

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 194 – 207, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Justification of Smart Sensors for Nuclear Applications

Peter Bishop1,2, Robin Bloomfield1,2, Sofia Guerra2, and Kostas Tourlas2

1 CSR, City University
2 Adelard, Drysdale Building, 10 Northampton Square, London,

EV1V 0HB, UK
{pgb, reb, aslg, kt}@adelard.com

Abstract. This paper describes the results of a research study sponsored by the
UK nuclear industry into methods of justifying smart sensors. Smart sensors are
increasingly being used in the nuclear industry; they have potential benefits
such as greater accuracy and better noise filtering, and in many cases their ana-
logue counterparts are no longer manufactured. However, smart sensors (as it is
the case for most COTS) are sold as black boxes despite the fact that their
safety justification might require knowledge of their internal structure and de-
velopment process. The study covered both management aspects of interacting
with manufacturers to obtain the information needed, and the technical aspects
of designing an appropriate safety justification approach and assessing feasibil-
ity of a range of technical analyses. The analyses performed include the meth-
ods we presented at Safecomp 2002 and 2003.

1 Introduction

Sensors for nuclear applications have been relatively simple analogue devices with
known performance properties and known failure characteristics. However, the sensor
industry is increasingly using microprocessor-based “smart sensors”. Smart sensors
can achieve greater accuracy, better noise filtering together with in-built linearisation,
and provide better on-line calibration and diagnostics features. So, given the difficulty
in obtaining replacement analogue sensors, and the potential benefits of smart sensors,
it is important that the nuclear industry develops a suitable approach for justifying the
use of smart sensors in systems important to safety (SIS).

Smart sensors are a specific form of COTS (commercial off-the-shelf) product.
COTS products are normally sold as a “black box” where there is no knowledge of
the internal structure. However, their safety justification might require knowledge of
the internal structure and development process. The justification of sensors is an in-
creasing problem because the software constitutes a valuable intellectual investment,
and the civil nuclear companies purchase sensors in small quantities.

This paper presents the results of a research study sponsored by the UK nuclear in-
dustry into methods for justifying smart sensors. The project has covered both man-
agement and technical issues.

• From a management perspective, we examined the issues involved in interacting
with the suppliers to gain the information needed for the justification. We also

 Justification of Smart Sensors for Nuclear Applications 195

addressed the need for a sustainable long-term approach for the justification of
smart sensors that is acceptable to both suppliers and customers.

• From a technical perspective, we need an assessment approach that is both pro-
portionate and feasible to apply and is commensurate with the SIL of the in-
tended application(s). The approach should also be related to existing assurance
requirements for computer-based systems in nuclear application (e.g. HSE SAPs
[1] and the British Energy PES Guidelines [2]) and should address the concerns
related to the black box assessment of smart sensors (and other COTS products).

The paper is structured as follows. In Section 2 we describe the interactions with
the manufacturers that took place in the scope of this project, as well as the main is-
sues identified during these interactions. Section 3 summarises three different view-
points of the safety justification of smart sensors, including a goal-based approach
that is expanded in Section 4 and vulnerability assessment summarised in Section 5.
Section 6 describes the analyses performed on one of the smart devices obtained,
while Section 7 relates these analyses with the three approaches from Section 3. The
conclusions are presented in Section 8.

2 Relationships with Smart Sensor Manufacturers

2.1 Obtaining Software, Supporting Data and Company Culture

Obtaining the software was a lengthy process spread over many months, involving
several contacts, phone calls and negotiation of conditions for non-disclosure of the
results. However, once the relationship was established, there were fewer difficulties
in providing further data on the devices or even the software of other devices.

As a result of these negotiations, we successfully obtained smart sensor software
from two manufacturers, and we were offered the possibility of obtaining another ex-
ample by a third manufacturer. In addition, the manufacturers supplied, to varying de-
grees, design documentation and additional data such as process and reliability data
and certificates that could be used to support the safety justification of the devices.

