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Abstract

The concept of software failure mode and effects analysis (FMEA) has grown in attractiveness over
recent years as a way of assessing the reliability of software. Like its hardware counterpart, software
FMEA is immensely tedious for an engineer to perform, as well as being error-prone. This paper presents
the implementation of a novel method for automating code-level software FMEA based on treating the
implemented software as a model of the desired system and propagating faults through the model to
identify dependencies.

The method provides results at a level where they can be understood and acted on by software engineers.
A tool implementing this method has been applied to a travel expenses payment program, and some of
the automatically produced results are presented. Such automation extends significantly the range of
software for which software FMEA becomes a realistic proposition. The analysis is tractable, and has
been shown to provide useful results for software engineers.

One important use of this analysis is to focus further testing. The software FMEA can be used to improve
automated or source code embedded testing since tests can exonerate many potential faults allowing the
FMEA analysis to present an engineer with a reduced set of potential faults.

1. Introduction

Failure mode and effects analysis (FMEA) is a systematic safety analysis method that identifies the
possible system failure modes associated with a system, and evaluates the effects on the operation of the
system, should the failure mode occur. The focus of the analysis is on used the analysis to improve the
safety of the system design. Typically, FMEA is practiced on physical systems, and the failure modes
considered are the failures of physical components, caused by wear or other damage to the system. As
software was introduced into automotive and aeronautic systems, it has been included in FMEA as a
component (the ECU containing the software) with no failure modes, and the system FMEA has been
produced assuming that the software works correctly.

More recently, there has been a focus on performing FMEA on the software itself. One of the unique
difficulties with software systems is the complex relationship between faults and effects. A minor fault
can, for example, cause a complete crash of a software system or have almost invisible but very complex,
subtle, and long lasting side effects. The result is that software often has very non-uniform quality in
terms of the effects of potential failures, and it is not clear when effort is available, where it should be
expended to improve quality. An FMEA provides just this information allowing targeting of effort at the
highest risk areas

Clearly, software components do not fail in the same manner as hardware components — a function or
method does not break over time because it has become worn or damaged. Software FMEA considers all
potential faults such as faulty inputs or software bugs (mutations) that could exist and ensures the worst-
case consequences are known, possibly prompting actions to reduce risk. A software bug may be treated
analogously to a hardware component failure, the essential difference being that hardware failures occur
over time whereas software bugs exist undetected but usually only affect a very small (untested) region of
the overall system behaviour.

Code-level software FMEA has been performed for some years [2, 6, 8, 12], but has been considered
impractical except when applied to small pieces of highly critical code because of its cost. On the other
hand, software FMEA of a more abstract specification of the system can ignore important implications of
failures, especially where code is not automatically generated from the abstract specification.



This paper presents a tractable method for automating code-level software FMEA, providing results at a
level where they can be understood and acted on by software engineers. A tool implementing this method
has been applied to a travel expenses payment program, and some of the automatically produced results
are presented. Such automation extends significantly the range of software for which software FMEA
becomes a realistic proposition.

2. Automating FMEA
2.1 Relevant previous work

This work is inspired by recent success in automated electrical system FMEA [14], where automated
analysis is now in routine use in industry [16]. In that work, the expected behaviour of the system is
simulated from the model, and results are abstracted to the level of the function of the system. A
comprehensive set of possible failures is identified from the components that compose the structure of the
system. For each possible failure, the simulation and abstraction is repeated, and the results with the
failure present are compared with the results when no failure is present. The difference between the two
sets of results gives the system-level effect of that failure. For electrical system FMEA, the software
produces automated reports such as the example shown in table 1.

Item/Fn | Potential Failure Cause Potential Failure Mode | Potential Failure Effect | Sev | Occ | Det
(1628) The component IGN-SWITCH has | Regardless of any Doors failed to lock. 6 1 4
failure switch stuck at start and event change, the
component FR_.LOCK_-ACTUATOR | ‘doors locked’ function
has failure switch stuck at was never achieved.
position b.

