
An Approach of Automatically Performing Fault Tree
Analysis and Failure Mode and Effect Techniques to

Software Processes

Danhua Wang
State Key Laboratory for Novel Software Technology

Nanjing University
Nanjing, China

wangdanhua6004@hotmail.com

Jingui Pan
State Key Laboratory for Novel Software Technology

Nanjing University
Nanjing, China

panjg@cn.fujitsu.com

Abstract—In practice, engineers find that software
quality depends heavily on the maturity and reliability of
the software process. Therefore, organizations are placing
increased attentions on finding an efficient way of
integrating elements of software process in order to
produce high quality software with lower cost and risk.
Various kinds of techniques are used to manage, monitor
and analyze software process. We proposed an idea of
modeling software process in Little-JIL language, and then
introduce automatic Fault Tree Analysis (FTA) technique
and Failure Mode and Effect Analysis (FMEA) technique,
two fully-fledged and widely used safety analysis
techniques, to analyze software process. Results of these
two techniques can be combined to improve software
process, which may lead to software products with higher
quality and reliability, also lower cost and risk.

Keywords-FTA; FMEA; software process; automatic

I. INTRODUCTION
Software process is a series of ordered activities developing

and maintaining software products. Each activity indicates its
artifacts, resources, agents, architectures, and so on [1, 2].
That is to say, software process is the way of producing
software, and it’s a complicated system consisting of various
essential elements which are related to software production [3].
In practice, more and more organizations realize that quality
of software products depends heavily on the software process
they use [1, 4, 5]. Software process management is necessary
to high quality software products [6, 7]. Organizations are
placing increased attentions on finding an efficient way of
integrating elements of software process in order to produce
high quality software with lower cost and risk [8]. Various
kinds of techniques can be used to manage, monitor and
analyze software process. Fault Tree Analysis (FTA)
technique and Failure Mode and Effect Analysis (FMEA)
technique, two widely accepted and fully-fledged safety
analysis techniques, can be used to detect weaknesses and
safety problems in software process. Before applying these
two techniques to analyze software process, there is still one
issue to be addressed, software process should be modeled by
languages with enough precise semantics. Little-JIL process
definition language is a language which satisfies this
requirement. It is an executable, high-level process
programming language with a formal (yet graphical) syntax

and rigorously defined operational semantics [9]. It provides a
process modeling method basing on activities, which are
defined as steps in Little-JIL processes. This paper puts
forward to an approach of applying automatic FTA and FMEA
techniques to analyze software process after modeling it using
Little-JIL language, and combine analysis results to help
improve software process.

 The rest of this paper is organized as follows. Section II
provides a brief introduction of the Little-JIL process
definition language and how to model software process in
Little-JIL process language. Section III gives a description of
performing FTA technique and FMEA technique to software
process, and also how to combine the analysis results of both
FMEA technique and FTA technique to help improve software
process. Section IV presents related works. The final section
provides conclusions and suggests future work.

II. MODELING SOFTWARE PROCESS USING
LITTLE-JIL PROCESS DEFINITION LANGUAGE

A. Introduction of Little-JIL Process Definition Language
 A Little-JIL process (process specified using Little-JIL
language) is a hierarchy of steps, each of which represents a
single unit of task. Step is the basic element of Little-JIL
process. Each step specifies all parameters and resources it
uses in its interface. Parameters are passed between different
steps via parameter bindings. According to different parameter
flow directions and scopes, there are four parameter types, In,
Out, In/Out and Locals. Little-JIL process assigns each step to
an execution agent and coordinates execution sequence of
steps. Step without any sub-steps is called leaf step. Each non-
leaf step has a sequencing badge which indicates the executing
order of its sub-steps. There are four types of step sequencing,
a “sequential” step executes its sub-steps from left to right one
by one and is completed when all of its sub-steps have been
completed; a “parallel” step posts its sub-steps concurrently
and is completed when all of its sub-steps have been
completed; a “try” step executes its sub-steps from left to right
one by one and is completed when one of its sub-steps has
been completed; a “choice” step tries to choose one of its sub-
step to be executed and is completed until one of its sub-steps
has been completed. A step can optionally be proceeded by
one or several pre-requisite step(s) or/and be followed by one