It must be borne in mind, however, that the software was provided on the under-
standing that it was a part of a research project undertaken by a specialist third party.
Whether a similar level of access would be provided to end-users on a routine basis
remains an open question.

The nature of the relationships with the smart sensor manufacturers was quite dis-
tinct, probably as a result of the key markets they target and the management structure
and particular characteristics of the companies. It is clear that smart sensor suppliers
can have different company cultures, and this can have a major impact on the feasibil-
ity of gaining access to the source code and subsequently a successful assessment.
Some pertinent questions to assess the likely success of the interaction might be:

1. How does the organisation deal with this type of interaction? Are there prece-
dents in the past?

2. Who is the gatekeeper and what is their role in the organisation? (a “gatekeeper”
is an official point of contact in the company who decides whether to allow re-
quests to pass to higher management):

196 P. Bishop et al.

• Do they have access to design authority?
• What are the lines of communication?
• How frequently and with whom are meetings available to clarify issues?

3. How difficult would access to management be?
4. To what extent does the organisation see the relationship as benefiting them?

• What are the main market sectors?
• Is nuclear industry a main market, a niche or a distraction?
• Are the benefits of engagement seen only in terms of future sales?
• Does the organisation see benefits of interaction from a technical or process

improvement point of view?
5. What is the attitude to confidentiality?

• Is a standard non-disclosure agreement sufficient?
• Is the confidentiality agreement with the assessor company or with named

people from the company?

2.2 Long Term Issues

Despite the differences between the supplier approaches, some common long-term is-
sues emerged:

1. The suppliers expressed concerns about the effort and cost needed for routine
justifications of smart sensors—the nuclear industry is a small market compared
to other sectors, and the effort might be excessive relative to the potential sales.

2. Both suppliers are generally in favour of an “assurance package” of additional
information that is paid for by the customer.

 The big issue is what this package should contain and whether it will be acceptable
to a wide range of customers (e.g. the nuclear industry or beyond). There is a UK ini-
tiative to define a framework of IEC 61508-conformant documentation about the
development processes for a device; this has the potential to form part of an assurance
package. The SIREP sensor assessment could also be used in support of the functional
and hardware performance of the sensor. Further work would be needed to describe
the full content of such a package. The main area of weakness is the “black box” na-
ture of such evidence, and greater confidence could be obtained if there was some
knowledge of the internal design and implementation of the device (e.g. “grey box”
information like design documents, or white box information like source code).

Independent certification is used to provide “black box” evidence for performance
(e.g. accuracy) and environmental withstand (e.g. electrical isolation, temperature).
Evidence also exists for hardware reliability and safe failure fraction (e.g. using
hardware reliability models and FMEDA). But independent assessment of software
(like a TUV assessment for compliance to IEC 61508) is not routinely performed.
This is thought to be quite costly especially if it has to be updated with each revision.

It is clear there is a perceived tension between the need for suppliers to maintain
confidentiality and the user’s requirement to provide sufficient evidence to demon-
strate safety. In principle the licensee should always be able to check the evidence and
the details of the analysis performed. This might not be feasible for a compliance cer-
tification approach where a certificate is provided but the rationale and detailed evi-
dence is not. By contrast “black box” system certification against test standards seems

 Justification of Smart Sensors for Nuclear Applications 197

less of a problem as the specific tests undertaken are clearly defined. Perhaps third
party software evidence would be more acceptable if a common set of software analy-
ses and tests were defined that could be subjected to external audit.

3 Safety Justification Approaches

There are different strategies that can be deployed in the safety justification of smart
sensors. The three main approaches can be characterised as a “triangle” of:

• Justification via a set of claims about the system’s safety behaviour.
• The use of accepted standards and guidelines.
• An investigation of known potential vulnerabilities of the system.

Fig. 1. Safety case approaches

The first approach is goal-based—where specific safety goals for the systems are
supported by arguments and evidence at progressively more detailed levels. The sec-
ond approach is based on demonstrating compliance to a known safety standard. The
final approach is a vulnerability-based argument where it is demonstrated that poten-
tial vulnerabilities within a system do not constitute a problem—this is essentially a
“bottom-up” approach as opposed to the “top-down” approach used in goal-based
methods. These approaches are not mutually exclusive, and a combination can be
used to support a safety justification, especially where the system consists of both off-
the-shelf (OTS) components and application-specific elements.

