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Conservative Claims about the Dependability
of Software-Based Systems
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Abstract—In recent work, we have argued for a formal treatment of confidence about the claims made in dependability cases for
software-based systems. The key idea underlying this work is “the inevitability of uncertainty”: It is rarely possible to assert that a claim
about safety or reliability is true with certainty. Much of this uncertainty is epistemic in nature, so it seems inevitable that expert
judgment will continue to play an important role in dependability cases. Here, we consider a simple case where an expert makes a
claim about the probability of failure on demand (pfd) of a subsystem of a wider system and is able to express his confidence about that
claim probabilistically. An important, but difficult, problem then is how such subsystem (claim, confidence) pairs can be propagated
through a dependability case for a wider system, of which the subsystems are components. An informal way forward is to justify, at
high confidence, a strong claim, and then, conservatively, only claim something much weaker: “I'm 99 percent confident that the pfd is
less than 1072, so it’s reasonable to be 100 percent confident that it is less than 1073.” These conservative pfds of subsystems can then
be propagated simply through the dependability case of the wider system. In this paper, we provide formal support for such reasoning.

Index Terms—Bayesian probability, safety case, software reliability.

1 INTRODUCTION

HERE is now a huge literature on the assessment of the
dependability of software-based systems, going back
several decades. In recent years, the assessment process has
started to be formalized in dependability cases, most notably
safety cases (see, for example, [1], [2], [3], [4], [5]). There are
now safety standards that require safety cases, e.g., [6], [7].
In this paper, we shall discuss some problems arising
from the need to assess uncertainty in cases where depend-
ability claims about a software component form part of a
wider system case. We believe that some aspects of
uncertainty have long been neglected or misjudged. For
example, expert judgments about the impact of the “quality”
of software development processes upon the dependability
of software systems often underestimate the uncertainties
involved. In recent work, we have proposed a formal
quantitative treatment of “confidence” to address this
omission [8], [9], [10].

Computer scientists, including software engineers, have
long had an uneasy relationship with uncertainty and with
its most powerful calculus, probability. Some of us can
remember discussions of 30 years ago about software
reliability. It was difficult then to persuade some software
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experts that there was inherent uncertainty in the failure
processes of programs and that probability was the appro-
priate way of capturing this uncertainty. Instead, it was
asserted that software failed systematically and thus that
probabilistic notions of “reliability” were meaningless.

Over the years, the position has changed. It is now
widely agreed that “systematic failure” just means that a
program that has failed in certain circumstances will always
fail whenever those circumstances are exactly repeated. The
uncertainty lies in our not knowing beforehand which
circumstances (e.g., inputs to a program) will cause failure
and when these will arise during the operational execution
of the program. It is this uncertainty that is represented in a
probabilistic measure of dependability, such as probability
of failure on demand (pfd).

The uncertainty discussed above concerns system
behavior—it is “uncertainty-in-the-world.” In the jargon,
this is called aleatory uncertainty. There is another form of
uncertainty that has, we believe, been neglected by the
software engineering community: This is uncertainty in the
dependability assessment process itself. This is called
epistemic uncertainty, and it concerns uncertainty in our
“beliefs-about-the-world” [11].

The presence of epistemic uncertainty means that we
cannot be certain that a claim about dependability—e.g., the
pfd is smaller than 10~3—is true. We might reasonably expect
that by collecting more supportive evidence, we would
increase our confidence in the truth of the claim, but it will
rarely be possible to collect sufficient evidence to eliminate
doubt completely." This prompts questions such as: How

1. One exception might be exhaustive testing in some specialized
situations. Such exceptions are, we believe, very rare.
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confident are we that the claim is true? How do we express
“confidence” quantitatively? How do we incorporate this
“assessment uncertainty” into wider dependability cases
and into decision making?

Consider the simple example of operational testing of an
on-demand software-based system. It is put on test and
survives 4,602 demands without failure. It is a simple
statistical exercise [12], [13] to show that you can claim the
pfd is smaller than 10~ with 99 percent confidence (there is
only a 0.01 probability that the pfd is greater than 10~3). The
assumptions here include: The oracle is perfect (ie., it
reports failure if and only if there truly is a failure), the test
cases are generated in a way that accurately represents the
operational environment (i.e., each is selected with the same
probability as in operational use).

If the assumptions are correct in this example, the only
epistemic uncertainty arises from the extensiveness of the
evidence; if we were to see more failure-free demands, we
would have greater than 99 percent confidence in the claim.
When the only epistemic uncertainty is the extensiveness of
the evidence, as here, it is easy to compute its impact upon
confidence: For any particular number of failure-free
demands, it is a simple matter to compute how much
confidence we should have in the pfd claim of 1073.

In practice, of course, the assessor would not be certain,
the assumptions were true, and this extra epistemic
uncertainty would reduce his confidence in the depend-
ability claim. The impact of assumption doubt upon
confidence in a claim is generally harder to quantify and
likely to involve expert judgment. See [10] for a more
complex example in which a Bayesian Belief Net is used to
structure an argument involving different kinds of assump-
tion doubt. There has been extensive research in recent
years on methods for elicitation of expert beliefs to populate
such arguments—see [14] for a recent survey—but this
remains a difficult area.

