3 shows the trace of the first tank’s pressure,
simulated using the exponential flows approximation. For
timesteps at or below the time constant, the pressure the
trace closely matches those under the Initial Values
approximation using small timesteps. For the larger timestep
of 4 sec, the Exponential Flows trace shows a slower
approach to equilibrium, but does not oscillate or diverge.

The scripts have been useful as a software testing tool.
Exponential flows were implemented for one-, two- and
three-port tanks. It was useful to have scripts in place that
ran all the test models through a series of scenarios. These

runs generated traces of whether (or how) their behaviors
changed as the implementation was debugged.

Figure 3. Pressure behavior in first of two connected
tanks using exponential flow approximation, for selected
timesteps.

5 . DISCUSSION

Scripts and Coverage

In traditional FMEA, engineers trace effects of how a failure
propagates to adjacent or downstream components. There is
a tacit question in this work, “Under what conditions does
the propagation proceed?” and a related concern, “Are the
conditions we have considered adequate to capture all the
effects propagation at issue?”

EPOCH makes these conditions explicit, as the set of test
scripts. This sharpens the latter concern: “Are the scripts
adequate to test the propagation of failure effects?” We
have no proof of completeness for a set of scripts, but we
adapt current practice to provide a measurement of
completeness. A minimal set of scripts exercises each
function at least once, when run in the base case (with no
failure present except ones in the script). But some functions
(such as redundancy, warning, safing) are only exercised
under failure. Some scripts will then include failures to
trigger these functions, and the FMEAs of those scripts will
show the effects of multiple failures.

This resembles the coverage issue for software testing. One
yardstick for software testing is the extent to which code is
exercised. The analogous measure for model testing is the
extent to which the different device modes are exercised. It
is not that a set of scripts must exercise every mode for
every component; a valve may be installed under
circumstances where no plausible script could cause
backflow. But a logging of unexercised modes should force
the engineer to confront the question: “Are you aware that
you’ve never tested this backflow mode?” Such reporting is
planned for EPOCH but not yet implemented.

7 - 3 4 5 6

Software testing tests code against a specification, but many
accidents and major losses have been due to flaws in
software requirements [l l] . The specification can be
incomplete because features of the software are not included
in it, and it can be incorrect because system complexity and
interactions are not accounted for in design. An analogous
potential incompleteness weakness for EPOCH is the
omission, from the analysis or the model, of "unintended"
functions or malfunctions that are permitted by the devices
in the system design.

Another potential weakness is incorrect specification of an
operational scenario to achieve an intended function, based
on flawed design understanding. This failure to achieve the
function can be observed in the scenario-based simulation,
and corrected. Another incorrectness weakness is failure to
map functional labels to the functions that the designer
intended. Consider a car with the kind of headlamps which
swivel downward and are covered when not in use. If our
Provides Highbeam Light functional label omitted a check
on the headlamp's orientation, then the FMEA would show
that a failure of the swivel mechanism would not interfere
with Provides Highbeam Light.

Functional Labels

Functional labels share the same question of coverage and
suitability: what is the right set of functional labels for a
device? If the design is sufficiently mature, the functional
allocation should give a nearly complete accounting of the
device's functions. Adopting these as the functional labels
assures a common functional terminology. Hopefully, the
functional allocation will have named functions in a way
that makes the FMEAs comprehensible.

The FMEA worksheets provide functional labels for those
malfunctions that are not simply the negation of allocated
functions. For example, maintaining fluid purity is not
normally a function allocated to a piece of piping, but it may
still have a malfunction of contamination.

In a qualitative simulator like FLAME, the named
qualitative states often match the function of concern. In a
numeric simulation, the functions must be mapped from
numeric values to device states. The challenge is to keep
taming the additional tasks for the engineer. Selecting
function names from a previous electronic source (such as
the functional allocation or FMEA worksheet) is a essential
to keep the FMEA specification task manageable.

Models

The EPOCH work has driven insights about the FMEA
process. Traditional FMEA does not capture the behavior of
components when they are given off-nominal inputs. For
instance, a FMEA worksheet for a pump captures its failures
and its outputs under those failures. But the pump designer
is not normally asked to document the pump's behavior and
outputs when the input power is over voltage, or when its

cooling fails, or when the input fluid is corrosive. Although
the traditional FMEA process may call for this knowledge
on an as-arises basis, it is not systematically generated.

Automating FMEA requires this knowledge. The
component models need to respond to off-nominal inputs
when the conditions arise during simulation. Including this
knowledge can add significantly to the data gathering and
model validation effort. However, successfully
incorporating these behaviors greatly enhances reusability
of component models. It also increases the sensitivity of the
analysis to problem inputs and cascading effects.

