Compositional Reachability Analysis

Using Process Algebra

Wei Jen Yeh
Michal Young

Software Engineering Research Center
Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

Abstract

State explosion is the primary obstacle to practical ap-
plication of reachability analysis techniques for concur-
rent systems. State explosion can be substantially con-
trolled by using process algebra to achieve composi-
tional (divide-and-conquer) analysis. A prototype tool
incorporating process algebra is described. The promise
and problems of the approach are illustrated by apply-
ing the tool to an example that incorporates the alter-
nating bit protocol as a module.

1 Introduction

Among techniques for analyzing the synchronization
structure of concurrent systems, enumeration of reach-
able states in a finite-state model (reachability analysis)
is attractive because it 1s simple and relatively straight-
forward to automate, and can be used in conjunc-
tion with model-checking procedures (e.g., [CES86]) to
check for application-specific as well as general proper-
ties. Reachability analysis has been used successfully
in limited domains like simple communication protocols
[Sun81]. Application to real systems has been stymied
by combinatorial explosion. This paper describes an ap-
proach to controlling the state explosion, and so to mak-
ing reachability analysis techniques practical for analy-
sis of real concurrent systems.

A compositional analysis technique allows one to an-
alyze individual portions of a large system and hier-
archically compose partial analysis results. Conven-
tional reachability analysis techniques are not compo-
sitional. Process algebras and process calculi [Mil80,

This work was supported in part by the industrial sponsors of
the Software Engineering Research Center, and by the National
Science Foundation under grant 9010135-CCR.

Hen88, BHR84, BK84, Hoa85] are compositional by
virtue of commutative and associative laws. Algebraic
structure can be used to devise a compositional reacha-
bility analysis technique. This approach overcomes the
state explosion to the extent that one can effectively use
a congruence relation ! to simplify partial products at
each stage in the analysis.

Outline. The paper is structured as follows. Section 2
briefly reviews reachability analysis and then process
algebra. Section 3 illustrates the general approach to
compositional reachability analysis with a small exam-
ple. A prototype tool for investigating this approach
is described, and in Section 4 it is demonstrated by
application to the alternating bit protocol. The alter-
nating bit protocol is then incorporated as a module
in the original example to further illustrate the gen-
eral approach and to demonstrate that state explosion
is avoided. Modeling issues and the solutions we have
adopted are discussed. Section 5 discusses related work
and open problems, and Section 6 concludes.

2 Background

2.1 Reachability analysis

The term “reachability analysis” 1s used to describe con-
struction of a state-transition model of a system from
models of individual processes. The composite state-
transition model is often called a “reachability graph.”
These models highlight synchronization structure and
abstract away other details of execution. Reachability
analysis has been applied to Petri nets, and CSP-like
state machine models, among others [Apt83, Tay83b,
Pet81, MR87]. A primary use of reachability analy-
sis is verification of properties of the synchronization
structure of software, e.g., freedom from deadlock, free-
dom from starvation, and freedom from dangerous par-

1Strictly speaking, a congruence is not necessary for compo-
sitional analysis. It is sufficient to have an equivalence relation
such that p = g implies p || 7 = ¢ || r. It need not be the case that
p+7r =g+, for instance.

allelism. Reachability analysis techniques can also be
combined with temporal logic model checking tech-
niques [CES86] to check application-specific properties.
With respect to these properties, reachability analysis
provides the same level of assurance as formal verifica-
tion.

The primary obstacle to practical application of
reachability analysis for detecting faults in the synchro-
nization structure of concurrent programs is combina-
torial growth in the size of the reachability graph. The
size of the reachability graph grows as the product of the
sizes of individual processes. Moreover, basic complex-
ity results [Lad79, Tay83a, Smo84] imply that there is
no universally applicable short-cut. A secondary prob-
lem is accuracy, since the details suppressed in building
a finite-state model may be essential to the correctness
of software. Omitting these details often has the ef-
fect of producing spurious error reports, while including
more detail exacerbates the state explosion problem.

Compositionality. Conventional reachability analy-
sis techniques are not compositional or incremental. A
reachability graph represents a complete, closed system,
and 1s built in a single step. This contributes to the state
explosion problem and renders the analysis unusable for
large systems. A compositional reachability analysis
technique must support a divide-and—conquer strategy
wherein reachability graph representations of subsys-
tems can be independently derived and then hierarchi-
cally combined to form representations of successively
larger parts of a complete system. A compositional ap-
proach would also be incremental, since changes to one
subsystem would not invalidate the reachability graph
representation of another.

The most critical advantage of compositionality is as
a lever to overcome the state explosion problem. If
the reachability graph representation of a subsystem is
transformed into an equivalent but simpler graph, the
state explosion problem can be controlled. We must
admit that this only partly solves the state explosion
problem, since the complexity bounds mentioned above
imply that we will not reduce the size significantly in
the worst case. Nonetheless we believe that this 1s can
be an effective approach for well-designed systems.