Table 1: Example from generated electrical FMEA report

Related techniques to those used in the automated FMEA in [14] have been applied to the debugging of
software [3]. By treating a piece of software as a model of the desired system, it is possible to reason
about the ways in which faults can be propagated through the model in order to derive the possible causes
of a given set of symptoms.

2.2 Software FMEA automation

The research described in this paper adapts the idea of automated FMEA from the previous work in the
electrical domain. There are three main aspects to this work:

Automated model construction. The work in [3] was able to explore single execution paths through a
piece of software. In order to generate an FMEA for a failure on a piece of software, it is necessary
to propagate all possible effects. This means that the techniques used in [3] are not adequate for
performing software FMEA, and so techniques are developed capable of automatically constructing
a fault propagation model which can generate all possible effects of a failure.

Injection and propagation of faults. All possible faults that could occur in the software need to be
identified, so that their effect on the overall system can be explored. Given a specific fault, the fault
propagation model automatically constructed from the software can be used to decide what parts of
the piece of software could be affected by a specific fault, and in what way they can be affected.

Identification of system level effects. Generating a list of all variables affected by a fault would be
far too much detail to report to an engineer. It is necessary to abstract the results of the analysis to
the system level in order to report on the effect of a fault.

The next three sections will describe how each of these subgoals is achieved, in order to attain the overall
goal of automatically generating a useful software FMEA report.

3. Automated model construction

The source code of the software to be analyzed is parsed and transformed into a fault propagation model.
This is essentially a graph, where the source code statements are the edges and the variables are the nodes
of the graph. It is then possible to use the graph to reason about how the effect of a fault can propagate
through the program.



This is clearly language-dependent, and this paper describes an automated software FMEA system that
works for a large subset of the JAVA language, and is applicable to other imperative languages.
Limitations of this approach will be addressed in section 7.2, but generally correspond to the kind of
coding restrictions recommended when constructing safety-critical software [10].

Fault propagation is complicated by the reuse of memory, and this problem has been overcome by using a
Single Assignment Form (SAF) model [7] that transforms each memory write to allow symbolic memory
locations to be logically written only once. SAF is used to generate a graph with distinct nodes for each
value of a variable. This is illustrated for a simple code fragment in figure 1.

source code | SAF FP arcs
1 a=1; a1=1; (0,21)
2 b=2; b;=2; (0,22) & 3. a=a+b
3 a=a+tb; ag=aj+bi; (a1, a2), (b1, a2) O
4  b=b*b; ba=b1*b1; | (b1,bz) 5,852
5 c=axb; ci=ag¥bz; | (az,c1), (b2, c1) g

Figure 1: Example propagation model

Two issues arise during the process of building a fault propagation graph using SAF. Non-linear
(conditional) code does not give an unique substitution for variables written in alternative execution
paths. Secondly, multiple executions of a statement (e.g. in a loop) generate an indeterminate, possibly
infinite, number of variables.

3.1 Conditions

For fault analysis we assume all faults in the reaching definition of a post conditional variable will
propagate for some execution. If this is not the case, then the program must contain control structures
with dead branches or complex algorithmic constraints and if the resulting failure modes turn out to be
significant, the FMEA will highlight the issue. Either a set of faults will have no effect, or an effect will
be generated where the engineer knows of application constraints that explain why the failure modes
could not happen. Collard [7] uses an oracle ‘function’ (¢) to aggregate multiple reaching definitions. For
example ¢(x1,x3) in figure 2, where x following the loop depends on x; for e={12345}, and x; for
e={125}. This work adopts the subscript notation x,,; to represent the conditional statement output as a
unique location. The fault propagation graph constructed indicates that, in the worst case, code in the
conditional could affect the value of variables involved in the conditional statements.

1 x=1; x1=1;
2 | if (j<acomst){ if1=(ji<aconst)
condition{if;
3 X=n; Xo=n;
4 X=X*2; X3=X9*2;
} }xe1=0(x1,%3)
5 x=x+1; X4=Xp1+1;

Figure 2: Simple condition
3.2 Iteration

For fault propagation we do not wish to consider either the specific instances of a statement, or a specific
execution iteration. This requires a set of variable instances, demonstrated by the need for statements 4
and 5 in figure 3, to be transformed using an additional set of variables. An additional notation is used to
create a symbolic notation for each of these iteration variables.