In the past, safety justifications tended to be implicit and standards-based—
compliance to accepted practice was deemed to imply adequate safety. This approach
works well in stable environments where best practice was supported by extensive
experience, but with fast moving technologies, a more explicit goal-based approach
has been advocated, which can accommodate change and alternative strategies to
achieve the same goal.

4 Goal-Based Safety Justification

4.1 Goal-Based Justification of COTS Products

Goal-based approaches are often used in safety justifications ([3], [4], [5], [6]). This is
a flexible approach as it focuses directly on the safety requirements for the sensor and

198 P. Bishop et al.

can be related to a range of different safety standards by identifying how the stan-
dards’ requirements support the various claims.

HSE guidance on COTS/SOUP ([7], [8]) recommends that the goals for a com-
puter-based system are related to factors that directly affect safety, e.g.:

• functional behaviour
• accuracy
• reliability and availability
• fail-safe behaviour
• time response

A similar set of attributes could be identified for a smart sensor component of a
system. Moreover, we have to recognise that a smart sensor justification is part of a
larger safety justification for a “System Important to Safety” (SIS).

1. The justification of the component can be used to show that the component
“does what it says on the tin”. This is application independent.

2. The SIS safety justification has to show that the component is suitable for the
application context and satisfies any constraints.

For example, there could be a component claim that a smart sensor is accurate to
10-3 and an application-level claim of 10-2 for the accuracy of some computation in-
volving the combination of several measured values. Alternatively, the sensor might
explicitly include functionality that is not needed (e.g. support for different types of
resistance thermometer). In this case we need to show in the SIS safety justification
that the unwanted functions are not activated. In addition there may well be function-
ality that is not declared as part of the product.

The extent of evidence to justify specific sensor properties will vary with the re-
quired integrity level, and the type of evidence required may also need to change with
the integrity. At lower integrity levels there is greater emphasis on “black box” evi-
dence (externally observed behaviour) and evidence of development process. Yet, it is
necessary to look “inside the box” for greater assurance and higher integrity applica-
tions. Indeed the public consultation on the HSE study showed a consensus that the
assessment of critical SOUP should include white box assessment.

4.2 Key Goals

In a goal based approach we identify the key attributes required for a smart sensor,
and then seek arguments and evidence to show these goals are met. Clearly many
properties like environmental limits (temperature, humidity, supply voltage) and resis-
tance to interference (RFI, EMI, mains noise) are only dependent on the hardware and
can be justified in the same way as conventional hardware. However, other properties
will depend on a combination of hardware and software and may therefore require
different or additional supporting evidence to address software concerns.

We focused on the properties of the system that involve software. Based on the
specifications of the two suppliers and more general consideration of smart sensor re-
quirements, the following set of goals was identified that are likely to involve soft-
ware in the smart sensor, where the values used correspond to those of the

 Justification of Smart Sensors for Nuclear Applications 199

temperature transmitter specification. This could be extended to include functional
capabilities of the device.

Table 1. Smart sensors properties for goal-based approach

Ref Sensor property
1 Output conversion accuracy better than 0.03% under stated conditions
2 Sample rate < 128 ms, 10%-90% step response < 256 ms
3 Safe failure fraction >0.72
4 MTTF > 2.5 years (average)
5 Configuration and calibration errors are minimised
6 Smart sensor behaviour is predictable
7 Smart sensor properties 1-6 can be maintained for next 10 years

 Note these goals are application independent, i.e. defined by the supplier. The nu-
merical values will vary with the actual sensor, but these properties are directly rele-
vant to the safety justification of the SIS as a whole. The system implementor has to
define higher-level system goals (e.g. timeliness and accuracy of the overall system)
and demonstrate that the properties of the sensor support the SIS safety justification.