The difficulties involved in incorporating software
dependability assessment into quantitative safety cases for
wider systems, of which the software can be regarded as a
component, are well illustrated by the licensing process for
the Sizewell B nuclear reactor in the UK in the early 1990s.
There was extensive discussion—much of it in the public
domain—about the reliability of the software in the primary
protection system (PPS). The original reliability requirement
for this system was a pfd no worse than 10~*. However, it
soon became apparent that nuclear industry experts could
not come to a consensus that the evidence (quality of
production process, testing and static analysis of the
delivered product, etc.) was strong enough to support the
10~ claim with sufficiently high confidence.

The safety system of Sizewell B comprises the software-
based PPS and a simpler hardware secondary protection
system (SPS) in a one-out-of-two architecture [15]. When the
PPS claim turned out not to be supportable with sufficient
confidence, an extensive review of the wider plant safety
case was made, including what could be claimed for the
SPS. This showed that the contribution of the overall safety
system to the plant safety case would be satisfied if 1073
could be claimed for the PPS (partly because a stronger
claim could be made for the SPS).

Using qualitative evidence such as the quality of
the production process and extensive static analysis, the
regulators accepted that the system was adequately safe
based on this revised figure.> Some time later, and
following the licensing of the reactor for operation, the
PPS software was subjected to extensive statistically
representative operational testing. This direct evaluation of
its reliability supported the claim of 10~% pfd at a high-
confidence level [16].

After the licensing of Sizewell B, the UK’s Advisory
Committee on the Safety of Nuclear Installations (ACSNI)
set up a Study Group on the Safety of Operational
Computer Systems, chaired by one of the authors of this
paper. Among the recommendations to the UK’s Health
and Safety Executive (HSE) in the final published version of
the report [17] was the following:

Confidence in assessments of software-based systems is

usually less than for more conventionally engineered

systems. We believe that attention should be given to
incorporating formally in licensees” and regulatory guidance

a recognition of the importance of the level of confidence

that can be placed in assessments of risk within the concept

of an “adequate” safety case. What is needed is to clarify and

define the notion of “adequacy,” such that it can be used to

guide and justify decisions as to the required extent of
activities that will establish the level of confidence that can
be placed in a risk assessment.

During the Study Group’s discussions, it was suggested
that the UK principle of As Low As Reasonably Practicable
(ALARP)—referring to the required safety level (such as
pfd)—should be accompanied by a similar one concerning
confidence in that level having been achieved: “As Con-
fident As Reasonably Practicable” (ACARP). At the time of
writing, this suggestion of a formal demonstration of
confidence has not been taken up.

However, the experiences from Sizewell and subsequent
assessments have been codified in the UK nuclear indus-
try’s reissued Safety Assessment Principles [18]. These
explicitly require confidence building:

361 Independent “confidence-building” should provide an

independent and thorough assessment of a safety system’s
fitness for purpose. This comprises the following elements:

a) Complete and preferably diverse checking of the finally
validated production software by a team that is independent
of the systems suppliers, including:

- independent product checking providing a searching
analysis of the product;

- independent checking of the design and production
process, including activities needed to confirm the realiza-
tion of the design intention; and

b) Independent assessment of the test program, covering the
full scope of test activities.

362 Should weaknesses be identified in the production
process, compensating measures should be applied to
address these. The type of compensating measures will

2. This summary simplifies the detailed argument that takes into account
the frequency of the different initiating events that the SPS and PPS protect
against, and the scope of the PPS and SPS safety functions. The SPS is
simpler in both the technology it uses and also in the scope of the functions
it performs.
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depend on, and should be targeted at, the specific weak-
nesses found.

Standards are generally silent on the question of
confidence. For example, IEC61508 [19] has nothing to say
about the confidence that can be placed in the failure
probability levels (or failure rates) associated with Safety
Integrity Levels (SILs). While more extensive and demand-
ing evidence is needed to support the higher level SILs,
there is no guidance on how much evidential support is
needed to provide a particular confidence that a system lies
in a certain SIL.

On the other hand, over 10 years ago UK Def Stan 00-56 [20]
informally acknowledged the importance of confidence—for
example, it recommended the use of a diverse two-legged
argument to increase confidence in a dependability claim—
but, again, it contained no guidance on issues concerning
“how much” confidence can be claimed in particular
instances. More recently, Issue 4 of the Def Stan [7] explicitly
discusses the role of confidence and provides some guidance,
albeit qualitative, on how to interpret high, medium, and low
levels of confidence.

The need to address confidence explicitly in the HSE
safety assessment principles, and the experience with the
discussions about the PPS reliability (where the notion of
confidence had been treated rather informally), suggest there
may be advantages in exploring more formal—and ideally
quantitative—models of confidence. These more formal
approaches could provide a semantics for understanding
and communicating “confidence” and provide a rigorous
framework for negotiation during the licensing process.