For fault propagation, variables that are not accessible outside the loop are not interesting, as long as any
effects have been propagated to memory that is accessible outside the loop. For scalar variables, this
means that any variables referenced in the first execution of the loop are either assigned prior to the loop,
or as part of a preceding step in the loop code. For subsequent executions there is the additional



possibility that a value written in a previous execution is used. Several iterations may be necessary to
propagate faults to some output variables. For example, in figure 3, an initial fault in statement 1 affects c
but not until the second iteration. L is used to indicate a value defined prior to program execution, for
example an uninitialised variable. When faults are propagated through this model, an arbitrary number of
iterations will be assumed, allowing for worst case fault dependencies.

1 a=expression...; a1=0;
2 b=2; b1=2;
3 for i = 0 ton { iterate {n = {1..n1 }, baro = b1
4 C=b; Can=b2|>(n71)
5 b=a; bapn=a1
} } be1=¢( b1, barn)
ce1=¢( L, C15N)

Figure 3: Example iteration

The @ subscripted outputs ensure that for each iteration the model only ever propagates errors from the
immediately preceding execution, simplifying the propagation graph.

Non-scalar variables typically allow any element of the variable to be written or read within the loop,
dependent on value-based information. Arrays or other data structures traversed by the loop variables
may be in single assignment form when a different element is written for each execution of the loop,
however, it is not easy to determine this property in the general case.

For FMEA, individual elements are not of interest since we need to consider a level of abstraction
appropriate for any possible execution, separating structures that perform different functions and affected
by different faults. For the case of arrays and the like, treatment as a homogenous item provides a
reasonable approach, since a fault propagating into an array element is likely to affect each statement
reading that array for some execution of the program. Clearly, this will weaken the propagation analysis
in some special circumstances, e.g. if a particular location in an array is used for a special purpose. In
these cases the failure mode understanding may be strengthened, however, because it seems appropriate
for an engineer to document an explanation (and check relevant code operation) for significant resulting
failure modes believed to be implausible. Often, such behaviours are caused by bad programming
practice, or misuse of data structures, and an FMEA highlighting the fact that an alternative design would
allow the design and/or implementation language to protect against failure modes is no bad thing.

Failures of the loop termination condition variable x, cannot increase the fault propagation output set of
the loop, however it could cause an incorrect number of executions of the loop, potentially causing non-
termination if the values used to produce the iteration condition expression are written in the loop. Non-
termination is a failure mode that is unique to software because it has the characteristic of causing all the
functions of a thread to fail. The analogy in electrical circuits is the short circuit that absorbs the available
power from the system. The electrical short circuit is treated as a special case during analysis and
potential non-termination within software would appear to warrant a similar special treatment in the
presentation of the results.

4. Injection and propagation of faults
All software faults can be characterized as faulty values:

* faulty I/O

* faulty transfer functions (whether due to wrong specification or wrong implementation)
* loss of transfer function (due to crashing or hanging)

* missing outputs

* unexpected outputs

In order to perform an FMEA, it is assumed that any value can become faulty and the propagation of that
faulty value is explored to all statements that depend on it. This is achieved by propagating the faulty
value using the fault propagation model already discussed, until the effects on system outputs have been
derived. The scope and path of the propagation define a failure mode.



5. Identification of system level effects

Functional interpretation [13] is a vital part of organising and abstracting the results of structural and
behavioural analysis into the form of an FMEA report able to flag significant potential problems.
Information regarding the purpose(s) of the system is required, and a functional model is used to provide
this information in a structured form. The functional model described in this section identifies the
purposes of the system by means of associations with the system interface.

We use a definition of function described by [1] with some additions (in italics). “An object or system O
has a function f if it achieves an intended goal (purpose) by virtue of some external trigger T resulting in
the achievement of an external (behavioural) effect E.”

