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Abstract 

The control of a process requires a minimum of 
representative information on its operating state. This 
information can be obtained by both direct sensors or 
indirectly using mathematical models. It frequently 
occurs that the number of direct measures is not 
suf5cient to allow unmeasured variables to be deduced 
and additional sensors have to be installed to render the 
required variables observable. This paper presents a new 
technique to place sensors in systems described 
simultaneously by linear and bilinear equations. It takes 
into account placement constraints and a complete 
observability is obtained. Moreover it is pointed out that, 
from an observability point of view, a bilinear system 
may be studied by considering a succession of linear 
systems. 

1. Introduction 

In all the studies, where physical phenomenon occur, 
the problem of state estimation is analysed. Indeed, the 
knowledge of location and reliable information is of 
primary importance because it establishes good 
conditions for the results of every decision taken. This 
problem consists of approximating the true values, with 
estimated values which verify the model equations and 
are as near the measures as possible. But this estimate 
can only be made if the process considered is 
observable. Much work has already been published on 
the analysis of static system observability. The early 
work concerned the study of linear systems and are 
probably stemmed from [l], where [2] and [3] have 
largely helped to develop this analysis. The algorithms 
of observability which have been proposed are generally 
based on the graph theory [4] or on a classification of 
the variables, from a projection matrix [j]. After the 
analysis phase, which demonstrates the redundancies 
but also the eventual weaknesses of instrumentation 

system, the study of the ways of making a system 
observable is proposed, so that the cost engendered by 
the addition of sensors is as low as possible. To reach 
this result, one acts, in the on hand, on the locating of 
the sensors and, on the other hand, on their number. At 
that time, only a few studies on the conception of an 
instrumentation system which respect the constraints, 
such as these stated above, had been done. Studies 
concerning the observability and the placing of optimal 
sensors on electrical networks were proposed by [ 6 ] .  
This study shows two possible analysis: numerical and 
the topological. [7] has worked largely in the numerical 
domain. [SI has directed this study by basing itself on 
the topology of networks. We must also mention the 
work of [SI, who proposes a solution based on the 
analysis of the incidence matnx of the graph associated 
to the processes, and the work of [lo], who formalises 
the problem in terms of linear programming, that is to 
say, which optimjsation variables can be whole, 
permitting the taking into account the occurrence and 
the position of the measurements in the optimisation. 
The more developed studies are probably these ones 
presented by [ 111 and [ 121. Based on the analysis of the 
cycles of the graph associated to the processes, these 
studies take into account the observability of the 
variables and the reliability of the sensors, which 
measure them, to propose an architecture of optimal 
instrumentation according to some criterion. [ 131 has 
formalised the problem under the constraints of costs in 
the n-linear case. We propose a step, which emerges 
directly from the optimum solution. This is realised by 
inserting ,in the observability constraint, the constraints 
of cost and technology. This study concerns the linear 
and bilinear systems in a static state. These models are 
often used when one establishes conservation-law 
results. We must note that the study considered is solely 
based on the structure of equations, which directs the 
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process. rows of M2, M becomes: 

2. Decomposition according to the observability with 
minimum cost - linear systems 

Let a system described by its architecture, in other 
words by the ties between the different material 
supports. These connections express the transfer of 
matter, energy or of information between the material 
supports associated to the activities and are associated to 
the system description variables. Among these variables 
which characterise the system, there are those which are 
easily measurable, those which are measurable with 
difficulty and those which are not measurable. We are 
lnsterested in the systems described by a form equation: 
M X * = O  (1) 
where the matrix M = (m.. with 1 2 i 5 n and 1 < j 5 v 
with assuming that this system is described by n 
equations and v variables, the vector X (v. 1) represents 
the variables of the system. In the case of an array of 
mater balance-sheet, n represents the number of nodes 
and v the number of streams. 
For a system which is already partly instrumented we 
will sub-divide the vector of X variables into two 
distinct sub-vectors [ 141: 

with: XI : vector of the measured variables, 
X, : vector of the unmeasured variables. 