5 Vulnerability Assessment

The vulnerability assessment focused on a number of concerns with a purely black-
box based approach. Discussion of these concerns is not included in the paper, but in-
cluded adequacy of functional testing, software security vulnerabilities and malicious
code among others. In subsequent analysis we expanded the final category of “non-
predictability” to consider specific sources of non-predictability, namely:

• concurrent interaction problems (non-atomic updates, deadlocks, etc.)
• non-initialisation of data
• data overflow
• variable time response (data dependent timing, infinite loops, etc.)

The black box concerns identified above could result in unexpected behaviour even
if the equipment appears to conform to specification when functional testing of the
“black box” is performed. Such concerns can be used as a checklist to determine
whether the risks of potential vulnerabilities have been addressed (e.g. using addi-
tional grey-box or white-box evidence). The fundamental limitation of black-box
analysis is the extent to which the testing/field experience profile used mirrors the ac-
tual use in the new application.

6 Analysis of a Smart Device

In Section 3 we described different aspects of a safety justification of a smart sensor,
but no supporting evidence was presented. In this section we describe the technical
analyses performed in the project concerning a specific sensor product: a temperature

200 P. Bishop et al.

transmitter. The aim of this work was to assess the feasibility of a variety of tech-
niques and analyses to support the safety justification of the temperature sensor.

The microprocessor is programmed in assembly language. The software comprises

• 6000 lines of assembly code (including comments)
• 7 kilobytes of binary code

The source code has been subjected to a range of assessments to support its safety
justification, namely:

• Code criticality analysis. Identification of the code essential to operation and ob-
solescent code.

• Code structure analysis. Identification of concurrent program threads and checks
for safe exchange of data between threads and absence of deadlocks.

• Code integrity assessment. Check for defective code constructs (e.g. array
bound overflow, divided by zero, dead code, stack overflow).

• Redundant code analysis. To identify if there is any unexpected code.
• Failure integrity analysis. Assessment of the failure integrity features to check

whether failures result in a safe state.
• Predictable execution assessment. Assessment of whether the ordering of soft-

ware functions is well defined, of the input-output conversion accuracy and
whether the execution time has a predictable upper execution time bound.

• The development of a strategy for statistical testing (not described in this paper).

 The feasibility of performing such analyses depends on the code size, structure, and
programming language. There is more tool support for high level languages (like C)
for performing analyses. However, we have made use of assembler level software
simulators to perform direct testing of internal functions within the software and to
evaluate the code coverage and code execution times.

6.1 Code Criticality Analysis

We performed software criticality analysis [9] to assess the importance to safety of
various components within the software. This showed that the code is separated into
the main conversion function and a calibration function. The calibration code can only
modify the calibration parameters used by the main code, and hence could be viewed
as less critical as it is not executed in normal operation. Most of the analysis effort
(such as the timing analysis) was focused on the main conversion function.

6.2 Structural Analysis and Concurrency Analysis

In order to perform evaluations of the sensor software it was first necessary to under-
stand the overall software architecture. To gain an understanding of the structure, we
reviewed both the software documentation and the source code.

As part of the structural analysis, we identified concurrent program threads and
checked for safe exchange of data between threads and absence of deadlocks.

From the architecture analysis, we identified the variables that passed information
between the threads. It is important that these updates are “atomic”, i.e. cannot be
seen by another thread in a partially updated state. For example, if a two byte variable

 Justification of Smart Sensors for Nuclear Applications 201

is updated from “00, FF” to “01, 00”, it could transiently have the value “01, FF” or
“00, 00” (depending on the update order of the bytes). Clearly it is undesirable that
the variable can be seen in this transient state, and the software should ensure that all
updates are atomic. The software was manually reviewed to check for this.
We also verified that these atomic updates do not result in deadlock. Whenever inter-
rupts are set, they are always released.

6.3 Code Integrity Assessment

Integrity static analysis [10] focused on structural faults in the software, in particular
the internal integrity of the code and the intra-component integrity.