Two function states are defined. Tr(f) returns a Boolean indicating that function f is triggered and Ef{(f)
provides the achievement of the effect. The inoperative, failed, unexpected and achieved function states
are defined respectively as follows:

In(f)<>~Tr(H)a~Ef(f)
Fa(f)=Tr(HA-Ef()

Un(f) <> ~Tr(DAEL()
Ac(f)= Tr(f)AER()

The function interpretation language allows functions to be decomposed into subsidiary functions to build
a functional hierarchy.

A good deal of intuition regarding the function model can be obtained from an example functional
description for a simple travel expenses payment program shown below:

FUNCTION pay_expenses FUNCTION display_expenses_total
ACHIEVES pay_money owed ACHIEVES verify_expense_items
BY run_program BY show_expense items_on_screen

TRIGGERS display_expenses_total AND
AND print_cheque show_total on_screen

FUNCTION make envelope FUNCTION print_cheque
ACHIEVES allow_delivery cheque ACHIEVES transfer money
BY run_program BY print_in_figures
TRIGGERS address_envelope AND

print_in_text
AND

print_details

The purpose (ACHIEVES), trigger (i.e. run_program) and effect (e.g. address_envelope) symbols all refer
to elements that will be described in the following sections.

5.1 Linking functions to behaviour

The functional model must be linked to the behaviour of the program via the triggers and effects. These
will be system inputs and outputs and could be memory locations, or ports that influence external devices
or system calls at higher levels.

The triggers and effects from the function definitions need to be mapped onto variables in the program
implementing the functions, either global variables or instantiated variables.

The code in figure 4 represents a much simplified program class implementing the expenses payment
problem. To avoid having to consider external library functions for I/O in this compressed example, we
treat assignment to some specific variables as the output of the program. The discussion and example
below shows how the functions shown previously are mapped to this code.



class Expenses { return (ar + br); }
double RATEA, RATEB;

double expense cost=0; private double findExpenseTotal(double hotel,
double milage cost=0; double sundries){
int employee no; double result = hotel + sundries;
display("Hotel: ", hotel);
public void Expenses(float hotel, display("Sundries: ", sundries);
float sundries, int milage, display("EXPENSES: ", result);
String address, int emp) { return result; }
RATEA =0.38;
RATEB =0.31; private void printCheque(int emp no){
employee no = emp; String comment = "OUTPUT: ";
milage cost = calculateMileage(milage); double total cost = expense cost+milage cost;
expense_cost = findExpenseTotal(hotel, String PRINTER P = "Cheque"+emp_no;
sundries); employee no =emp_no;
printCheque(employee no); double PRINTER T = total_cost;
produceEnvelope(address); } double PRINTER S = formatText(total cost); }
public double calculateMileage(int miles){ public void produceEnvelope(String address){
double ar = 0; String OUTPUT_ENVELOPE =
double br = 0; address+employee no; }
if (miles > 400){
br = (miles - 400) * RATEB; public void display(String prompt, double answer){
miles = miles - 400; }
ar = miles * RATEA; OUTPUT?2 = answer; }

Figure 4: Code for example

In this example, both the show_expenses_items _on_screen and the show_total on_screen effects require
interpretation of OUTPUT? (as each of them invokes display), however these are different instantiations
of the same subroutine. The dot notation is used to traverse the abstract call stack (ACS) resulting in the
following definition of effects for the expenses example:

Expenses.findExpenseTotal#1.display.OUTPUT2

AND

Expenses.findExpenseTotal#2.display.OUTPUT2
IMPLEMENTS
display_expenses_total.show_expense items _on_screen

Expenses.findExpenseTotal#3.display. OUTPUT2
IMPLEMENTS
display _expenses_total.show_total on_screen

Expenses.printCheque.PRINTER T
IMPLEMENTS print_cheque.print_in_figures ...etc

5.2 Faults and program execution

When faults are propagated through the model of the program, they can affect the expected achievement
of functions in several ways: They can lead to functions not being achieved when they should have been,
and also to functions spontaneously being achieved when they should not have been. Each of these
occurrences is reported in the FMEA results.