We are now confronted with the following problem: is 
the knowledge of the measure XI suffkient to render the 
remaining variables of the system observable ? 
Otherwise, is it possible to obtain this observability by 
positioning other sensors ? 
The incidence matrix of the network can then also be 
sub-divided according to the partition (2): 

where MI is a matrix of dimension (n.m) and M2 is a 
matrix of dimension (n.(v-m)). 
One can class the columns of the matrix M2 so that the 
corresponding measurements which there are arranged 
in decreasing order of cost. The points inaccessibly to 
the measurement will be considered have infinite cost. 
Afterwards, we must rewrite the largest regular part of 
the matrix M2 as the identity matrix. This 
transformation is realised by means of the pivot 
algorithm, with limitation of the pivot choice to the 
columns of M2. Thus, we obtain the following 
decomposition: 

13) 

x = [X, X,IT ( 2 )  

M = [ M ,  M23 (3) 

(4) 

with dimension of M 2 1  = r.r, dimension of M22  = 

r.(v-m-r), dimension of M23 = (n-r).r, dimension of 
M24 = (n-r).(v-m-r) and where M21 represents the 
largest regular part of M with rank less or equal to n. 
And by separating MI according to the decomposition in 

with : dimension of MI, = r.m 
: dimension of M12 = (n-r).m 

Pre-multiplying matrix M by the regular matrix R: 
r 

gives the following equivalent form: 

0 I r  

R M = [  Mi ;% 1 

M12 -M23M2;M11 
(6 )  

because M - M  M - ~ M  (7) 24 23 21 22 
Leads to the final form: 

decreasing cost of the measure 

n-r 

I V 

the incidence Figure 
matrix 

1: particular canonical form of 

This matrix can be read in the following way. The 
second row gives the redundancy equations between the 
variables already measured, notice that all the measured 
variables are not necessarily present in these equations. 
Finally the non-null rows of block A2 prevent any 
further deductions. Thus the system is globally 
observable if block A2 does not exist. Transform these 
variables to become observable, needs to add at least (v- 
m-r) measure points. They correspond to weak cost 
emplacements because the variables are arranged in 
decreasing order of their measure cost. In other words, 
to obtain the globally observability of the industrial 
process with minimal cost, we must add on the 
installation these (v-m-r) supplementary sensors. 

3. Case of bilinear systems 

We present as an example the case of systems in which 
we have two types of measures like a volume flow and a 
density or a volume flow and a temperature ... This very 
common case takes on particular importance in 
industry. Generally the bilinear systems are described by 
equations or the type: 
M X 1 = 0  (8) 
M (Xi .* X2) = 0 (9) 
where X1 and X2 are respectively the vectors of the 
variable in X1 and X2 and have the same dimensions. 
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The product .* corresponds to the term by term product 
of two vectors. We consider a process for which the 
structure and the equipment have been partly defined. 
The variables linked with this installation can be 
classified according to their accessibility to the 
measurement. Thus several categories of variables could 
have been worked out: the variables measurable in X1 
and X2, the variables only measurable with X1, those 
only measurable with X2 and the variables being 
unmeasurable. Some economic or technical reasons may 
be at the origin of this partition. The problem can be 
posed as follows: what is the minimal number of sensors 
and what is their location in order to get an overall 
observability of the installation at an optimal cost ? 
Let's consider an elementary system (the M matrix is 
then reduced to a row). If we call n l  the number of the 
unmeasured variables in X1 and n2 the number of the 
unmeasured variables in X2 and knowing that the 
number of variables is equal to v (nl  and n2 < v), the 
conditions of observability of an elementary bilinear 
system can be listed one by one [14] or be represented 
by a two level-tree (or shaft) [14], and they can be 
written as follows: 
a) n l  I 2  and n2 I 1 (10) 
b ) n l + n 2 5 2  (11) 
For a non elementary system (that is to say that the M 
matrix possesses at least two rows), the study of the 
bilinear systems observability will be performed 
according to a hierarchic diagram. In a first stage we 
complete the list of the observable variables in X1 
(OBSXl list) from putting the matrix M in a particular 
canonical form beside the X1 magnitude. Then at a 
second stage we do the same for the X2 magnitude, of 
which we take each equation (row) and we check for n2 
= 0 and n2 = 1 if the relationship (12) proves to be true. 
If it does so, we complete the list of the observable 
variables in X2 (OBSX2 list) and the list of the 
observable variables in X1. 
nl '  + n2 I 2 
where n2 is the number of unmeasured variables in X2 
in equation (9) and nl '  is the number of non observable 
variables for this equation in X1 for the same equation 
(not belonging to the OBSXl list). The algorithm to 
treat the observability of bilinear systems is hierarchical. 
It uses the particular canonical form of the matrix M 
defined above. During this study, we have to detect the 
equations for which the number of unmeasured 
variables respect the observability constraints of bilinear 
system. At first, we test the stability of the lists which 
contain the observability variables in X1 and X2. When 
the contents of these lists is not modified, we stop the 
treatment. The algorithm of minimisation of the 
instrumentation cost of the bilinear systems is then 
written as: 
Stage 1: Looking for the particular canonical forms MI 
and M2 that correspond to X1 and X2 magnitudes in 
the same way as in the linear system. 