An important goal of such a formalism would be to
provide a clear notion of how confident an assessor is, or
needs to be. In the Sizewell example, there were no clear
answers to questions of the following kind:

e How confident was the assessor in the eventually
accepted 107 for the pfd of the PPS?

e How confident did the regulator need to be so as to
“sign off” on this part of the safety case?

e How confident was the assessor in the original
requirement of 10~* and how much did this
confidence fall short of what was needed?

In order that an assessor’s epistemic doubt be included
in the overall risk assessment, it is necessary that these
questions be answered quantitatively in terms of the
assessor’s subjective probabilities.

In the Sizewell example, it was also not clear how a pfd
level, and the professed confidence in that level was used:

e If the assessor or regulator were “sufficiently”
confident in 103, how would this number be used?

e Does “sufficiently confident” mean “I can treat the
number as if it were true”?

e If, instead, “sufficiently confident” means some-
thing like 99 percent confident, then how is the
residual 1 percent (i.e., the chance that the system is
worse than the 1073 claim) treated?

At one stage, there seemed to be reasoning along the
following lines: “We are reasonably confident that the pfd is
better than 10~*; to be on the safe side, however, we shall only
claim 1073, and this is so conservative that we can treat this
figure as the true pfd in our calculations for the wider system
(plant) safety case.” In this paper, we investigate whether this

kind of reasoning can ever be justified, and if so whether the
resulting numbers can make it a useful approach.

It was interesting in the case of the Sizewell PPS that the
numbers involved were rather modest. It seemed possible,
in principle, for quite high confidence to be placed in these
required levels of reliability. This contrasts with other
industries where the required levels seem so demanding
that it will never be feasible to assert high confidence in
them convincingly [21], [22]. An obvious example concerns
the controversial requirement of 10~ probability of failure
per hour for particular flight-critical avionics systems in
commercial airplanes: How much confidence in such a
claim should a regulator place, based, for example, upon
evidence of adherence to the guidelines in [23]? This is far
from the most extreme example we have seen. Some
railway signaling applications apparently require failure
rates no worse than 1072 per hour [24].

Coming now to a safety case for a wider system—nuclear
plant, commercial aircraft type—the top level claim for this
system might be expressed, for example, as a probability of
(safety related) failure on demand, or failure rate. This claim
will, in turn, depend upon claims made at lower levels about
subsystem functions: e.g., pfd of a protection system, e.g.,
failure rate of a flight control system. If we knew the values of
these subsystem parameters with certainty, then in principle
we could decide whether the claim required of the subsystem
by the wider safety case had been satisfied. If, on the other
hand, these parameters are not known with certainty, as
seems likely, then these uncertainties need to be propagated
through the safety case, and the reasoning becomes more
difficult. In the remainder of the paper, it is this problem that
we address when the claims at subsystem level concern
software. We are not aware that such problems have been
addressed previously in the software engineering literature.

2 STATEMENT OF PROBLEM, AND A CONSERVATIVE
SOLUTION

As will be clear from the informal discussion above, human
judgment inevitably forms an important element of any
assessment of confidence (or its complement, doubt) when
this arises from epistemic uncertainty. If, as we believe,
confidence should be expressed probabilistically, the appro-
priate calculus of probability is a subjective Bayesian one.

The first problem in any Bayesian analysis is to obtain
the prior beliefs of the expert. Consider an example in
which a pfd is the subject of the dependability claim. This
pfd can be regarded as an unknown number that char-
acterizes the aleatory uncertainty discussed above. In
principle, we could estimate this number to any degree of
accuracy if we were in the fortunate position of being able
to generate unlimited numbers of statistically representative
test cases and we had a perfect oracle to decide whether
each test case had been executed correctly. In practice, of
course, we are never in this position: Instead, there is
uncertainty about the value of the pfd. This is the epistemic
uncertainty discussed above, arising from imperfect knowl-
edge, etc. This uncertainty about the true value of this pfd
requires it to be treated as a random variable, P, so that
confidence is expressed as a probability. Thus, the expert
may believe a priori that

Prob(P<y)=1-=x (1)
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expressing his confidence, 1 — z, that the pfd is smaller than
y. If the expert were able to tell us the values of x
corresponding to all possible values of y, we would have a
distribution, say F' (with probability density function f), for
the random variable P. This would describe the expert’s
complete (epistemic) a priori uncertainty about the value of
the pfd. In fact, it is well known that experts find it hard to
describe their complete uncertainty in this way: It is even
hard to elicit just one or two (y, z) pairs.

The second problem concerns how we would use the
information even if we knew f completely. Typically, such a
claim (and its associated confidence) would be only one of
several forming a dependability case. For example, this claim
might concern only one subsystem among many others, or
one among several functions of a wider system about which
the top-level claim is being made. Propagating uncertainty
about these many subsystem dependability claims (or
dependability claims about many functions) through such
complex cases can be difficult or even impossible.