Sponsor: State Key Laboratory for Novel Software Technology at Nanjing University.
Project Number: KFKT2009A13

187

or several post-requisite step(s). In Little-JIL language, a
resource is any entity for which there is contention for access
[10], and agent is defined as a special kind of resource.
Resources in Little-JIL language are managed by an external
resource manager and their acquisitions need to be explicitly
specified in step interfaces. An artifact produced by one step
may be a resource to other steps. Resources can be passed
between steps through parameter bindings just like parameter
passing. Steps in Little-JIL language may throw exceptions,
which can be handled by exception handler steps. There is a
mechanism named “cardinality” for expressing the optionality
or repetition of a step [10]. The number of instances of a step
that should be created may be specified statically within a
process, be determined by the agent assigned to the steps, or
process programmers may indicate that step instances should
be created based on the availability of artifacts or resources
[10]. Space limitations prevent describing all the features of
Little-JIL language. We only give a brief introduction of
semantics of Little-JIL language here. Details of the language
can be found in [10].

B. Modeling Software Processes Using Little-JIL Process
Definition Language
 Different software organizations apply different software
processes. However, once the organization determines the
elements of its software process, Little-JIL language can be
used to model the software process in the following way. Fig.
1 shows a simple software process modeled in Little-JIL
language.

1) Activity: The activities and their sub-activities are
represented as steps and their sub-steps in Little-JIL language.
We take the simple software process in Fig. 1 as an example.
In our software process model, “Requirement Analyze”,
“Plan”, “System Design”, and so on, are activities in software
process. They are represented as steps and they can be
decomposed into sub-steps as far as necessary to describe
them. The execution order of sub-steps depends on step
sequencing of their parent step. “Modular Design” should
select one of its sub-steps, either “Object-Oriented Design” or
“Procedure-Oriented Design”, to be executed. If the sub-step
chosen to be executed succeeds, step “Modular Design” is
completed. Activities in software process may be proceeded or
followed by other requisite activities. For example,
“Requirement Review” is the post-requisite step of
“Requirement Analyze”. Steps in Little-JIL language may
throw exceptions, which can be captured and handled by
exception handler steps. For example, step “System Design”
may throw exception “e2: requirement inconsistency” and
exception “e3: requirement vulnerability”. There is a “+”
displayed adjacent to where the connector is attached to the
sub-step “Modular Requirement Analysis”, which indicates
that the sub-step should be executed at least one time and the
executing time is optional. In our example model, the
executing number of times depends on the number of modules.

2) Artifact: All products produced in software process are
artifacts, such as design document, code, test cases, and so on.
They are represented as parameters specified in the step

interface. They are passed between steps via parameter
bindings.

3) Resource: Resources in software process are specified in
the step interface. For example, computers, development tools,
and so on, are all resources. Agents such as engineers,
programmers, tester, are treated as a special kind of resources
in Little-JIL language. Because we haven’t taken the effects of
resources into consideration in our approach, there are no
resource instances in our example process model.

4) Module: Little-JIL language allows multiple modules
existing in Little-JIL process. Software process can be
decomposed into smaller modules as far as necessary to model
it.