For hierarchical function descriptions, the state of a parent function is determined from its subsidiary
functions. It is necessary to account for partial functionality. For subsidiary function conjunctions or
disjunctions the most specific risk failure consequences are included, allowing partial functionality to
mitigate failure, although of course, the failure of the top level function is reported

5.3 Function failure risk

Generally for FMEA, severity, detectability and occurrence values are calculated (as was illustrated in
table 1 for the electrical FMEA example). The absolute values of the numbers have little significance, but
they allow generation of a ranked summary, providing prioritization of perceived failure mode risk.
Software metrics such as code complexity have been shown to be correlated to defect rate, and have been
suggested [9] as a way to provide occurrence (fault likelihood) values. Severity and detection values can



be associated with system functions, and linked to the description of purpose. These values are decided
for each purpose, in the range 1-10 as documented in the FMEA literature [15], with larger values
indicating greater significance.

For the expenses example, we enhance the function model as follows:

PURPOSE pay_money owed DESCRIPTION "reimburse expenses to employee"
FAILURE CONSEQUENCE "incorrect expenses payment"
SEVERITY 9 DETECTABILITY 5

PURPOSE verify_expense_items
FAILURE CONSEQUENCE "Need to check expense items and total manually"
SEVERITY 5 DETECTABILITY 6

PURPOSE transfer money
FAILURE CONSEQUENCE "Cheques must be written by hand"
SEVERITY 8 DETECTABILITY 9

PURPOSE allow_delivery of cheque
FAILURE CONSEQUENCE "envelope must be addressed by hand"
SEVERITY 6 DETECTABILITY 3

6. Results for Expenses Program

The software FMEA tool has been applied to the travel expenses program linked with the functional
description given in the previous section. The software FMEA tool generated a fault propagation model
of the type described in section 3 from the Java code of the expenses program. It then calculated the
result of propagating the effect of a fault in each input and variable in the system, and interpreted the
results using the functional description, and condensed the results into a failure mode summary.

Figure 5 shows an example output from the fault propagation of external faults. It shows that an error in
the hotel or sundries inputs causes a failure to the pay_expenses function which is severe but because the
error will show up in the display _expenses function failure, is detectable.

Notice that the FMEA does not guarantee that a fault will result in all (or even any) of the function
failings provided in the failure mode - it provides a worst case scenario. A system may only partially
exhibit a failure mode mechanism during an actual failure scenario dependent on the exact nature of the
fault.

Variable Sev/
Block Faulty Statement affected Failure Mode Det | Potential Effects
Pay Expenses failed;
(because Display incorrect expenses payment,
expenses total Need to check expense items and
hotel[#V6] failed;Print cheque total manually Cheques must be
Expenses(...{... {#S4] |Expenses(...{...J#S4] |sundries[#V7] failed;) 95 |witten by hand

Figure 5: Summary FMEA for external inputs

The FMEA results focus attention on the most significant failure modes, and how faults may potentially
cause failure of the system. The task for a system reliability engineer is to use their understanding of the
system and its design from the FMEA to ensure that the failure modes are acceptable. This may be done
in several ways by checking:

+ that faults have the correct level of detectability in relation to their severity

* that the correct fault mitigating functions are in place (e.g. exception handlers that mitigate the
effects of low level subsidiary function failure)

* that unexpected failure modes do not exist, for example, because implementation ‘breaks’ the
design concepts leading to unexpected propagation of failure effects.

6.1 Failure modes

Propagating the potential faults for every variable produces a large number (of the same order as lines of
code, since statements tend to assign or reassign a variable) of individual results like the one shown in
figure 5. This is far too much detail in practical cases for engineers to look at every result, but the



consistency of function identification allows these results to be automatically grouped by the
permutations of function failure produced.

Figure 6 illustrates all the failure modes that occur for the example, showing the modules that are able to
produce each of those failure modes. The centre column provides detail that need not be shown in a
summary report, and production software would allow the detailed fault causes to be tracked and viewed
where necessary. The following paragraphs illustrate how an engineer might analyse these results.