A very informal solution to this problem that we have
seen uses the following reasoning: “I wish to claim that the
pfd of this component (or this function) is better than 1073. I
will attempt to collect sufficient evidence to be able to make
a much stronger claim, e.g., pfd is smaller than 10°, with
high confidence. I will then conclude, because of my high
confidence in this stronger claim, that the weaker claim is
conservative (i.e., I am certain that the true pfd is better than
this claim). I will then plug this conservative value into my
calculation for the overall dependability of the wider
system. I am confident that if I do this for all subsystems,
my calculated claim for the system will be conservative.”

Is such reasoning ever justified? There is an attractive
conservatism in the approach. If the evidence is strong
enough to replace the numbers in the previous paragraph
by ones representing even stronger claims at even higher
confidence, surely (it might be reasoned) eventually the
expert will allow the modest claim of 1073 to be treated as if
it were true?

In what follows, we show that such an approach can be
placed on a formal footing. But it turns out that the
conservatism in the approach can be very unforgiving, at
least until a priori beliefs are supplemented by extensive
evidence of failure-free working.

2.1 Result Based Only on Prior Beliefs
We start with the very simple situation where the expert has
only a priori beliefs about the pfd.> In fact, he is only
willing—or able—to express the beliefs represented by (1)
above for a single (y, z) pair. In other words, we only know
one point on his belief-distribution f.

If we had the complete distribution, then the quantity of
interest here is the expert’s subjective probability that there
is failure on a randomly chosen demand

3. But note that such beliefs may arise from informally taking account of
real evidence. The point here is that the expert is only prepared to tell us the
beliefs expressed as a (claim, confidence/doubt) pair, but not the reasons
for his holding such beliefs. We shall later consider the case where,
following the expression of these a priori beliefs, the expert obtains some
evidence from operational testing and uses this to modify his beliefs, using
Bayes’ theorem.

f(p)

Fig. 1. A typical distribution for an expert's belief, and the most
pessimistic distribution that satisfies the expert’s (y, z) belief.

Prob (failure on randomly selected demand)

1 )
:/0 p-f(p)dp = E(p)

by the formula for total probability. This is, for example, the
number that the expert might be prepared to “plug in” to a
wider safety case: It takes account of the expert’s complete
aleatory and epistemic uncertainty.

At the top of Fig. 1 is a typical distribution for an expert’s
belief. In reality, an expert is unlikely to be able to express
the infinitely many probabilities implicit in this figure.
Instead, he may only be willing to tell us about one point on
the distribution: represented here by y. Below is the most
pessimistic of all possible distributions, f(p), that satisfy the
expert’s (y, z) belief. It is obtained by placing the probability
masses associated with the intervals (0,y), (y,1) at the
extreme right of the intervals. Note that here the bars
represent probability mass in contrast to the probability
density function in the upper figure.

The lower diagram in Fig. 1 can easily be seen to
represent the “most pessimistic” set of beliefs—i.e., dis-
tribution f(p)—that satisfies the expert’s professed belief,
(1), because it is the distribution that maximizes (2), giving

1
Prob (failure on randomly selected demand) = / p.f(p)dp
0

= /yp-f(p)dp+/ p-f(p)dp <y(l —z) +2
0 y

=z +y—zy=y",say.
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In other words, if the expert is prepared to accept a claim y
with confidence 1 — z, as (1) asserts, then (3) shows that he
must believe the probability of failure on a randomly
selected demand is smaller than y* = z + y — xy. That is, he
can treat y* as the true probability of failure on demand—-
for example, in a wider safety case—and be assured that
this is a conservative number.

Unfortunately, it is easy to see that this approach is very
conservative when only a priori beliefs are considered, as
here. For example, for 107 to be an upper bound on the
expert’s (subjective) probability of failure on demand, he
would need to have 99.91 percent confidence that the
random variable, pfd, is smaller than 10~*. The problem lies
in the exact symmetry of the roles of = and y in (3): Any
claim, y*, he makes with certainty must be numerically
greater than the doubt, z, in the stronger claim, y. Note that
this is true regardless of the value of y, but in realistic
situations, = will usually be much larger than y.

This is, of course, disappointing and means that the
result is unlikely to be of practical interest. When evidence
of successful operation is available, however, the picture
changes for the better.

2.2 Result Based on Evidence of Failure-Free
Working

It is interesting to ask what is the pessimistic (but attainable)

bound for “probability of failure on a randomly selected

demand” when some failure-free operation* has been seen

(or, for that matter, some operation that might have

included some failures®).

When n failure-free demands have been observed, the
expert’s beliefs about P change from his prior belief,
represented by f(p), via Bayes theorem: His conditional
distribution becomes

(1—-p)"f(p) '
(1= p)" f(p)dp

The expert’s posterior probability of failure on demand is
just the mean of this:

f(p | n failure-free demands) =

(4)

Prob (system fails on randomly selected demand]

e —p)" f(p)dp

n failure-free demands) = =+ - (5)
Jo 0 =p)" f(p)dp

= E(p | n failure-free demands).