The extensive field experience of the device being analysed is likely to precipitate
the detection of most large and obvious faults during typical execution of the pro-
gram. However, specific vulnerabilities of the languages used have a less frequent
manifestation and are more likely to remain undetected. Integrity static analysis fo-
cuses on what we called intrinsic faults, i.e. faults that may be recognised as such in-
dependently of any requirements specification. This includes use of out of bound ar-
ray indexes, use of illegal pointers, use of non-initialised variables, violations of
assertions, permanent loss of resources, insufficient resources, dead locks, non-
deterministic behaviour and non-controlled access to shared variables.

Our approach to the analysis of the assembler code can be grouped into two main
categories:

• Direct analysis of the assembler code, including analysis of the control flow
supported by model checking, dead code checks and semantic analysis.

• Translation of the assembler code into C (by a Perl script combined with manual
translation) and analysis of the translated code using CodeSurfer and Safer C.

6.4 Redundant Software Analysis

The software was reviewed for redundant functions. The only redundant function
found was a display function that apparently drives a local LCD display on the sen-
sor—however the sensor supplied to us has no LCD display. We suspect that this is
because the same code is used to drive a family of sensors including some with built-
in displays. From a configuration management and support perspective, it is desirable
to use common code. There is no real objection to this apart from the fact that it must
be demonstrated that the software does not “hang” waiting for a response from the
display hardware and it conflicts with IEC 60880, a fundamental standard for reactor
protection systems. We do not think this is a problem as the unit supplied to us func-
tions correctly without the LCD display yet a more formal safety justification would
need to document this and to justify the non-compliance with IEC 60880.

6.5 Failure Integrity Analysis

It is important that failures of the hardware and the software result in a safe state. An
analysis was performed to identify what fault detection and fault handling features
were present in the software. Analysis showed that internal software failures and de-
lays were trapped by a hardware watchdog. An analysis of the software also showed

202 P. Bishop et al.

that it contained checks on the integrity of the hardware (as required in IEC 61508
Part 2 Annex A1). These included software checks for breaks in probe wiring, mem-
ory integrity, and the integrity of the analogue to digital interface. Failure integrity
was also enhanced by using a software-generated oscillating binary output to drive the
analogue output circuit. If failures occurred in the processor, output interface, or soft-
ware, the output bit would become static and result in an out-of-range output signal.

6.6 Functional Analysis-Accuracy Analysis

The functional software analyses focused on checking whether the software maintains
sufficient accuracy. The functional analyses were performed using the Cosmic suite
of tools for assembling, simulated execution, debugging and profiling of the code for
a micro-controller.

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

in p u t fro m A D C

o u t p u t t o D A C

Fig. 2. Input vs. simulated output (mV operation, no linearisation)

The smart sensor software can be configured to operate a number of different
modes, or types of measurement. We configured the software to perform a simple lin-
ear scaling of the input, and then simulated the execution of the smart sensor code on
a PC using the COSMIC simulator tool.

Figure 2 plots the simulated input (X) alongside the converted output (Y). (The
units along the horizontal axis count the samples.) The plot confirms a precise match
between expected and actual behaviour: the output closely follows the overall enve-
lope of the input, albeit with its slope adjusted by a factor of 0.75, until the input is
plunged to zero. The final drop in the input simulates an error condition such as a
broken wire or other malfunction of the analogue input. When such errors occur, the
output should be forced to the minimum output signal value of 75—and this behav-
iour is observed in the simulation. Figure 3 plots the magnitude of the rounding error
for the first 15 samples in the input sequence. The rounding error is defined as the dif-
ference between the value produced by the conversion equation and the “ideal” value.

The plot shows the rounding error to be bounded within +/-0.5 of one output unit.
This represents an error in the order of 0.0125% compared to the output of an “ideal”
analogue converter. This is in line with our expectations based on inspection of the
code analysis, which showed that high precision arithmetic routines are used in the
conversion calculation.