2.2 Process algebra

Process algebra is a widely used framework for describ-
ing and reasoning about concurrent systems. A va-
riety of process algebras and calculi have been pro-
posed, among the best known being Milner’s CCS
[Mil80, Mil89], Hoare’s TCSP [BHRS84, Hoa85], and
Bergstra and Klop’s ACP [BK84]. Among the better-
known attempts to apply process algebra in practice
are the communication protocol specification languages

LOTOS [Bri86] and ECCS [CSF89]. Process algebras

are growing in popularity due to their relative ease of
manipulation and rich abstraction capabilities.

A process algebra consists of a set of action (or event)
symbols, a set of operators, and a set of axioms describ-
ing properties of the operators. Individual processes
can be represented as algebraic expressions involving
sequencing and choice among actions, and systems of
processes can be described by expressions involving a
parallel composition operator. Axioms asserting equiv-
alence among expressions allow one to simplify complex
expressions and also to show that an expression describ-
ing an implementation corresponds to an expression de-
scribing a specification. In particular, it is possible to
show that an expression involving parallel composition
of processes corresponds to another expression describ-
ing non-deterministic sequential behavior.

An expression in process algebra can be modeled as
a process graph, a rooted directed graph with edges
labeled by event names. Parallel composition of pro-
cess expressions i1s modeled by a function taking graphs
to graphs, and equivalence among process expressions
(equality in the algebra) is modeled by an equivalence
relation on graphs. Although a reachability analysis
system works entirely in the domain of graphs, we can
interpret those graphs as models of algebraic expressions
provided each graph manipulation models a legal oper-
ation on the corresponding algebraic expression. This
is what we will mean when we say that a reachability
analysis employs algebraic structure.

ACP—n. Bergstra and Klop’s Algebra of Communi-
cating Processes (ACP) [BK84] is a simple and gen-
eral representation for finite-state asynchronous sys-
tems with two-party rendezvous. Baeten and Glabeek’s
ACP-5 [Bv(G87] is a variation on ACP that further sim-
plifies the process composition operation and makes hid-
ing internal details of a subsystem particularly conve-
nient. These considerations led us to choose ACP—y
as an appropriate process algebra for investigation of
compositional reachability analysis. Space permits only
a superficial description of ACP—7 here; the interested
reader should refer to [BvG87] and [BK84].

In ACP—7, a description of a single process is formed
by connecting event symbols together with the sequenc-
ing operator ‘;” and the choice operator ‘+’. Processes
interact in rendezvous fashion by matching events. We
adopt the notational convention that an uncomple-
mented symbol a represents sending a message (or an
entry call in Ada), while its complement —a represents
receipt of a message (or an Ada accept). There is only
one choice operator; internal choice is modeled by mak-
ing a commitment with a silent step 7, e.g. 7;x + 7;y.

In ACP-p the parallel composition operation ||’ is
defined 1n terms of two simpler operations, left—merge

local service

client— Ipq
frontend

server

printerl

\ printer2

remote service

hl_channel
. rinterl
. L receiver ——sender - P
client—+lpg — | [~
frontend server

printer2

Ih_channel

~sender ——receiver

Figure 1: Local and remote versions of a line printer status service

‘||’, and communication—merge ‘|’:

vlly=zllytylletely

Informally, this means that when x and y are executed
together, either « moves first (x || y) or y moves first
(y ||), or they make the first move together (z | y).
Synchronization is by matching an event and its com-
plement, e.g., a;z | —a;y = [a]; (z || y). The result of a
synchronized move (which we have denoted [a]) can be
abstracted to the silent action 7.

Equivalence among processes can be checked by con-
structing a rooted n-bisimulation [BvG87] between
graph representations of the two processes. Efficient
algorithms for this check are known [KS90].

3 Algebraic reachability analy-
sis

3.1 General approach

Reachability analysis based on an algebraic model can
use the associative law to permit division of a large sys-
tem into natural subsystems. It can use restriction and
hiding operations in the algebra (analogous to scope
rules in a programming language) to isolate internal de-
tails of subsystems, and algebraic identities to stem the
state explosion.

The general approach is illustrated by the following
example. Consider a program that checks and reports

the status of either of two printers. This service may
be implemented locally, or it may be implemented by
communication over unreliable lines to a remote server
(Figure 1). We may wish to specify that, from the per-
spective of a client, behaviors of the remote and local
services differ only in speed.

The remote version of the service may be composed
of many processes, perhaps more than can be accommo-
dated by a monolithic reachability analysis. Our goal is
to suppress details of subsystems when composing. For
instance, communication in one direction between local
stub and remote server may be implemented by a pair
of processes following some well-defined protocol. If we
can show that their composite behavior is equivalent to
a simpler process (e.g., a bounded buffer), this simpler
process can be substituted for the original tasks in the
next stage of analysis. Other subsystems would be ag-
gregated and then simplified in a comparable manner.
Finally, a representation of the remote service would be
produced by composing a few subsystems, and the result
would be shown to be equivalent to the local version.