6. CONCLUSIONS

FMEA can be automated for space systems, using numeric
simulation, analyzing systems with complex fluid flows.
Scripts of operational scenarios exhibit the complex
interactions that are involved in achieving functions or
producing undesirable failure effects. These scripts make
FDIR coverage issues explicit. The failure effects report can
be cast in terms meaningful to the engineer. Functional
labels use the same terminology as the FDIR worksheets
and the functional allocation. Incremental design FMEA is
a straightforward extension of the automated FMEA
approach. The change in the activation of these functional
labels gives a high-level comparison between design
alternatives. The list of device-modes not activated during
FMEA generation is a key to completeness problems in the
test scripts.

7. REFERENCES

[l] Malin, J. T., D. Ryan and L. Fleming, "CONFIG -
Intelligent Modeling and Analysis of Systems and
Operations," Proc. EXPERSYS-94: 6th Intl C o d on
Artificial Intelligence and Expert Systems Applications,
Gournay-sur-Marne, France: IITT-International, December
1995: 771-775.

[2] Malin, J. T. and Fleming, L. "Enhancing Discrete Event
Simulation by Integrating Continuous Models". Working
Notes of AAAI Spring Symposium on Hybrid Systems and
AI, Stanford, CA, March 1999.

[3] Malin, J. T., Fleming, L. and Hatfield, T. R.
Tnteractive Simulation-Based Testing of Product Gas
Transfer Integrated Monitoring and Control Software for the
Lunar Mars Life Support Phase III Test." SAE Paper No.
981769. S A E 28th International Conference on
Environmental Systems, Danvers MA, July 1998.

[4] Vescovi, M. Iwasaki, I, Fikes, R. and Chandrasekaran,
B. CFRL,: A language for specifying the causal
functionality of engineered devices. Proc. Eleventh National
Conference on Artificial Intelligence. AAAI Press/MIT
Press, 1993: 626-633.

7-3457

[5] Chandrasekaran, B. and Josephson, J. R. Representing
function as effect: Assigning functions of objects in context
and out. Working Notes of AAAI-96 Workshop: Modeling
and Reasoning with Function, Portland, OR, August 1996:
30-37.

[6] Malin, J. T. and Ryan, D. "Device Roles in Operational
Configurations". Working Notes, IJCAI-95 Workshop:
Representing and Reasoning with Device Function,
Montreal, Canada, August 1995 : 90-9 1.

[7] Malin, J. T., and Schreckenghost, D. L. "Problems of
Mapping between Functions and Device Phenomena".
Working Notes, AAAI-96 Workshop: Modeling and
Reasoning with Function, Portland, OR, August 1996: 14-
I -

S. BIOGRAPHY

David R. Throop has been an
Artificial InteIligence Specialist
with The Boeing Company since
1992. He provides engineering
so f iare support in the Intelligent
Systems Branch in the
Automation, Robotics and
Simulation Division in the
Engineering Directorate at NASA
Johnson Space Center. He
oversaw development of FMEA
modeling so f iare and its use in the modeling of the
International Space Station. He received a Ph.D. in
Computer Science .from the University of Texas in 1992, 13.

where his dissertation work was in ModelBased Diagnosis.
He received a Bachelors of Chemical Engineering f iom
Georgia Tech in 19 79.

[SI
purpose. IEEE Expert. April 1991: 41-47.

Franke, D. w. Deriving and using Descriptions Of

[9] C. J. Price and N. S. Taylor, Multiple Fault Diagnosis
Using FMEA, in Proceedings of AAAI97MI97
Conference, Providence, Rhode Island, July 1997: 1052-
1057.

[lo] C. J. Price, Function Directed Electrical Design
Analysis, Artificial Intelligence in Engineering 12(4), pp.
445-456. 1998.

[l l]Leveson, N. Safavare: System Safety and Computers.
Addison-Wesley 1995.

June T. Malin is Technical
Assistant and Computer Engineer
in the Intelligent Systems Branch
in the Automation, Robotics and
Simulation Division in the
Engineering Directorate at NASA
Johnson Space Center, where she
has led artificial intelligence (AI)
research projects for 15 years.
She manages the Adjustable
Autonomy Testbed project where sh !e has developed designs,
design principles andtechnology for intelligent systems- for
collaboration with human operators. She has led
development of the CONFIG simulation tool for evaluating
intelligent software for operation of space systems. She has
led research on intelligent user interface and expert systems
for real-time monitoring and fault management of space
systems. She received a Ph.D. in Experimental Psychology,
focusing on cognitive psychology, from the University of
Michigan in 1973.

Land D. Fleming is a Computer
Systems Specialist working as a
contractor in the NASA Johnson
Space Center Automation, Robotics,
and Simulation Division since 1990.
He has been involved in both the
development of computer simulation
tools and their application to space
systems. He received his M. S.
degree in Computer Science from
De Paul University, Chicago, Illinois in 1987.

7 - 3 4 5 8