 Justification of Smart Sensors for Nuclear Applications 203

- 0 . 6

- 0 . 5

- 0 . 4

- 0 . 3

- 0 . 2

- 0 . 1

0

0 . 1

0 . 2

0 . 3

Fig. 3. Magnitude of rounding error

6.7 Timing Analysis

It is important that the sensor has predictable timing, so the measurements are updated
at the specified intervals. Inspection of the code showed that the input-output conver-
sion was performed in a simple cyclic loop. This helped to ensure that the sampling of
the input and updating of the output occur at predictable rates.

The overall strategy followed by the analysis was to:

• Obtain simulated execution timings (using the COSMIC tool) for the software
conversion.

• Derive worst-case estimates for the amount of time the micro-controller spends
communicating instructions and data with the ADC. These are derived based on
timing data available on the serial interface between the micro-controller and the
ADC, as well as the ADC’s internal operation.

• Combine the two, bearing in mind potential overlaps of activity, and check the
combined timings against the claimed targets.

 The complete timing estimates were derived from the information above to sub-
stantiate the original claims, and it was concluded that the software performs within
its timing specifications, even under conservative and pessimistic assumptions.

7 How Evidence Fits the Safety Justification Approach

This section relates the analysis evidence obtained from the sensor (Section 6) with
the goal-based approach (Section 4) and black-box concerns (Section 5). Note that the
overall “triangle” of safety justification also included an assessment of compliance to
the British Energy PES guidelines [2]. However, standards compliance will not be
discussed further in this paper.

7.1 Goal-Based Approach

A goal-based approach for a smart sensor would focus on demonstrating key proper-
ties of the sensor that are relevant to the safety justification of the system. In Section 4
we identified a set of sensor properties that represent the top-level goals of the smart

204 P. Bishop et al.

sensor justification. This section discusses the evidence that can be used to show that
the goals have been met.

• Evidence for goals 1 and 2 (accuracy and response time) can be obtained from
black-box functional tests (e.g. SIREP or statistical tests). However, it would also
be possible to strengthen the justification by using diverse evidence from white box
analyses. For example, the analyses of software accuracy and timing undertaken in
Sections 6.6 and 6.7 could be part of an alternative white-box argument that the
overall combination of hardware and software will satisfy the top-level goals.

• Goals 3 and 4 (safe failure fraction and MTBF) can also be demonstrated by di-
verse means. With adequate reporting of operational defects by end users, it might
be possible to analyse the field experience to directly measure the MTBF and safe
failure fraction. However, it is recognised that there are many uncertainties in such
estimates, and it is also possible to make an analysis of the hardware and diagnos-
tic features to make alternative estimates. In our particular example, the supplier
provided a FMEDA assessment to support the claims.

• Goal 5 (configuration and calibration integrity) is important as errors in configura-
tion and maintenance are a significant source of safety problems. Clearly the con-
figuration interface should seek to minimise errors. We have analysed the design
features that protect against random corruption using evidence from the integrity
analysis, but this does not cover aspects such as the usability of the interface. This
might be addressed by a human factors assessment.

• Goal 6 (predictable behaviour) is generally important within the safety justifica-
tion. If the behaviour is predictable, the results of black-box tests can be used with
more confidence because the behaviour is likely to be repeatable. To some extent
predictability can be justified by field experience, but most of the evidence is likely
to be based on analysis of the architecture and source code. The structural analyses
described in Section 6.2 give confidence that some known architectural problems
(like deadlocks) do not exist, and the vulnerability assessment summaised in Sec-
tion 7.2 also help to demonstrate predictability. In addition, the integrity analyses
we performed showed that certain types of source code faults were absent. These
are however quite detailed analyses that may be impractical for lower integrity sen-
sors, so an alternative source of evidence might be grey-box knowledge of the de-
sign process. For example, the process might include rules about the design of the
system for deadlock avoidance and predictable timing or procedures to perform
static analysis to detect various types of software fault.