III AUTOMATIC FTA AND FMEA TECHNIQUES TO
SOFTWARE PROCESSES

 After modeling software process using Little-JIL language,
various kinds of techniques can be used to manage, monitor or
analyze them. FTA technique and FMEA technique, two fully-
fledged and widely used safety analysis techniques, can be
used to analyze software process specified using Little-JIL
language, discover defects in software process, and then
recommended actions can be proposed to improve the
processes. Table 1 made a comparison between traditional
FTA technique and FMEA technique. Both FTA technique
and FMEA technique provide the engineers with tools that can
assist in providing reliable, safe and customer-pleasing
software products. With increasing maturity, FTA technique
and FMEA technique are widely accepted and applied to
complex systems or processes in various industries especially
safety critical industries such as health care industry. We
notice that customers are placing increased demands on
software companies for high quality, reliable software. Also,
as we mentioned before, software quality depends heavily on
their production procedure, that is software process. Therefore,
in our approach, we apply FTA technique and FMEA
technique to analyze software process.

A. Automatic FTA Technique to Software Processes
 FTA technique is a structured top-down deductive analysis
technique [11], which involves two steps: deriving the fault
tree and analyzing the fault tree. It can systematically identify
and evaluate all possible events that could lead to a given
hazard. Traditionally, the step of deriving fault trees is very
time-consuming and error-prone because it is performed
manually by a group of experts. In order to overcome these
shortcomings, we introduce an automatic FTA technique [12]
which can automatically derive fault trees from processes
modeled in Little-JIL language. By performing qualitative and
quantitative analysis to fault trees, it can help identify all
potential causes of the given hazards. In order to automate the
procedure of deriving fault trees from Little-JIL processes,
there are two issues need to be addressed: how to
automatically extracted fault tree events from a Little-JIL
process, and how to identify all immediate and necessary
events that could lead to a given event and connected them to
this event using appropriate gates. For the first issue, a few

188

types of events are predefined and they can be easily identified
from the process definition. To address the second issue, a
collection of templates are defined based on the Little-JIL
process definition. Different templates are used to develop
different types of events. Given a failure mode or hazard
“Artifact ‘Software Product’ to ‘Customer Test’ is wrong”,
Fig. 2 shows the fault tree automatically derived for it. Also,
Minimal Cut Sets (MCSs) of the fault tree will also be
computed.

B. Automatic FMEA Technique to Software Processes
 FMEA technique is a systematic bottom-up inductive
method of analyzing and evaluating safety problems in a
system or process in order to avoid server hazards or
consequences. FMEA technique essentially consists of
identifying and listing all potential failure modes, accessing
effects on the overall system for each failure mode, and then
identifying all potential causes which may lead to each failure
mode. We propose an automatic FMEA technique to analyze

software process. Our approach involves four steps: define the
failure mode, identify potential failure mode, identify effects
for each failure mode, and indentify causes for a given failure
mode. In our approach, we focus on the first three steps. We
introduce automatic FTA technique described in Section III.A.
to the final step, indentify causes for a given failure mode. In
our work, we limit our attention to the failure modes which are
related to artifacts. We believe that a large number of
interesting failure modes are artifact-related failure modes or
can be easily turned into artifact-related failure modes. For
example, in many real world software processes, some hazards
are caused by the delay of certain steps. To capture such faults,
we can associate an artifact representing the execution time to
each step. Our approach then can handle the delays just like
the other artifact faults. Therefore, we predefine two types of
artifact-related failure modes:

1) Type 1: Artifact p to Step S is wrong; (p is an “In”
parameter in Step S)

TABLE I. Comparison between Traditional FTA technique and FMEA technique

 FTA FMEA
Direction of analysis Top-down (Deductive) Bottom-up (Inductive)

Analyze time Reactive Proactive
Focus of analysis Focusing on effects of a given hazard Focusing on causes of a given hazard

Presentation of analysis Logic diagram Table

Figure 1. Simple Software Process Modeling in Little-JIL Language

189

2) Type 2: Artifact p from Step S is wrong; (p is an “Out”
parameter in Step S)

 As we mentioned in Section II.A., there are four types of
parameters. For any “In” parameter p of step S, a failure mode
of “Type 1” is created; for any “Out” parameter p of step S, a
failure mode of “Type 2” is created; for any “In/Out”
parameter p of step S, failure modes of both “Type 1” and
“Type 2” are created; “Locals” parameters are used the same
as other three types of parameters, just with a limited scope,
therefore, failures modes are created for them just in the same
way as “In”, “Out” or “In/Out” parameters.