At no point must we contend with the complexity of
a complete system, so in principle there is no bound on
the size of the system that can be efficiently analyzed.
(In practice, we depend on clean modular decomposition
and clever specifiers to produce subsystems that can be
described by interfaces much simpler than their internal
workings.) To achieve this level of divide-and-conquer,
we require that our reachability graphs have algebraic
structure.

0 O [a] @ [b] C

(ii):

Figure 2: State graph of a;b || —a; —b using (i) conven-
tional reachability graph construction and (ii) algebraic
product operation

Algebraic structure in reachability analysis.
Small modifications to a conventional reachability graph
construction suffice to imbue it with algebraic structure.
To respect the associative law, it is necessary to consider
not only actions taken by the (sub-)system being ana-
lyzed, but also the potential for cooperation with exter-
nal processes. Consider the trivial system a;b || —a; —b.
A conventional reachability analysis will explore only
the joint actions [a¢] and [b]. An associative compo-
sition operation produces a more complex expression
(and graph) capturing the potential for a third process
to interact with these. Figure 2 illustrates.

This simple example shows that algebraic structure
has a cost; we may generate larger process graphs than
would be generated by a straightforward reachability
graph construction. While producing larger graphs may
seem a step in the wrong direction for overcoming the
state explosion problem, it is the price we must pay for
compositionality. Moreover, with a bit of extra book-
keeping, restriction (scope wall) and hiding operations
can minimize the extra growth. Figure 3 gives the sizes
of process graphs encountered during analysis of the line
printer status example of Figure 1.

3.2 A prototype analysis tool

We have constructed a prototype tool to evaluate and
refine a divide-and-conquer strategy for reachability
analysis. This exercise 1s part of a larger effort to con-
struct a toolkit (the Concurrency Analysis Tool Suite,
or CATS) for analyzing concurrent software, and to em-
bed that toolkit in a software development environment
[YTFB89]. Initially CATS will be configured for anal-
ysis of concurrent Ada programs automatically trans-
lated into the task interaction graph model devised by
Long and Clarke [LC89]. The prototype described here
is designed for rapid evaluation and modification, rather
than direct incorporation in CATS. The lessons learned
in this effort will be used to redesign parts of CATS to
take advantage of the algebraic approach.

Our prototype consists of an Ada-like program de-
sign language, PAL, and a processor for that language.
PAL includes the main Ada tasking constructs, and in
particular includes task entry calls with and without the
select/or delay construction, and accept statements
with and without select. Guarded accept alternatives
and task initiation and termination are notably absent
in the current version. No attempt has been made to
incorporate Ada features that are not directly involved
in tasking. In particular, PAL has no packages or pro-
cedures.

The PAL processor consists of three programs. Two
of these translate PAL code into a set of process graphs
(one graph for each task) along with scope information
and analysis directives. The analysis back end builds
up a process graph representation of the whole system.
The back end simplifies partial products using axioms
of ACP-n, and can also test 7-bisimilarity of process
graphs. The PAL processor performs these tasks au-
tomatically or under user control. The current imple-
mentation supports all PAL features described in the
following sections.

4 Application

Compositional reachability analysis using process alge-
bra is illustrated in this section by application to an ex-
ample. First an application of the PAL processor to the
familiar alternating-bit protocol is described, and then
incorporation of that protocol in a larger system. The
sizes of process graphs constructed at each step show
that (at least for this somewhat contrived example) an
exhaustive analysis can be completed without state ex-
plosion. The example is described first at a high level,
with detailed discussion of modeling issues and their re-
lation to features of PAL held till the final subsection.

4.1 Alternating bit protocol

The main features of the Ada-like PAL language and
its processor are illustrated by application to the alter-
nating bit protocol [BSW69]. The example was chosen
primarily for its familiarity; the alternating bit protocol
is a standard example for protocol specification and ver-
ification systems. Among the many treatments of this
protocol in the literature, the reader may be interested
in comparing [CES86, SMS82, ACW90, LM87].

We write two descriptions of the alternating bit pro-
tocol and direct the PAL processor to demonstrate their
equivalence. A black box view of external behavior
serves as a specification for a white box view of its in-
ternal workings. The black box view is equivalent to a
single-cell buffer:

generic task ABP
MSG: constant;
task Client is
type MSG_Packet is (MSG);
entry Result (x: MSG_Packet) has no body;
end Client;
is
type MSG_Packet is (MSG);
var m: MSG_Packet;
entry Input(x: MSG_Packet);
begin
loop
accept Input(m);
Client.Result(m);
end loop;
end ABP;

The meaning of this and the following PAL source
code should be clear to readers with some knowledge
of Ada, despite the liberties we have taken with syn-
tax (e.g., Ada has no generic tasks). The purposes of
the more peculiar features are discussed below in Sec-
tion 4.3.