• Goal 7 (long-term dependability) is also important for the long-term safety of the
overall system. Smart sensor products are subject to change (e.g. of hardware com-
ponents and software functionality) and might also cease to be manufactured or
supported. We need evidence of availability and support, but we also require assur-
ance that changes do not affect any of the other safety goals. This is partly ad-
dressed by the technical analysis given in Section 6, but knowledge of the sup-
plier’s process can give some confidence that the changes will do not affect the
behaviour of the sensor.

 It can be seen that a goal-based approach helps to identify what evidence helps to
support the safety justification. We can also see that multiple forms of evidence could
be deployed to support the same goal, and this gives flexibility in the justification ap-
proach. With higher integrity applications, we might expect greater use of diverse
evidence and arguments. We also note that evidence about the process is only

 Justification of Smart Sensors for Nuclear Applications 205

indirectly related to the functional properties of the sensor, but is likely to be highly
relevant in ensuring that the observed behaviour is predictable and will be maintained
in subsequent upgrades.

7.2 Vulnerability Assessment

This section summarises how specific concerns have been or could be addressed to
support the justification of a smart device. These would support goal 6 in Section 7.1.

Table 2. Summary of vulnerability analysis

Concern Activity/method Observation
Adequacy of func-
tional testing

Functional analysis Partially tested through simulation to establish
functional requirements and accuracy were met.

Housekeeping code Code inspection &
structural analysis

No problems identified.

Detection of infea-
sible paths

Dead-code analysis,
simulation

Dead-code analysis identified few cases of inac-
cessible code. Simulation uncovered no infeasible
paths.

Fault-detection code Code inspection and
structural analysis

Inspection revealed no problems.

Fault-tolerance Code inspection and
structural analysis

The design of the product emphasises fail-safety
over fault-tolerance. The software has good fault
integrity behaviour.

Time-based events Code inspection,
timing analysis

No calendar time-based events were found.

Counters Structural analysis,
code analysis

No cases of potential counter overrun were found
in the code.

Malicious code Code inspection None found.
Unwanted require-
ments

Documentation re-
view, code analysis

Some unused code was found, but it was used by
other models in the same sensor family.

Security vulnerabili-
ties

Code inspection None found in the software running on the prod-
uct itself.

Complexity Structural analysis,
code inspection

The software architecture is simple. Main sources
of complexity are the relatively dense branching
structure of the code and the bit-field encoding of
configuration data.

Concurrent interac-
tions

Structural analysis,
concurrency analy-
sis

The sequence of functions performed is predict-
able. Concurrency analysis shows that data ex-
change between threads is limited and the data ex-
changes are atomic.

Initialisation errors Structural analysis Not analysed in detail.
Data overflow Structural analysis Not analysed in detail. However, most of the data

used are fixed multi-byte variables, so overflows
are unlikely.

Variable time re-
sponse

Structural analysis
Timing analysis

Analyses have shown the code will execute within
the specified response time.

8 Conclusions

In this section we present the conclusions of the research study into methods for justi-
fying smart sensors that this paper is describing. While some of the conclusions

206 P. Bishop et al.

follow directly from the work here described, others have arisen from work not
specifically mentioned in the paper. The conclusions of the project are given below.

8.1 Relationship with Sensor Manufacturers

• End users should expect different degrees of co-operation, both within a single
manufacturer’s organisational hierarchy and across different manufacturers.

• It remains an open question whether end users will be offered as much access to
software as we have in the course of this project. However, the level of co-
operation might increase with the potential of a real order, which would not be the
case in a research project.

• We need to be specific about what needs to be demonstrated in an assurance pack-
age that is provided by a supplier. Some form of assurance about the product is
needed, principally to confirm predictability of behaviour and integrity in the pres-
ence of hardware failures. This evidence would typically be a combination of “grey
box” (e.g. documentation on the software design) and white box evidence (based
on analysis of the actual software), as greater confidence could be obtained if there
was some knowledge of the internal design and implementation of the device.

8.2 Safety Justification Approaches

• Justification may follow a goal-based approach, aim to demonstrate compliance of
the product with industry guidelines, or seek specifically to address areas of con-
cern that a typical black box assessment would not cover. These three viewpoints
should be considered simultaneously as they complement each other.