 In order to generate effects for each failure mode, Artifact
Flow Graph (AFG) is abstracted from software process. It
includes all data dependence relationships among artifacts in
software process. Given a failure mode “Artifact p to Step S is
wrong” (Type 1) or “Artifact p from Step S is wrong” (Type
2), we can decide all artifacts which p can flow to by
traversing the AFG. Faults in p many be propagated to these
artifacts. Therefore, faults of these artifacts are defined as
effects of the given failure mode. We organize the result as an

effect tree. Fig. 3 presents a small piece of FMEA tree view
analyzed for the software process showed in Fig. 1. The root
level is the step in the software process. The first level is the
failure modes in that step, and other levels lists effects for
each failure mode. The effect tree can be expanded to different
levels until reaching final effects of each failure mode.

C. Combination of FTA technique with FMEA technique
 The effect we defined is a failure mode too. Also, both the
effect and the failure mode we predefined are events which
can be used as top-events in the automatic FTA technique we
described in III.A. Fault trees (potential causes) can be
automatically generated for a given failure mode or effect.

 Performing FTA for all potential failure modes and effects
in a software process might be a huge job and sometimes a
waste of time and energy. Also, not every failure leads to
disastrous consequences. The failure modes or effects which
may cause hazards should be paid more attention to than
others. We suggest that after generating all potential failure
modes and effects in a software process, the results should be
examined carefully. If the failure mode or effect is critical,

Figure 2. Fault Tree Automatically Derived for a Given Hazard

Figure3. A Small Piece of FMEA Tree View

190

fault tree need to be generated to find out all potential causes
of it, and then actions can be recommended to avoid the
hazard. Also subsequent changes can be made to the software
process to remove its weakness. In this way, it realizes the
combination of FTA technique and FMEA technique and we
can use the analysis results of these two techniques to improve
the software process. It can prevent hazards before the
software process comes into use and result in software
products with high quality and reliability.

IV RELATED WORKS

 Most failure analyses and studies are based on either FTA
technique or FMEA technique. Rarely, both FTA and FMEA
techniques will be performed, and when both are performed,
these will be separate activities executed one after another –
without significant intertwining [16]. However, there still exist
several approaches for combining these two techniques
together for safety analysis. Bettina proposed an approach of
combining manual FTA and FMEA technique for software
safety analysis [15]. In that approach, FTA technique provides
selection criteria for FMEA technique, and FMEA technique
provides feedbacks on completeness of FTA technique.
Ref.[16] realized an innovative combination of FMEA and
FTA techniques, which is able to maximize the advantages
and at the same time to minimize the shortcomings of both
known methodologies. IBM puts forwards to combining FTA
technique with FMEA technique by performing FMEA
technique first to identify potential failure modes in software
development life cycle, and then using FTA technique to
discover these causes of those failures [17]. We prefer
applying these two safety analysis techniques to automatically
analyze software processes.

V Conclusions and Future Work
 Nowadays, customers are placing increased demands on
software organizations for high quality, reliable products with
low cost and risk. In practice, engineers find that software
quality depends heavily on the maturity and reliability of the
software process. They come up with modeling software
process in languages with enough precise semantics. Thanks
to this, software development becomes predictable and
controllable. Various kinds of techniques can be used to
manage, monitor or analyze software process. We propose an
idea of modeling software process using Little-JIL language,
and then introduce FTA and FMEA, two fully-fledged and
widely used safety analysis techniques, to automatically
analyze software process. Automatically performing FMEA
technique and FTA technique to software processes modeled
in Little-JIL process definition language addresses the major
weaknesses of traditional FMEA and FTA approach –
traditional approach requires good understanding of processes
and is time-consuming. Analysis results can be combined to
improve software process, which may lead to software
products with higher quality and reliability, also lower cost
and risk.