In the white box view, we model the alternating bit
protocol by a pair of tasks,? Sender and Receiver. It
is usual to model the communication medium by a third
task, and indeed we could have done so, but in PAL it
is more natural and convenient to account for dropped
and scrambled messages by non-deterministic choices in
the Sender and Receiver tasks themselves.

generic task ABP
MSG: constant;
task Client is
type MSG_Packet is (MSG);
entry Result (x: MSG_Packet) has no body;
end Client;
is
UNKNOWN: constant;

2The communications protocol literature uses the term “task”
in the sense of service specification; we use “task” in the sense of
an Ada task, i.e., a process.

ACK, NAK: constant;

ZERO, ONE: constant;

type Packet is (UNKNOWN, ACK, NAK, MSG);
type AB is (ZERO, ONE);

subtype ACK_Packet is Packet range ACK..NAK;
subtype MSG_Packet is Packet range MSG..MSG;

entry Input renames Sender.Input;

task Sender is
var m: MSG_Packet;
var a: ACK Packet;
var bit: AB;
entry Input(x: MSG_Packet);
entry Ack(x: ACK_Packet; bit: AB);
begin
loop
—— Phase ZFRO
accept Input(m);
loop
select
Receiver.InPort(m, ZERO);
select
accept Ack(a, bit);
if <<packet not scrambled>> then
case a is
when ACK =>
case bit is
when ZERO => exit;
when others => null;
end case;
when others => null;
end case;
else
null;
end if;
or delay 10;
end select;
or delay 10;
end select;
end loop;
—— Phase ONF is similar ...
end loop;
end Sender;

task Receiver is
var m: MSG_Packet;
var bit: AB;
entry InPort(x: MSG_Packet; bit: AB);
begin
loop
—— Phase ZFRO
loop
accept InPort(m, bit);
if <<packet not scrambled>> then
case bit is
when ZERO =>
Client.Result(m);
select
Sender.Ack(ACK, ZERO);
or delay 10;

end select;
exit;
when ONE =>
select
Sender.Ack(ACK, ONE);
or delay 10;
end select;
end case;
else
case bit is
when ZERO =>
select
Sender.Ack(NAK, ZERO);
or delay 10;
end select;
when ONE =>

select
Sender.Ack(NAK, ONE);
or delay 10;
end select;
end case;
end if;
end loop;
—— Phase ONFE is samilar ...
end loop;
end Receiver;
begin
null;
end ABP;

The PAL translator represents the Sender and
Receiver tasks by graphs of 14 and 17 nodes,
respectively.? The composition of these graphs initially
produces a new process graph of 17 x 14 = 238 nodes.

Scope structure of the PAL code presents the first
opportunity for simplification. Entries InPort and Ack
are accessible only within task ABP. The PAL trans-
lator recognizes this and directs the analysis back end
to remove unjoined actions involving these entries (a
restriction operation in the algebra). The graph is im-
mediately reduced from 238 to 67 nodes, and additional
automatic simplifications using identities in the algebra
reduce it to 10 nodes.

At this point we instruct the analysis back end to
verify the graph by comparing it to the graph rep-
resentation of the specification (the black box view).
The PAL processor demonstrates equivalent synchro-
nization structure by finding a bisimulation between
them. (Verification of value transmission is described
in Section 4.3.) Having completed analysis of the mod-
ule, we may substitute the specification graph (2 nodes)
for the 10 node process graph.

3We will characterize the sizes of process graphs by counting
nodes. The number of edges is typically 2—4 times as large.

4.2 Building on: Remote printer status
service

Consider again the remote printer status service de-
scribed in Section 3.1. Having verified that our model
of the alternating bit protocol acts as a reliable chan-
nel, we can use it as a component in this larger system.
In this manner we can build a complete process graph
representation for the remote service and demonstrate
that it is bisimilar to the local service.

We repeat the composition and simplification steps
as for the alternating bit protocol, working bottom-up
through a hierarchy of modules. The verification step
(bisimulation) is repeated when specifications are avail-
able (and often enough to prevent uncontrolled growth
of the state space). For the remote printer status ex-
ample, we provided specifications only for the commu-
nication channels and for the system as a whole. We
also 1nserted scope walls at two additional points to aid
the PAL processor in reducing process graphs. Figure 3
shows the hierarchy of modules and the number of nodes
in each of the process graphs produced (Scopel and
Scope2 being the artificially introduced scope walls).
The important thing to notice is that the size of the
graphs does not always increase as we move up the tree.

4.3 Problems and solutions

Our description of the analysis of the alternating bit
protocol glossed over several difficult issues, as well as
several features of PAL with which we address those is-
sues. In particular, we must look more closely at how
PAL represents data values and data-dependent deci-
sions.