• Goal-based approaches seem particularly suitable to smart sensor products as they
focus directly on the safety requirements, can be tailored to standards and offer
flexibility and a certain potential for reuse of arguments and evidence.

• We have addressed specific concerns about the shortcomings of black-box assess-
ment by assessing their applicability to smart sensor products similar to the ones
we have examined. Grey-box and white-box evidence can compensate for the limi-
tations of black-box assessment.

8.3 Smart Sensor Evaluation Methods

• We have undertaken a range of structural, accuracy and timing analysesbased on
documentation and the source code, and these have proved to be “easy wins”.

• Such analyses might be improved with appropriate tool support (e.g. code and data
flow dependency analysis, worst case time analysis), although this might be
problematic for assembler based systems.

• We have shown that it is feasible to simulate execution to test specific attributes
such as accuracy, test coverage and timing. However it is likely that these tests
would have been easier to implement during development where there is no need
to simulate the action of attached peripherals.

• It was technically feasible to perform a range of evaluations on the smart sensor
(even though it was written in assembler). This was largely due to the relatively
small size of the software and simplicity of the design.

 Justification of Smart Sensors for Nuclear Applications 207

8.4 Further Work

There are many pragmatic issues that have not been addressed within the current
study (e.g. what evidence is needed for a given integrity level and who should per-
form the evaluation). However we hope that the feasibility studies performed in this
project can contribute to the development of a common approach to the justification
of smart sensors in the nuclear industry.

Acknowledgements

This work was partly funded under the HSE Generic Nuclear Safety Research Pro-
gramme under contract 40072849. The views expressed in this report are those of the
authors and do not necessarily represent the views of the members of the CINIF or the
Health and Safety Commission/Executive. The CINIF does not accept liability for any
damage or loss incurred as a result of the information contained in this paper.

References

[1] Nuclear Safety Directorate, “Safety assessment principles for nuclear plants”,
http://www.hse.gov.uk/nsd/saps.htm

[2] L.A. Winsborrow, A.R. Lawrence, “Guidelines for Using Programmable Electronic Sys-
tems in Nuclear Safety and Nuclear Safety-Related Applications”, British Energy 2002.

[3] P.G. Bishop and R.E. Bloomfield, “The SHIP Safety Case—A Combination of System
and Software Methods”, SRSS95, Proc. 14th IFAC Conf. on Safety and Reliability of
Software-based Systems, Brugge, Belgium, 12-15 September 1995.

[4] P.G. Bishop and R.E Bloomfield, “A Methodology for Safety Case Development”,
Safety-critical Systems Symposium, Birmingham, UK, Feb 1998.

[5] CEMSIS project, http://www.cemsis.org
[6] J.A. McDermid, “Support for safety cases and safety argument using SAM”, Reliability

Engineering and Safety Systems, Vol. 43, No. 2, 111-127, 1994
[7] C.C.M. Jones, R.E. Bloomfield, P.K.D. Froome and P.G. Bishop, “Methods for assessing

the safety integrity of safety-related software of uncertain pedigree (SOUP)”, Report No:
CRR337 HSE Books 2001 ISBN 0 7176 2011 5
http://www.hse.gov.uk/research/crr_pdf/2001/crr01337.pdf

[8] P.G. Bishop, R.E. Bloomfield and P.K.D. Froome, “Justifying the use of software of un-
certain pedigree (SOUP) in safety-related applications”, Report No: CRR336 HSE Books
2001 ISBN 0 7176 2010 7 http://www.hse.gov.uk/research/crr_pdf/2001/crr01336.pdf

[9] P.G. Bishop, R.E. Bloomfield, T.P. Clement and A.S.L. Guerra, “Software Criticality
Analysis of COTS/SOUP” Safecomp 2002, Catania, September 2002.

[10] P.G. Bishop, R.E. Bloomfield, T.P. Clement, A.S.L. Guerra, and C.C.M. Jones, “Integrity
Static Analysis of COTS/SOUP” Safecomp 2003, Edinburgh, September 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