Clearly, the “most pessimistic” two-point distribution
above no longer applies—there cannot be positive prob-
ability mass at 1 following the observation of failure-free
demands. So the question is: What is the most pessimistic
f(p), still satisfying (1), which maximizes (5)?

In fact, somewhat surprisingly, it can be shown that this
is once again a two-point distribution (see the Appendix for
proof). As before, it has probability mass (1 — z) concen-
trated at y and probability mass x concentrated at z, where
the value of z is chosen to maximize the posterior mean of
P, which is, by substitution in (5):

4. Such operation must, of course, be statistically representative of
operational use, and the oracle used to determine that all demands are
successful must be perfect.

5. But which are not all failures because then the two-point distribution
above will be the worst-case one, with probability mass at 1.

TABLE 1
Examples of the Worst-Case True Probabilities of Failure,
Based on an Expert’s Prior Beliefs about a Claim
of y=0.5x1073

(1-x) | 0.90 0.95 0.99
n
0 0.10045 0.050475  0.010495
1 0.026821  0.013316  0.003011
5 0.007626  0.003951  0.001173
10 0.004235  0.002307  0.000852
30 0.001787  0.001122  0.000621
50 0.001278  0.000876  0.000573
100 0.000891  0.000689  0.000537
500 0.000578  0.000538  0.000507
1000 0.000539  0.000519  0.000504
R R VR L

I-y)'Q-2)+1-2)"z

The value of z corresponding to the most pessimistic two-
point (y,z) distribution is the one in (0,1) satisfying
K (z) =0, i.e., satisfying

(1 o Z)TL+1$ N
m—(l—y) (1-=) (7)
for n > 0 (for n =0, h'(z) =z > 0).

Using this distribution in (5), we obtain the value of the
probability of failure on a randomly selected demand that
the expert can treat as “true” (e.g., for a wider safety case),
and know that it is conservative (but attainable). It is easy to
see from (6) that this “true” pfd converges to y as n goes to
infinity (with z converging to y) since (1 —2) < (1 —y).

Table 1 shows some examples, when the expert expresses
his prior beliefs in terms of a claim of 0.5 x 1073, Thus,
when he has a prior confidence of 99 percent that the pfd is
smaller than 0.5 x 103, he can only claim 0.010495 with
certainty before seeing any evidence of failure-free working.
Such unforgiving results from Section 2.1, however, quickly
become more useful as evidence of failure-free operation is
gathered: With only 50 failure-free demands and the same
prior belief, he can be certain the probability of failure on a
randomly chosen demand is better than 0.000573. Compare
this with 0.0005 = 0.5 x 10~3—his original claim in which
he had a prior confidence of 0.99. As the evidence of failure-
free working gets larger, the expert becomes closer and
closer to certain that the original pfd claim is true (a priori,
remember, he was only 99 percent confident in this claim).
But the expert can never be certain of a stronger claim that
his original 0.5 x 1073, however much evidence he sees of
perfect working.

2.3 Result When the Expert Believes It Is Possible
That There Are No Faults

A problem with the previous result is that no matter how
much evidence of perfect working the expert sees, his
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worst-case probability of failure for a randomly selected
demand cannot be better than y: It is easy to see that the
expression h(z) in (6) goes to y as n goes to infinity.

The reason lies in the extreme conservatism of placing
all the expert’s belief about the pfd taking values to the left
of y exactly at y. As n increases, the expert’s beliefs change
as a result of two effects: The second point of support for
the expert’s conservative belief, z, moves to the left and the
probability mass at y increases (with a corresponding
reduction of the mass at z). In the limit, all of the the mass
is concentrated at y, but there is still no probability mass to the
left of y.

A real expert might regard this result as too conservative:
Most of us would regard very many failure-free demands to
be evidence of very low probability of failure on demand.
We might believe that any probability of failure for a
randomly selected demand, however small, could be
accepted if a sufficiently large number of failure-free
demands had been seen.®

As we shall see below, one way this can happen is the
situation in which the expert is prepared to believe a priori
in the possibility that the system is completely fault-free,
however small his prior probability for this.

We proceed by modifying the previous expressions for
the expert’s prior beliefs as follows: The expert now believes,
before seeing any evidence from the working system:

e Prob(P=0)=oq

e For p > 0, the expert’s beliefs are represented by an
improper probability density function f(p).” As
before, he is only willing (or able) to tell us one point
on this distribution: Prob(P <y | P>0)=1—-2z — a.

This formulation retains the former belief that
Prob(P < y) =1 — z, thus allowing a comparison with the
earlier results.

The most pessimistic prior satisfying the expert’s beliefs
is now the one where (generalizing the lower distribution in
Fig. 1) all of the the probability mass is concentrated at three
points:

e Prob(P=0)=oq
e Prob(P=y) =1-
e Prob(P=1)=u.