Internal and external choice. Reachability analy-
sis 1s impractical when data values are modeled in com-
plete detail, so schemes for deriving finite-state mod-
els from real programs (e.g., the reduced flow graphs
of Taylor [Tay83b] and the task interaction graphs of
Long and Clarke [LC89]) generally ignore data values
and model data-dependent decisions as internal non-
determinism (arbitrary choice). Translation rules for
the core PAL language take the same approach: the if
<<packet not scrambled>> statement in the example
is translated as internal choice and the Ada select is
translated as external choice.

Value transmission. Even if we limit our analysis to
synchronization structure, a model that ignores all data
values may be inadequate. The Sender and Receiver
tasks illustrate two situations in which some informa-
tion about data values must be maintained. We must
distinguish between the ONE and ZERO bits to accurately
model coordination of the two tasks, and we must main-
tain some representation of messages to show that they

remote (7)
service

Ipg (9) backend (49)

frontend

0
L -
. .

.
0 o
., o

ABP (10 => 2)

sender (14)

receiver (17)

scopel (17)

hl_channel (3) Ih_channel (3)\opez\(7)

server (131)

printer1 (4)

‘0. -
N o

0
.

printer2 (4)

o
. o
N of

ﬁ'rintér (4)

Figure 3: Hierarchy of modules in the remote line printer status example. Numbers indicate the number of nodes
in the process graph representation of a module. Scopel and Scope2 are scope walls that correspond to no natural
module; they aid the PAL processor in simplifying graphs. Dotted lines indicate multiple instantiations of identical

tasks.

are faithfully transmitted.

Value transmission can be modeled by introducing a
new event name for each possible value. For instance, if
there are two possible values of m, then we could replace

accept Input(m);
Client.Result(m);

by

select
accept Input_mi;
Client.Result_mi;
or
accept Input_m2;
Client.Result_m2;
end select;

Of course, a user should not be expected to perform such
a transformation at the source level, but this is essen-
tially how the PAL processor forms the process graph
representation of a task that transmits values of enu-
merated types.

It is usually desirable to delay the transformation de-
scribed above as far as possible. The PAL description of
the alternating bit protocol is parameterized by a type
MSG, which can be replaced by any set of values. Pa-
rameterization shields lower level modules from details
of their clients and allows them to be independently ver-
ified. In our example the protocol is instantiated twice,

once for transmission of printer names from client to
server, and once for transmission of printer status from
server to client. Replacement of MSG by its possible val-
ues expands hl_channel and 1h_channel only slightly,
from the final 2 nodes of ABP to 3, but a larger set of
values would cause a correspondingly larger expansion
factor.

The verification described in Section 4.1 involved
demonstrating a bisimulation between the implementa-
tion of the alternating bit protocol and its specification
before expanding type MSG into a set of possible mes-
sages. In this form only the synchronization structure
is verified. To show that the sequence of messages re-
ceived 1s the same as the sequence transmitted, we could
instantiate the specification task and each task in the
implementation with the actual set of messages before
finding a bisimulation.

Better, we can use the property of data independence
introduced by Wolper [Wol86] to verify correct data
transfer for arbitrary sets of possible messages. We need
only verify the protocol with three distinct values to en-
sure correct data transfer with arbitrary sets of values.
This verification was performed separately from the ex-
ercise described above; the number of nodes produced
was initially 1710, reduced to 197 by restriction, and
then to 26 by identities. The bisimulation demonstrated
between this graph and a similarly instantiated specifi-
cation (4 nodes) fully justifies using the initial 2 node

representation in the original analysis.

Control variables. Values used for internal control
present a slightly different problem. Ignoring them re-
sults in an excessively pessimistic analysis. The case
construct in PAL is used to branch on specific values
of an internal control variable. The data independence
property does not apply to a variable used in a case
construct. It is not meaningful to parameterize a task
by a variable used in this manner, since its behavior
depends on the exact value of the variable. In fact,
the case construct has no representation in the algebra
and is never directly represented in a process graph; the
PAL translator unfolds the process graph structure to
eliminate it.

Convenience features. The remaining PAL con-
structs that do not correspond to Ada constructs were
added for convenience and efficiency, particularly given
the fact that the same language is being used to express
specifications and to describe implementations. Param-
eterization of tasks by other tasks (e.g., the Client task
parameter to ABP) is found in other algebraic systems,
and is also roughly similar to generic instantiation in
Ada. The has no body clause instructs the translator
that rendezvous on a particular entry can be represented
by a single handshake rather than a begin/end pair. If
this clause were not attached to the Result entry of the
Client task parameter to ABP, the process graph would
have 3 nodes instead of 2.

5 Discussion

5.1 Related work

Reachability analysis techniques of various kinds have
been around at least since the 1960’s, and attempts to
control state explosion are nearly as old. The most com-
mon approach in practice is to generate only a sample of
the complete state space of a model, which amounts to
a kind of testing. Here we mention only a few closely re-
lated strands of research regarding process algebra and
compositionality.