SUMMARY

Blocks Faults Failure Mode

[#S1'class Expenses{}',

#S4'Expenses(...X...}',

#S19'calculateMileage (...){...}',

#S30findExpenseTotal (...{...}', [#V1'RATEA', #V2'RATEB', #V3'expense_cost',

#S839'printCheque (...){...}', #V4'milage_cost' , #V5'employee_no', #V32'ar,

#S53'display(...){...}' ] #V59'comment' , #V74'prompt', #V77'OUTPUT1'] |[]

[#S4'Expenses(...){...}', [Display expenses total,

#S30findExpenseTotal (...){...}' ] [#V6 #V43'hotel', #V7'sundries' , #V44'sundries'] |Print cheque]
[#V8'milage', #V12'#V40'RATEA',

[#S4'Expenses(...{...}', #V14,#35'RATEB' , #V20,#V62'milage_cost'

#S19'calculateMileage (...){...}', #V24'expense_cost' , #V30,#V37,#V39'miles' ,

#830findExpenseTotal (...X...}', #V33,#V36,#V38br' , #V41'ar', #V60'total_cost'

#839'printCheque (...X...}', #V61'expense_cost', #V63'PRINTER_P',

#S56formatText (...){...}' ] #V66'PRINTER_T', #V79'PRINTER_S'] [Print cheque]

[#S4'Expenses(...){...}',

#S39'printCheque (...){...}', [#V9#V70'address' , #V64,#V73'employee_no',

#S50'produceEnvelope (...X...}'] #V72'0UTPUT_ENVELOPE'] [Envelope]

[#S4'Expenses(...){...}',

#S39'printCheque (...){...}'] [#V10'emp', #V16'employee_no', #V57'emp_no'] |[Print cheque, Envelope]

[#S53'display(...{...}' ] [#V75'answer', #V78'OUTPUT2' ] [Display expenses total]

Figure 6: Example result - failure modes

The first row contains the faults that cause no failure. In this example, this is due to unused initialisers
and unused results of method calls, but in general they could represent redundant code or code that does
not contribute to an identified (subsidiary) function of the system.

The first real failure mode consists of a potential two function failure — display expenses total and print
cheque — and can only be caused by failures in the FindExpenseTotal() or Expenses() methods. This
seems reasonable since both functions require the total calculated by FindExpenseTotal(), and it makes
sense (from the centre column) that only variables associated with the two expense items are involved.

The print_cheque failure mode has the greatest number of potential faults, and also can be caused by the
greatest amount of the code (unsurprising since this the only major purpose of the code), although the
methods listed do contribute in some way to the production of cheques, and at least the
produceEnvelope() and display() methods do not cause faults in the cheque printing.

Failure of the envelope function can be caused by faults in the produceEnvelope() method, as is to be
expected, and if the Expenses() method was a cause for concern, then given a suitable GUI/IDE, the tool
will show that only the address variable within this high level method causes the failure mode, which
makes sense. The PrintCheque() method appears anomalous however. Why would a fault in the block
associated with printing cheques cause a failure in Envelope production? The tool can report that this
could occur for a fault in the line employee no = emp no. Indeed, should the employee no instance
variable be set in this method? Why is the parameter emp_no being used when there is a class variable
containing this information? This failure mode and associated questions indicate that something is
probably wrong with the implementation/design of this method or class. It is worth noting that testing
could never have found this issue. It is a latent problem just waiting for another use of the method that
passes in a different value or seemingly simple edit of the method, that results in a value the designer did
not expect.



The print_cheque and Envelope failed failure mode might seem unlikely at first glance until we see that
all potential faults are related to employee number, which appears on both the envelope and cheque. Note
that it was not intended to be on the envelope, and thus was not identified as an output of the envelope
function, so some code would be identified as having no fault consequences, another cause for concern.
By adding the employee number to the display expenses function we would cause the failure mode to be
replaced with one that contains print cheque and_envelope and display expenses thereby reducing the
risk for these faults, by increasing detectability.