(12) 

Stage 2: Making in1 M2 the measure of all the variables 
corresponding to the columns that do not contain a 
pivot so that the maximum number of unmeasured 
variables per equation in X2 is n2 = 0 (redundancy 
equation) or n2 = 1 (deduction equation). 
Stage 3: Making in: MI the measure of all the variables 
for which the colunnns do not contain any pivot and for 
which we have more than two missing measurement per 
equation. In this case the maximum number of 
measured variables in X1 is either nl  = 2, nl  = 1 
(deduction equation) or n l  = 0 (redundancy equation). 
Stage 4: Launching the algorithm calculating OBSXl 
and OBSX2. If OBSXl and OBSX2 are complete, that 
is to say that all the variables are observable, we stop. 
Then we get the observability at an optimal cost by 
measuring the variables that need to be measured 
described in the second and third stages. Otherwise we 
carry out the following stage. 
Stage 5: We measuire the least expensive variable in M1 
or in M2. Various cases appear: 
- if OBSXl and OBSX2 are complete, we stop. 
- if this variable imeasure does not modify the lists 
OBSXl and OBSX;! we cancel its measurement. 
- if OBSXl and OlBSX2 are not complete we do the 
stage 5 again until we obtain in M1 only one variable of 
which the column does not contain any pivot. 
Stage 6: When only one variable of which the column 
does not contain any pivot remains in M1, two cases can 
appear: 
- if the variable to be measured (minimum cost) is in 
MI, we measure it (OBSX1 and OBSX2 will be 
complete). 
- if the variable(s:) to be measured are in M2, we 
measure these variables as long as OBSXl and OBSX2 
are not complete but at the same time as soon as their 
measurement costs exceed the one of the M1 variable of 
which the column does not contain any pivot, we cancel 
all these measures to measure M1, OBSXl and OBSX2 
then will be complete. 

4. Application 

Let's consider a schiematised process in a network form 
Figure 2 made up OS 3 nodes and 7 streams. 

measured vanable o fXl  
a measured vanable of X2 

* 
Figure 2: 3 nodes and 7 streams network 

An instrumentation architecture of this process is given 
by the table 1 for the X1 magnitude andfor the X2 
magnitude. 
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unmeasured 
variables on 

x 1  31 
7 25 7 * 

Table 1: Costs associated with the measures in X1 and 

Sensor unmeasured Sensor 
weights variables on weights 

x 2  

the measures in X2 

combi 
nation 

measurements measurements measure 
of the of the ment 

s 
1 
2 
3 1  1 and6 I If lf I50or70  

I 70 or 90 4 1  1 and7 I I1 I 1  

variables of X1 variables of X2 costs 
6 
7 

4 et 6 or 5 et 6 35 or 55 
55 or 75 I 1  I1 

5 
6 
7 1  6 a n d 7  I 4, 5 and6 I 90 
S I  1 and 6 I I1 I1 I 80 

~ ...~.. 

55 or 75 
75 or 95 

I1 If 2 and 6 
2 and 7 

2 and 6 
1 and 7 
2 and 7 105 

Variable 1 2 3 7+ 530 
Equatioq 

Table 2: Measurement combinations costs 

Afterwards, we take the combination with the minimum 
cost. The combination, which has for function cost equal 
to 35, gives the observability with minimum cost by 
doing the measure of the variable 6 at X1 and the 
variables 4 and 6 at X2. Let's apply the algorithm of the 
cost minimisation to this bilinear system. The matrix of 
M corresponding to the X2 magnitude is written: 

-1 -1 
-1 0 

620 410 

M2= 11' 

I' 

-1111 I 0 0 -1 In 0 I 1 1 
U 1  

0 0 -1 0 1 0 1 

1 1 - 1 0  0 0 0 

The matrix of M incidence corresponding to the X1 
magnitude is written: 

-1 0 0 

M in its particular canonical form is written: 
4. 5 172 22 I l15 65 

E~~~~~ 
1 4: 0 

The second stage gives the following result: in order 
that the number n2 of the variables not being measured 
by the equation in X2 is smaller than 1 or equal to 1, in 
M2, we measure the variables 6 and 4. Their 
measurement costs are worth (20 + 10) = 30, therefore 
M2 becomes MII. 