 Software process is a complicated system compounded by
various kinds of elements. Effects of FTA and FMEA

techniques are closely related with the completeness of our
software process model specified using Little-JIL language.
Understanding of software process and semantics of Little-JIL
language can have a strong impact on software process
modeling. How to completely model real-world software
process is one part of our future work. Also, the execution of
software process is heavily influenced by the availability of
people and materials [10], which are defined in the Little-JIL
step interface as resources. In our work, we haven’t set up
dependence relationships between resources and artifacts. The
next work we have to do is to take the influence of resources
into account.

 One more limitation is that subsequent steps could be
dependent on a previous step being done correctly. If we
create a hypothetical output artifact to represent the erroneous
step behavior, this artifact would not propagate erroneous
information beyond this step. Therefore, we have to find a
way to add fault propagations introduced by erroneous step
behavior to generate the FMEA information.

ACKNOWLEDGMENT
 We would like to thanks B. Chen, G.S. Avrunin and L.A.
Clarke for their many helpful suggestions with this work.

REFERENCES

[1] M.S. Li, Q.S. Yang, J. Zhai, “Systematic review of software process
modeling and analysis.” Journal of Software. Vol 20(3), pp.524-545,
2009.

[2] J. Lonchamp, “A structured conceptual and terminological framework for
software process engineering.” ICSP. pp.41-53, 1993.

[3] Stephen R. Schach. “Software Engineering with Java.” China Machine
Press, Beijing, 1999.

[4] C. Montangero, J.C. Derniame, B.A. Kaba, B. Warboys, “The software
process: modelling and technology.” Proc. of the Software Process:
Principles, Methodology, Technology. Springer-Verlag, pp.1-14, 1999.

[5] SEI, CMU, “CMMI for Development,” 2nd , Improving Processes for
Better Products”, 2006.

[6] F.Q. Yang, “Thinking on the development of software engineering
technology.” Journal of Software. Vol 16(1), pp.1-7, 2005.

[7] J.D. Gu, Q,Hu, L.V. H, “A Multi-view software process model based on
object petri nets.” Journal of Software. Vol 19(6), pp.1363-1378, 2008.

[8] Y. Peng, G. Kou, G. Wang, H. Wang, F. Ko, “Empirical Evaluation Of
Classifiers For Software Risk Management,” International Journal of
Information Technology and Decision Making, Vol. 8, pp.749-768, 2009.

[9] http://laser.cs.umass.edu/tools/littlejil.shtml
[10] S.W. Alaxander, “Little-JIL 1.5 Language Report.” Department of

Computer Science, University of Massachusetts, Amherst, 2006.
Unpubilshed.

[11] W.E. Vesely, “Fault Tree Handbook with Aerospace Applications,”
NASA Headquarters, Washington, D.C., pp.300-322, 2002.

[12] B. Chen, G.S. Avrunin, L.A. Clarke, L.J. Osterweil, “Automatic fault
tree derivation from Little-JIL process definitions.” Proc. of the Int’l
Software Process Workshop and Int’l Workshop on Software Process
Simulation and Modeling. Springer-Verlag, pp.150�158, 2006.

[13] Department of Defence, “Procedures for Performing a Failure Mode,
Effects and Criticality Analysis.” Washington, 1980.

[14] G. Nancy, S. Leveson, “Safeware: System Safety and Computers.”
Published by Addison-Wesley.

[15] www.rvs.unibielefeld.de/Bieleschweig/ninth/ButhB9Slides.pdf
[16] Z. Bluvband, R. Polak, P. Grabov, “Bouncing failure analysis (BFA):

The Unified FTA-FMEA methodology.” Annual Reliability and
Maintainability Symposium, 2005.

[17] M. McDonald, R. Musson, R. Smith, “The practical guide to defect
prevention,” Microsoft press, 2008.

191

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