LOTOS and ECCS. LOTOS [Bri86] and ECCS
[CSF89] are extended versions of Milner’s CCS [Mil80].
Both were developed for specification and verification of
communication protocols, but are similar in broad out-
line to the PAL system described here. ECCS is similar
to LOTOS and is provided with a complete algebraic
axiom system. LOTOS is used primarily as a speci-
fication and prototyping language, while the verifica-
tion methodologies associated with ECCS are primarily
manual proof and simplification.

LOTOS and ECCS are semantically rich specification
languages. PAL is closer to a programming language
(Ada), not only in surface syntax but in the way issues
like scoping are handled. LOTOS and ECCS provide
explicit hiding operations, whereas PAL implicitly hides
internal details at scope walls. This is appropriate be-
cause the purpose of PAL is to investigate strategies for
reachability analysis of real programs.

Concurrency Workbench. The Concurrency Work-
bench [CPS91, CPS90] supports a variety of manipu-
lations of process graphs, including both bisimulation
checking and more satisfactory (but more expensive)
preorder checking. Although the Workbench does not
directly address issues of modular verification of large
systems (for instance, it too requires explicit hiding op-
erations), it does provide a broad and well-integrated
set of verification capabilities. One can envision replac-
ing most graph manipulations in the PAL processor by
interfaces to the Workbench or a similar analysis engine.

Petri net models. Mandrioli et al. [MZGT85] de-
scribed a translation from Ada tasking programs to
Petri nets as a way of giving a precise semantics to
Ada tasking, and Shatz et al. [SMBT90] have used a
similar translation to take advantage of existing Petri
net analysis tools. The theory and particularly the
tools associated with Petri nets are more mature than
process algebras, but conventional Petri net reachabil-
ity analysis is not compositional (construction of the
reachability graph of a net is not a commutative and
associative operation). Recently first steps have been
taken toward providing Petri nets with algebraic struc-

ture [MM90, Win87].

SPANNER. SPANNER [ACWY0] is a reachability
analysis tool for cooperating processes based on selec-
tion/resolution (S/R) model. In contrast to the two-
party rendezvous in PAL, multi-party cooperation in
the S/R model makes it relatively easy to instrument
a model with “monitor” processes. Monitor processes
can carry fairness assumptions and fairness obligations
in the form of states that must appear infinitely often
in each fair history. While the S/R model has some al-
gebraic structure (composition of processes is modeled
as a tensor product), the analysis described in [ACW90]
does not exploit it to control state explosion.

PAL uses an algebraic identity of ACP-5 to express
a simple fairness assumption, but this is less flexible
than the approach described in [ACW90]. In principle it
should be possible to adapt the methods of SPANNER,
but this has not been attempted yet.

Compositional model checking. Clarke, Long, and
McMillan have given very general rules for showing that

reducing one state transition model to another (as by
a bisimulation) preserves properties expressed in a pro-
gram logic [CLMB89]. This framework is particularly at-
tractive if one wishes to specify a system by a combina-
tion of process algebra (perhaps disguised as a program,
as in PAL) and temporal logic.

Symbolic model checking. In many cases a sym-
bolic representation of a transition relation is far more
compact than an explicit enumeration of nodes and
edges in a process graph. Burch et al. [BCM*90] have
used binary decision diagrams (BDD) to combine sym-
bolic representations of finite-state processes with for-
mulas in the p-calculus, which in turn can represent
formulas of propositional temporal logic. The symbolic
form of model checking is in principle subject to the
same complexity bounds as conventional reachability
analysis, and the practical complexity is very sensitive
to the choice of BDD encoding, but symbolic models
of digital hardware systems with over 102° states have
been constructed and checked. The symbolic approach
retards state explosion but does not entirely avoid it;
beyond some limit even very clever symbolic encodings
will require a divide and conquer approach.

Real-time issues. Our analysis approach ignores real
time issues. All delays are modeled using the inter-
nal 7 action, which means rates of progress are treated
as being entirely unpredictable. In the PAL construct
or delay N, the value of N is ignored. Liu and Shya-
masundar [LS90] have recently described a reachability
analysis technique that does explicitly take time into
account. Their model is essentially synchronous; both
actual execution and waiting are considered as events
that take measurable time. The additional state explo-
sion that would be expected by adding time to the model
is controlled somewhat by adopting an unrealistic “max-
imum parallelism” model, in which each process has its
OWN Processor.

5.2 Future work and open problems

A chief limitation of PAL is that it does not support in-
duction over the number of (identical) processes. Bisim-
ulation 1s too fine an equivalence relation for induction
in practical cases such as arrays of tasks or a bounded
buffer of arbitrary size. Failure equivalence [BHR84] (or
testing equivalence [Hen88]) is better suited to support
inductive reasoning, but expensive to test [KS90] and
poorly suited for reasoning about fairness. Since there
is a natural hierarchy of equivalence relations for pro-
cess algebras [Bro83], a possible direction for extending
PAL is to support multiple equivalences with different
granularity.