MI1 = 0 I3 -1 

The third stage does not generate any alteration. Indeed 
the number nl  of the unmeasured variables by equation 
in X1 is smaller than two or equal to two, so we do not 
make a measurement on the X1 in magnitude in M1. 
The 4" stage allow the calculations of the OBSXl and 
OBSX2 lists (to simplifji the writing we only make a 
note in those lists of the observable variables index) and 
we obtain: OBSXl = (3, 4, 5). 
In order to calculate OBSX2, in MI1 we repeat the 
equations for which all is calculated in X2 (equation 1') 
and we check if the number nl '  of the non observable 
variables corresponding in XI is smaller than 2 or equal 
to 2. If it is so, we complete the OBSXl and OBSX2 
lists with these variables In our case, this is expressed 
by: 
- the analysis of the MI1 matrix equation I' that gives: 
OBSXl = (3, 4, 5, 1, 2), (3BSX2 = (1, 2, 3). 
In MI1 we spot the equations for which a variable is 
unmeasured in X2 (equations 11' and 111') and we check 
if the number nl '  of non observable variables in X1 for 
these equations is smaller than 1 or equal to 1. If it is so, 
we complete the OBSXl and OBSX2 lists. 
- Then the analysis of the: equation 111' does not allow to 
complete OBSXl = (3, 4, 5, 1, 2) and OBSX2 = (1, 2, 3) 
because the number of non observable variables in X1 
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for this equation is higher than 1. 
- The analysis of the equation 11' leads to the result: 
OBSXl = (3, 4, 5, 1, 2 )  and OBSX2 = (1, 2, 3, 4, 5). 
We notice that OBSXl and OBSX2 are not complete. 
Then the stage 5 is undertaken. 
We are going to measure the least expensive variable in 
M1 or in MII, in our case we are going to measure the 
variable 6 in M1, its cost of measure is 5. In its 
particular canonical form M1 then becomes MI: 

Variable1 3 4 5 651 725 22 I 115 
Equation1 I I 

MI = 

-1;; 1 0 0 -1 ;p41 ; 
-1 0 0 

11' 1 -1 -1 0 0 0 0 

from MI and MI1 we complete OBSXl and OBSX2 
again. We obtain: OBSXl = (3, 4, 5, 6, 7 ) .  The analysis 
of the MI1 equations is made up of: 
- the analysis of the I' equation that allows us to 
complete OBSXl = (3, 4, 5, 6, 7, 1, 2) and OBSX2 = 

- the analysis of the 111' equation that gives: OBSXl = 
(3, 4, 5,6,  7, 1, 2) and OBSX2 = (1, 2, 3, 4, 6, 7). 
- the analysis of the 11' equation that gives the final 
result: OBSXl = (3, 4, 5, 6, 7, 1, 2) and OBSX2 = (1, 2, 
3, 4,6,7,5).  
We note that OBSXl and OBSX2 are complete, that is 
to say that all the variables are observable in X1 and X2 
at minimal cost. This minimal observability cost is 
worth (20 +10 +5) = 35. It is made up of 20 for the 
measure cost of the variable 6 in X2, 10 for the measure 
cost of the variable 4 in X2 and 5 for the measure cost of 
the variable 6 in X1. Note that the proposed algorithm 
gives the same observability cost as that obtained by 
testing all the possible observability combinations (table 
2). 

(L2 ,  3). 

6.  Conclusion 

This paper deals with the observability of a process 
described by a set of linear-bilinear algebraic equations 
with partial measurements. From this analysis, we found 
a classification of the variables and the equations of the 
process, for the unobservable subset we define the 
location of new sensors to increase the observability 
index. The proposed strategy has been found to be a 
very efficient way of establishing the number and 
location of additional sensors. Two situations can be 
dealt with: the first one is concerned with an already 
partially instrumented process which is not yet 
observable, the second one concerns processes with no 
instruments at all. 
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