From this pessimistic prior, we have

Tr — Q.

Prob(failure on randomly selected demand)

! " (®)
:/0 p.fp)dp<zx+y—azy—ay=y

cf. (3). Once again, the expert can treat y** as the true
probability of failure on demand—for example, in a wider
safety case—and be assured that this is a conservative
number. As before, this bound, based solely on prior beliefs,
is very conservative, so it is again interesting to see what
happens when n failure-free demands have been seen.
The expert’s posterior beliefs are a mixed distribution
again, with some probability mass at the origin, and an

6. Assuming, of course, that the oracle can be trusted completely, and the
operational proﬁle accurately represents real use.
7. Thatis J; f(p)dp=1—a.

improper continuous probability density function when
p>0:

po(n) = Prob(P = 0 | n failure-free demands)
_ Prob(n failure-free demands A P = 0)
Prob(n failure-free demands) (9)

(67

fo 1*

f(p)dp + «
and

f(p | n failure-free demands)
_ (=p)"fp)
Jo (L=p)" f(p)dp +

Again, this is an improper density function—it does not
integrate to unity. Instead,

(10)

1
/ f(p|n failure-free demands)dp
0

=1 —Prob(P = 0| n failure-free demands).

The expert’s posterior probability of failure on demand is

Prob(system fails on randomly selected demand |

fo )dp
fo (1- )dp +

As before, it can be shown that the most pessimistic
improper density, f(p), is a two-point distribution having
probability mass (1 —z — «) concentrated at y and prob-
ability mass « concentrated at z, where the value of z is
chosen to maximize the posterior mean of p, which is, by
substitution in (11),

(11)

n failure-free demands) =

y(1—9)"(1—z—a)+2(1 —2)"z
1-y)"1l-z—a)+(1—-2)"z+a

(12)

The conservative posterior probability that the system is
fault free is obtained by substituting the most pessimistic
prior f(p) into the expression (9):

!
—-y'l-z—a)+(1-2)"z+a

po(n) = { (13)
It is easy to see that this increases as n increases, and
po(n) — 1 as n — oo. Thus, confidence in fault freeness can
be made arbitrarily close to certainty by the observation of a
sufficiently large number of failure-free demands, however
small the expert’s a priori confidence in fault freeness.

As before, z — y as n — oc. Tables 2, 3 and 4 give some
feel for the way in which posterior beliefs—both for the
“plug-in” probability of failure on a randomly selected
demand, and for the probability of fault freeness—depend
upon the prior beliefs and the amount of failure-free
working that has been seen.

For example, in all cases here the expert will be able to
treat the original claim—0.0005—as true after only a modest
number of failure-free demands. He will be able to treat as
true, a claim that is an order of magnitude better than this if
he has strong enough a priori belief in perfection (o« = 0.9 in
Table 3). While such a belief might seem unreasonably
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TABLE 2
Examples of the Worst Case True Probabilities of Failure,
Based on an Expert’s Prior Beliefs about a Claim of
y=0.5x 1073, with a = 0.1

x [0.90 0.95 0.99

n Mean po(n) Mean po(n) Mean poln)

0 0.1004 0.1 0.050425 0.1 0.010445 0.1

1 0.026767 0.105456 (0.013264 0.102644 | 0.002961 0.100549
5 0.007571 0.106759 [0.003899 0.103350 | 0.001123 0.100830
10 0.004180 0.107183 [0.002255 0.103669 | 0.000802 0.101073
30 0.001731 0.108274 (0.001069 0.104663 | 0.000570 0.101997
50 0.001221 0.109266 |0.000822 0.105615 | 0.000521 0.102919
100 [0.000833 0.111733 [0.000634 0.108005 | 0.000484 0.105251
500 |0.000498 0.135607 |0.000467 0.129948 | 0.000443 0.125860
1000 [0.000441 0.168920 [0.000433 0.161356 | 0.000423 0.154890

Here, “Mean” is the worst-case probability of failure on demand that the
expert can treat as true; “py(n)” is the expert’s posterior probability that
the system is fault free. The numbers below the horizontal line in the
table correspond to means that are smaller than the original claim of
y=0.5x 1073, i.e., the expert can treat this conservatively as true.

strong, it should be remembered that all of these results
correspond to the same prior belief, Prob(P <y) =1 —u:
They differ only in how this is partitioned into beliefs about
P=0and 0< P <uy.