The PAL processor currently models value transmis-
sion by replacing values with unique actions. This is ac-

ceptable for small value domains and for verifying mod-
ules with the data independence property characteristic
of communication protocols, but it is impractical for
more general classes of programs. In future we intend
to investigate modeling value transmission directly in
the underlying algebra.

The PAL processor currently maintains dual descrip-
tions of a program to be analyzed (one serving as spec-
ification for the other), but our experience reveals a
need for better management of the correspondence be-
tween specification hierarchy and implementation hier-
archy. We at first naively believed that the two hierar-
chies could mirror each other, but it is now clear that a
more sophisticated correspondence and better support
for planning an analysis strategy is required.

We intend to modify a toolkit for analyzing concur-
rent programs to use the compositional analysis ap-
proach described here. This will raise some additional
problems, among them maintaining a clear association
between the results of analysis and the original source
code through several passes of rewriting. Additionally
we must give more thought to suitable specification for-
malisms. Currently our CATS tools [YTFB89] support
temporal logic model checking, whereas the algebraic
approach suggests using a single formalism for specifi-
cation, design, and implementation.

6 Conclusion

State explosion is the primary obstacle to practical ap-
plication of reachability analysis for detecting faults
in the synchronization structure of concurrent pro-
grams. Conventional reachability analysis techniques
are global, but compositionality can be achieved by im-
posing algebraic structure on the reachability graph con-
struction. The additional cost of representing unjoined
actions in process graphs is more than repaid by oppor-
tunities for applying reductions.

We have illustrated the compositional, divide-and-
conquer approach by application to an example incorpo-
rating the alternating bit protocol as a module. Exhaus-
tive analysis (verifying equivalence to a simpler specifi-
cation) was accomplished without cumulative growth in
the state space.

Although work remains to bring reachability analy-
sis techniques to a state of practical utility, the state
explosion problem need not be an absolute barrier to
exhaustive analysis of realistic software systems.

References

[ACW90]

[Apt83]

[BCM*90]

[BHR84]

[BK84]

[Bri86]

[Bro&3]

[BSW69]

[BvG3T]

[CES86]

[CLM89]

[CPS90]

[CPS91]

S. Aggarwal, C. Courcoubetis, and P. Wolper.
Adding liveness properties to coupled finite-state
machines. ACM Transactions on Programming
Languages and Systems, 12(2):303-339, April
1990.

Krzysztof R. Apt. A static analysis of CSP pro-
grams. In Proceedings of the Workshop on Pro-
gram Logic, Pittsburgh, PA | June 1983.

J.R. Burch, E.M. Clarke, K.L.. McMillan, D.L.
Dill; and L.J. Hwang. Symbolic model checking:
10%° states and beyond. In Proceedings of the
Fifth Annual Symposium on Logic in Computer
Science, June 1990.

S. D. Brookes, C. A. R. Hoare, and A. W.
Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560-599,
July 1984.

J. A. Bergstra and J. W. Klop. Process alge-
bra for synchronous communication. Informa-
tion and Control, 60:109-137, 1984.

Ed Brinksma. A tutorial on LOTOS. In M. Diaz,
editor, Protocol Specification, Testing, and Ver-
ification, V, pages 171-194. Elsevier, 1986.

Stephen D. Brookes. On the relationship of
ccs and csp. In Automata, Languages and Pro-
gramming (10th Colloguium, Barcelona), pages
83-96. Springer-Verlag, 1983. Lecture Notes in
Computer Science 154.

K.A. Bartlett, R.A. Scantlebury, and P.T.
Wilkinson. A note on reliable full-duplex trans-
mission over half-duplex lines. Communications
of the ACM, 12(5):260-261, May 1969.

J. C. M. Baeten and R. J. van Glabeek. An-
other look at abstraction in process algebra.
In Proceedings of the 14th InternationalCollo-
qium on Automata, Languages, and Program-
ming (ICALP), pages 84-94, Karlsruhe, Ger-
many, July 1987.

E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic. ACM Transac-
tions on Programming Languages and Systems,
8(2):244-263, April 1986.

E. M. Clarke, D. E. Long, and L. McMillan.
Compositional model checking. Technical Re-
port CMU-CS-89-145, Carnegie-Mellon Univer-
sity, School of Computer Science, Pittsburgh,
PA 15213, April 1989.

Rance Cleaveland, Joachim Parrow, and Bern-
hard Steffen. A semantics-based verification tool
for finite-state systems. In Protocol Specifica-
tion, Testing, and Verification, IX, pages 287—
302. North-Holland, 1990.

