% %%%% FORMAL DEFINITIONS %%%% THESE MIGHT BE MOVED TO AN APPENDIX % % % % \chapter{Formal Definitions} % \label{sec:formalfmmd} % \section{An algebraic notation for identifying FMMD enitities} % Consider all `components' to exist as % members of a set $\mathcal{C}$. % % % Each component $c$ has an associated set of failure modes. % We can define a function $fm$ that returns a % set of failure modes $F$, for the component $c$. % % Let the set of all possible components be $\mathcal{C}$ % and let the set of all possible failure modes be $\mathcal{F}$. % % We now define the function $fm$ % as % \begin{equation} % \label{eqn:fm} % fm : \mathcal{C} \rightarrow \mathcal{P}\mathcal{F}. % \end{equation} % This is defined by, where $c$ is a component and $F$ is a set of failure modes, % $ fm ( c ) = F. $ % % We can use the variable name $\FG$ to represent a {\fg}. A {\fg} is a collection % of components. % %We thus define $FG$ as a set of chosen components defining % %a {\fg}; all functional groups % We can state that % {\FG} is a member of the power set of all components, $ \FG \in \mathcal{P} \mathcal{C}. $ % % We can overload the $fm$ function for a functional group {\FG} % where it will return all the failure modes of the components in {\FG} % % % given by % % $$ fm ({\FG}) = F. $$ % % Generally, where $\mathcal{{\FG}}$ is the set of all functional groups, % % \begin{equation} % fm : \mathcal{{\FG}} \rightarrow \mathcal{P}\mathcal{F}. % \end{equation} % \section{Relationships between functional~groups and failure modes} % % Let the set of all possible components be $\mathcal{C}$ % and let the set of all possible failure modes be $\mathcal{F}$, and $\mathcal{PF}$ % is the power-set of $\mathcal{F}$. % % In order to analyse failure mode effects we need to be able to determine the % failure modes of a component. We define a function $fm$ to perform this (see equation~\ref{eqn:fmset}). % \label{fmdef} % % \begin{equation} % fm : \mathcal{C} \rightarrow \mathcal{P}\mathcal{F} % \label{eqn:fmset} % \end{equation} % % %% % % Above def gives below anyway % % % %The is defined by equation \ref{eqn:fminstance}, where C is a component and F is a set of failure modes. % % % %\begin{equation} % % fm ( C ) = F % % \label{eqn:fminstance} % %\end{equation} % % \paragraph{Finding all failure modes within the functional group.} % % For FMMD failure mode analysis %we need to consider the failure modes % from all the components in a functional~group. % In a functional group we have a collection of Components % which have associated failure mode sets. % we need to collect failure mode sets from the components and place them all % %modes % into a single set; this can be termed flattening the set of sets. % %%Consider the components in a functional group to be $C_1...C_N$. % The flat set of failure modes $FSF$ we are after can be found by applying function $fm$ to all the components % in the functional~group and taking the union of them thus: % % %%$$ FSF = \bigcup_{j=1}^{N} fm(C_j) $$ % $$ FSF = \bigcup_{c \in FG} fm(c) \; .$$ % % We can actually overload the notation for the function $fm$ % FM % and define it for the set components within a functional group $\mathcal{FG}$ (i.e. where $\mathcal{FG} \subset \mathcal{C} $) % in equation \ref{eqn:fmoverload}. % % \begin{equation} % fm : \mathcal{FG} \rightarrow \mathcal{F} % \label{eqn:fmoverload} % \end{equation}