3 DiscussIiON

We have provided a formalism to support the kind of
argument that has sometimes been used informally in real
safety cases. That is, an expert can treat a claim about
probability of failure on demand as true if he has sufficient
confidence—albeit not certainty—in the truth of a stronger
claim and he can be sure that this “modest” claim will be
conservative. The value of such an approach, of course, is

TABLE 3
As Table 2, but with a = 0.5

-x [0.90 0.95 0.99
n Mean po(1) Mean po(1) Mean po(1n)
0 0.1002 0.5 0.050225 0.5 0.010245 0.5
1 0.026550 0.527163 [0.013056  0.513111 |0.002759  0.502643
5 0.007350 0.533201 [0.003689  0.516208 |0.000921 0.503638
10 0.003958 0.534725 [0.002044 0.517255 |0.000599 0.504344
30 0.001508 0.537761 0.000858  0.52001 |0.000367 0.506893
50 0.000997 0.540268 [.000610 0.522518 |0.000318 0.509396
100 |0.000607 0.546281 [0.000420 0.528668 |0.000278 0.515627
500 [0.000256 0.605383 0.000238 0.583725 (0.000222  0.566232
1000 |0.000186 0.667187 [0.000189  0.643364 |0.000189 0.622626
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TABLE 4
As Tables 2, 3, but with o = 0.9

-x | 0.90 0.95 0.99
n Mean po(n) Mean po(n) Mean po(n)
0 0.1 0.9 0.050025 0.9 0.010045 0.9
1 0.026334 0.948683 |0.012849 0.923405 [0.002558 0.904575
5 0.007129 0.958696 |0.003479 0.928197 [0.000719 0.905633
10 0.003737 0.960371 |0.001834 0.929102 |0.000398 0.905988
30 0.001288 0.961564 |0.000649 0.930145 |0.000166 0.906910
50 0.000778 0.961811 |0.000402 0.930741 [0.000118 0.907742
100 0.000391 0.961998 |0.000214 0.932010 [0.000080 0.909755
500 0.000079 0.962148 |0.000051 0.950834 [0.000042 0.926374
1000 | 0.000039 0.962167 |0.000027 0.962996 10.000032 0.937030

Note that the result in the first two columns corresponds to
1—xz=a=0.9. In this case, the expert’s prior beliefs have no
probability density between 0 and y, so the most pessimistic prior has
probability mass on only two points, Prob(P = 0) = 0.9 and Prob(P =
1) = 0.1 so that the a priori mean is 0.1, as shown in the first cell. The
higher horizontal lines here are as in the previous figures. Beneath the
lower horizontal lines, the expert can conservatively treat as true, a claim
that the pfd is no worse than 0.5 x 10~%, i.e., an order of magnitude
better than the original claim (about which he had a priori doubt).

that this conservative pfd value can simply be “plugged in”
to a wider safety case, and the expert can know that the effect
on any claims made at this higher level will be conservative.

This approach is much simpler and more practical than
taking complete account of the uncertainty about a pfd value
for two reasons:

e It is well known that experts find it difficult to
describe their beliefs in terms of a complete
distribution, but they may be able to probabilistically
express their confidence that a variable (e.g., a pfd) is
smaller than a given number (i.e., a single percen-
tage point on the distribution of their beliefs).

e Even if a complete distribution were available, it
would be very difficult to propagate this through a
wider safety case (e.g., where the reliability of the
wider system is a function of the reliabilities of
many other subsystems). Propagating known-to-be-
conservative numbers, in contrast, is in principle
simple.

Not surprisingly, when based upon a priori beliefs alone,
as in Section 2.1, such an approach is very conservative; in
fact, it is too conservative to have practical usefulness. But
when the expert begins to see evidence of failure-free
working (as in Section 2.2), this conservatism lessens, and it
seems that the results can be useful.

However, as we note, the conservative claim is bounded
by the value of y in the expert’s original statement of belief,
(y, z). Even with extensive evidence of perfect working, the
best that can be claimed is y. It seems reasonable that a real
expert would—at least after the fact, when confronted with
extensive successful operation—find that this did not
represent his expectations. Rather, most experts, we believe,
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would come to believe that the pfd is smaller than any y* for
sufficiently large n, i.e., y* — 0 as n — oo.

The reason for the extreme conservatism is that we place
all the probability mass lying to the left of y in the expert’s
a priori distribution f(p) upon the point y itself. The expert
has said initially “all I can tell you about my prior beliefs is
that the chance of the pfd being smaller than yis 1 — z.” In
fact, if specifically questioned about it, it is likely that he
would be prepared to say something further along the lines
of: “I cannot tell you anything further in detail about how
my beliefs are distributed in the interval (0,y), except that
f(p) is nonzero at all points in this interval.” In other words,
our conservatism is too conservative to represent his beliefs
about the pfd in the interval (0, y).

Of course, this conservatism places a serious constraint
on the usefulness of the results here. Imagine that, for a
wider safety case, we need to claim a pfd no worse than y*
for the system under examination and that y* <y. No
matter how much evidence of successful operation he
collects, the expert will not be able to make the y* claim
unless he is prepared to expand his expressed a priori
beliefs beyond the (y,z) used in our analysis.

A theoretical way forward is for the expert to give a second
point on the distribution of his prior belief distribution,
f(p)—say (y**,z™), where y** < y*—essentially expressing
belief about the interval (0,y) similarly to his earlier
expression of belief about (0, 1). It is then easy to extend the
results in the earlier part of the paper to show that as the
number of failure-free demands, n, increases, the conserva-
tive claim approaches the bound y**. That is, for a sufficiently
large n, the expert will be able to claim the required y* (> y**).