For identified concerns, more detail about how the failure mode occurs at various levels could be
provided by call graphs, program slices and the conditions that must exist to produce the failure mode. At
this point an engineer may find:

*  The implementation has failure characteristics (flaws) that are not expected from the design.

e Identified failure modes do not actually exist because of implicit assumptions about the way the
software will be used, eg. specific value combinations preclude certain execution paths or event
sequences do not exist in practice. These should all be documented (ideally in an automatically
checkable form) to ensure that in future versions the assumptions still hold.

7. Conclusions
7.1 Achievements

The automatically generated software FMEA report described in this paper has the following
characteristics:

« It provides an evidence-based analysis that deals with a wide range of possible behaviors at a
low level of precision.

e It considers hypothetical faults and determines the possible effects assigning significance to
them. Any statement, module, or subsystem is assumed to have the potential to fail or produce
incorrect output, and it assesses the potential effects.

e The results can be used to identify design or implementation issues that might lead to faults with
disproportionate or unexpected consequences, identifying areas of design or implementation that
allow significant failures to occur. Engineering effort can then be expended to address the most
significant faults.

In the example given, the relationship between size of the functional description and the size of the
program code is not representative. A typical system will have much more code, but would not have a
proportionally larger functional description, making construction of the functional description a
reasonable overhead.

7.2 Limitations

The work described here does not cover all constructs in all languages. It would be impossible to apply
these techniques to assembler programming. However, modern software languages both encourage and
enforce higher levels of structuring and this helps to inherently constrain faults. Decades ago, high level-
languages introduced typed data and procedures to help structure data and code and these have been
refined ever since. Object-oriented methods provide common structures to partition data with code. These
techniques make software FMEA analysis feasible in that they constrain potential fault impacts.

The main limitations of this approach at present come from the need to trace dependencies between
variables. This is impossible with several programming constructs such as pointer arithmetic, generation
of dynamic structures, keeping track of variables in dynamic heap based structures, and recursion. It is
reassuring to note that the types of programming construct that cannot be addressed with this approach
are similar to the types of construct that the MISRA C guidelines for safety critical embedded software
recommend should be avoided [10]. Embedded software is the obvious area for early application of this
software FMEA tool, because of the safety critical demands and the limited, well defined external
functionality.

In order to apply these techniques to general software, the ability to handle dynamic data structures is
vital. For more complex dynamic data structures where a finer fault propagation granularity is required to



maintain the strength of the analysis, it is necessary to logically segment the heap into fault propagation
regions. Shape analysis and related research appears to provide some possible approaches [4,5].

7.3 Potential of this approach

The achievement of software quality levels is almost exclusively based around standards that define
development processes and practices. While development processes are vitally important (in any
engineering endeavor), they do not guarantee the quality of a product.

Testing is often the only evidence based analysis performed on software, and although testing can initially
give indications of quality, once the results are used to improve the software, the tests are no longer a
reliable indication of overall quality.

As observed by McDermid [11] we should look for evidence of software safety. To perform such a task
requires identification of the safety and functional requirements, followed by an analysis of the possible
failure modes of the product, mapped to the effects on the safety requirements. Code-level software
FMEA performs the required analysis, but is intensive of effort and impractical for all but the smallest,
most important pieces of code. Higher level software FMEA can conceal much of the detail that actually
affects system safety. The automated software FMEA presented here is practical for software composed
of at least thousands of lines of code. The results could be combined into system level software FMEA at
a more abstract level. The paper has presented different ways of reporting the results to engineers, and it
is expected that the most appropriate ways of presenting results will evolve as engineers try to use the
results.

One important use of this type of analysis is to focus further testing. The software FMEA can be used to
improve automated or source code embedded testing since tests can exonerate many potential faults
allowing the FMEA analysis to present an engineer with a reduced set of potential faults. Thus an
iterative cycle of software FMEA and test generation targeted to the specific structure and behaviour of
the implementation will ensure the maximum number of potential faults have been exonerated and
possible unexpected effects of the remainder are known.
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