Rance Cleaveland, Joachim Parrow, and Bern-
hard Steffen. The concurrency workbench: A se-
mantics based tool for the verification of concur-
rent systems. In Proceedings of the Workshop on

10

[CSF89)]

[Hen88]

[Hoa85]

[KS90]

[Lad79]

[LC89]

[LMs7]

[LS90]

[Mil80]

[Mil89]

[MM90]

[MRS7]

[MZGTS5]

[Pet81]

Automatic Verification Methods for Finite State
Machines, pages 24-37, February 1991. LNCS
407.

Vincenza Carchiolo, Antonella Di Stefano, and
Alberto Faro. ECCS and LIPS: Two languages
for OSI systems specification and verification.
ACM Transactions on Programming Languages
and Systemns, 11(2):284-329, April 1989.

Matthew Hennessy. Algebraic Theory of Pro-
cesses. MIT Press Series in the Founddations of
Computing. The MIT Press, Cambridge, Mas-
sachusetts, 1988.

Charles Anthony Richard Hoare. Communicat-
ing Sequential Processes. Prentice-Hall, London,
1985.

Paris C. Kanellakis and Scott A. Smolka. CCS
expressions, finite state processes, and three
problems of equivalence. Information and Com-
putation, 86:43-68, 1990.

Richard E. Ladner. The complexity of prob-
lems in systems of communicating sequential
processes. In Proceedings of the Fleventh An-
nual ACM Symposium on Theory of Computing,
pages 214-223, Atlanta, Georgia, April 1979.

Douglas L. Long and Lori A. Clarke. Task inter-
action graphs for concurrency analysis. In Pro-
ceedings of the Eleventh International Confer-
ence on Software Engineering, Pittsburgh, May
1989.

Kim G. Larsen and Robin Milner. Verifying
a protocol using relativized bisimulation.
Automata, Languages and Programming (Pro-
ceedings ICALP ’87), pages 126-135. Springer-
Verlag, Karlsruhe, FRG, July 1987. LNCS 267.

In

Leo Yuhsiang Liu and R. K. Shyamasundar.
Static analysis of real-time distributed systems.
IFEEE Transactions on Software FEngineering,
16(4):373-388, April 1990.

Robin Milner. A Calculus of Communicating
Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer-Verlag, New York, 1980.

Robin Milner. Communication and Concur-
rency. Prentice Hall, London, 1989.

Jose Meseguer and Ugo Montanari. Petri nets
are monoids. Information and Computation,

88:105-155, 1990.

E. Timothy Morgan and Rami R. Razouk. In-
teractive state-space analysis of concurrent sys-
tems. IFEF Transactions on Software Engineer-
ing, SE-13(10):1080-1091, October 1987.

D. Mandrioli, R. Zicari, C. Ghezzi, and F. Ti-
sato. Modeling the Ada task system by Petri
nets. Computer Languages, 10(1):43-61, 1985.

Petri Net Theory and the Model-
ing of Systems. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1981.

J. Peterson.

[SMBT90] Sol M. Shatz, Khanh Mai, Christopher Black,

[Smo84]

[SMS82]

[Sun81]

[Tay83a]

[Tay83b]

[Win87]

[Wol86]

[YTFB89]

and Shengru Tu. Design and implementation of a
Petri net based toolkit for Ada tasking analysis.
IFEE Transactions on Parallel and Distributed
Systems, 1(4):424-441, October 1990.

Scott A. Smolka. Analysis of Communicating Fi-
nite State Processes. PhD thesis, Department of
Computer Science, Brown University, 1984. De-
partment of Computer Science Technical Report
No. CS-84-05.

Richard L. Schwartz and P. Michael Melliar-
Smith. From state machines to temporal logic:
Specification methods for protocol standards.
IFEEE Transactions on Communications, COM-
30(12):2486-2496, December 1982.

Carl A. Sunshine, editor. Communzication Proto-

col Modeling. Artech House, Dedham, MA, 1981.

Richard N. Taylor. Complexity of analyzing
the synchronization structure of concurrent pro-
grams. Acta Informatica, 19:57-84, 1983.

Richard N. Taylor. A general-purpose algorithm
for analyzing concurrent programs. Communi-
cations of the ACM, 26(5):362-376, May 1983.

Glynn Winskel. Petri nets, algebras, morphisms,
and compositionality. Information and Compu-
tation, 72:197-238, 1987.

Pierre Wolper. Specifying interesting properties
of programs in propositional temporal logics. In
Proceedings of the ACM Symposium on Prin-
ciples of Programming Languages (15th), pages
184-193, St. Petersburg, Fla., January 1986.

Michal Young, Richard N. Taylor, Kari Forester,
and Debra Brodbeck. Integrated concurrency
analysis in a software development environment.
In Proceedings of the ACM SIGSOFT ’89 Third
Symposium on Software Testing, Analysis, and
Verification (TAV3), pages 200-209, Key West,
Florida, December 1989. Published as ACM
SIGSOFT Software Engineering Notes 14(8).

11