The difficulty with this approach, of course, is that the
expert has to be able to tell us his belief, expressed as a
probability, that the pfd is smaller than y**—i.e., he has to
be able to quantify a very small confidence, 1 — 2**. It is well
known that experts are very poor at estimating the extreme
tails of probability distributions.

Notice how the reasoning required here contrasts with
that involved in the analysis of Section 2.3. Here, the expert
believes there is probability mass at the origin and so is
expressing a belief about perfection. He might plausibly
reason something like this: “This system has very simple
functionality, it has been designed very simply, and I have
evidence of certain kinds of formal verification of its
correctness, so I think there is a chance that they got it
completely right.” This is very different from reasoning that
“I know this system is too complex to be correct, so I know
it will eventually fail in operation, but I am reasonably
confident that the pfd is extremely small.” The two
statements are very different in kind and support for them
comes from very different evidence. We think that real
experts would be more comfortable with the former than
with the latter.

The work reported here represents only the beginnings of
a practical probabilistic calculus of confidence for depend-
ability cases—clearly much further work is needed. The
problems are both theoretical and practical. Theoretical
issues concern the representation and propagation of
confidence through complex cases, which typically involve

many disparate sources of doubt. Practical issues concern
doing this with different, often incomplete, evidence sources.

For example, in this paper, we have only considered the
situation in which interest centers upon the probability of
failure on a randomly selected demand. Imagine, instead,
we were interested in the probability of surviving m future
demands (say, the number of demands expected in the
system’s lifetime). It would be incorrect simply to use
the conservative bound, say y*, obtained as above and
estimate this probability using (1 — y*)™. Instead, we would
need to find the prior that produces the most conservative
value of E((1 — P)™). Similar comments apply to other
dependability measures: The point here is that a prior that
is conservative for one measure will not generally be
conservative for another.

Other issues and questions for future study include the
following;:

e Does the approach generalize to claims based on
continuous measures, e.g., failure rates?

e Can the results be generalized to the multiattribute
case, where claims concern more than one measure,
e.g., (pfd, availability)?

e Can other kinds of evidence, of the kinds available
for realistic safety cases, be used in this kind of
analysis?

APPENDIX

STATEMENT

Let P be the system pfd treated as a random variable with

density f(p).
Here, we show that

Jo @ —p)"" f(p)dp
L =)o)y,

(1 —pl)”’H(l —z)+ (1 - pg)"Hac

- 1-p)"Q1—2)+1—p)"x ~’

E(P | n failure free demands) = 1 —

0<p <y<p<1
y
0

and the bound (1) is reached with the two-point prior
probability distribution of P:

Prob(P =p;) =1—z;
Prob(P = py) = x.

Lemma. If q is a positive random variable and n is a positive
integer, then

(B = (B

Proof. If > 0 and a > 1, the function f(x) = 2 is convex,
so, by Jensen’s inequality,

E(z") = (E(x))". (2)
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Substituting x = ¢" and a = 2L into (2):

n

141

E(¢"Y) > [B(¢")]™,

which implies
[E(q" )7 > [E(q"))"
O

Proof of the Statement. Let us introduce four (unknown)
values p1, p2, p3, ps:

(ﬁ(l—pﬁf@ﬁm)%
p4=1— f .

Obviously,

0<p,p3<y,
y<p,ps <1

In accordance with the lemma

1 < p3, (3)
D2 < P4 (4)
because
1—p1 = (B((1—P)"" | P <y))™
l—py=(E((1-P)"|P<y)
L—po = (B(1 = P)"" | P> y)),
L—ps=(BE(1-P)"| P>y)"

We can now use the values p1, ps, p3, ps4 to write down
an expression for E(P | n successful runs)

1 _ r7+1 d
E(P | n successful runs) =1 — fo Jp)dp
fo (1- p)dp
0 =p) e + [, (1 ”“f(p)dp )
Ji@=p)" f(p)dp+ [ (1 —p)" f(p)dp

(1 *pl)"ﬂ(l —z)+(1 *Pz)"ﬂx
(1—p3)"(1—2)+ (1 —p)'x

Applying (3) and (4) to (5), we finally obtain the
following upper bound:

—1-

E(P | n successful runs)

o - )" =)+ (1= po)" (6)
N (1 =p)"(1—2)+ (1 —p)'z

and the bound (6) is obviously reached when one
chooses the two-point prior distribution of P:

Prob(P =p;) =1—z;
Prob(P = py) = x;

0<p<y<p <1

Comment. The unknown values p; and p; are found as a
solution of the two-dimensional optimization problem

(1 _ pl)'rL+l(1 _ fL') + (1 _ p2)n+lx

I—p)(-2)+1—p)z "

subject to constraints

0<p <
<py <1

In general, p; and p; may differ from y and 1.
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