Tutorial

Fault Tree Analysis

Dr John Andrews Department of Mathematical Sciences Loughborough University Loughborough LE11 3TU, UK Tel: +44 (0)1509 222862 Fax: +44 (0)1509 223969 E-mail: J.D.Andrews@lboro.ac.uk

Contents

- **Session 1: Basic Concepts**
 - Fault Tree Symbols/Terminology
 - Fault Tree Construction
 - Minimal Cut Sets
 - Component Failure Models
 - Top Event Probability
 - Top Event Frequency
 - Other Top Event Parameters
 - Importance Measures

Session 2: Advanced Features

- Initiator/Enabler Events
- Non-Coherent Fault Trees

Session 3: Current Research

- Binary Decision Diagrams
- Dependency Modelling
- Optimal System Design

Session 1: Basic Concepts

History

- % 1961 FTA Concept by H Watson, Bell Telephone Laboratories
- 8 1970 Vesely Kinetic Tree Theory
- VImportance measures Birnbaum, Esary, Proschan, Fussel, Vesely
- & Initiator/Enabler Theory Lambert and Dunglinson
- **FTA** on PCs with GUI's
- **X**Automatic Fault Tree Construction
- **Binary Decision Diagrams**

Fault Tree Example

6

Voting Gates k/n

Exclusive OR Gate

House Events

Transfer IN/OUT

Inhibit Gate

Pressure Tank Example

12

Circuit Actions

Minimal Cut Sets

- & Cut sets
 - A list of failure events such that if they occur then so does the top event.
- **Minimal** Cut Sets
 - A list of minimal, necessary and sufficient conditions for the occurrence of the top event.

16

List of possible failure combinations

C. C	System State
A	F
В	F
С	W
D	W
AB	F
AC	F
AD	F
BC	F
BD	F
CD	F
ABC	F
ABD	F
ACD	F
BCD	F
ABCD	F

17

A B

CD

18

 $\mathbf{T} = \mathbf{A} + \mathbf{B} + \mathbf{C}.\mathbf{D}$

Qualitative Fault Tree Analysis

Need to identify the min cut sets whose occurrence is most likely.

19

& Minimal Cut Set expression for the top event.

$$\mathbf{T} = \mathbf{C}_1 + \mathbf{C}_2 + \mathbf{C}_3 + \cdots + \mathbf{C}_N$$

 $C_{I}, I = 1, \cdots, N$

e.g. T = A + BC + CD are the minimal cut sets

3 minimal Cut Sets

1 first order

2 second order

Laws of Boolean Algebra

• AND + OR

Distributive $(A + B) \cdot (C + D) = A.C + A.D + B.C + B.D$

20

Idempotent

A + A = A $A \cdot A = A$

Absorption

 $A + A \cdot B = A$

Bottom-up method

TOP = $(B + C + A) \cdot (C + A \cdot B)$ = B · C + B · A · B + C · C + C · A · B + A · C + A · A · B

 $(A \cdot A = A)$ = B.C+A.B+C+C.A.B +A.C+A.B(A + A = A) $TOP = B \cdot C + A \cdot B + C + C \cdot A \cdot B + A \cdot C$ $(A + A \cdot B = A)$ $TOP = A \cdot B + C$

The tree could have been drawn:

Component Performance Characteristics

Typical History of a Repairable Component

Downtime Depends on

- Failure detection time
- Availability of Maintenance team
 - REPAIR TIME

{ OBTAIN REPLACEMENT INSTALLATION

26

- System Test Time
- Performance indicators
 - Rate at which failures occur
 - Measure of expected up-time

The Failure Process

27

For useful life period Unreliability (Density Function) Reliability

 $F(T) = 1 - E^{-\lambda T}$ $F(T) = \lambda E^{-\lambda T}$ R(T) = 1 - F(T) $= E^{-\lambda T}$ $= \frac{1}{\lambda}$

28

Mean Time to Failure
λ (T) = Conditional failure rate (hazard rate)
Probability that a component fails in
(t, t + dt) given that it was working at t

Maintenance Policies

1. No Repair

Q(T) - UNAVAILABILITY F(T) - UNRELIABILITY F(T) = $I - E^{-\lambda T}$ Q(T) = F(T)

29

Repairable Components

Failure/Repair Process

1. Only one transition can occur in a small period of time Δt .

30

- 2. Change between states is instantaneous.
- 3. Following repair components are as good as new.

2. Revealed Failures - unscheduled maintenance

- λ FAILURE RATE
- v REPAIR RATE
- μ MEAN TIME TO FA
- τ MEAN TIME TO RE

Q(**J** - UNAVAILABILITY Q(**T**) = $\frac{\lambda}{\lambda + \nu} (\mathbf{I} - \mathbf{E}^{-(\lambda + \nu)\mathbf{T}})$ AT STEADY STOPE $\frac{\lambda}{\lambda + \nu} = \frac{\tau}{\mu + \tau} \approx \lambda \tau$

31

3. Unrevealed or Dormant Failures - Scheduled Maintenance

θ - TIME BETWEEN INSPECTIONS

33

(for revealed failures

Mean time to restore

34

Top Event Probability

35

provided as a free service by www.fault-tree.net and Dr. John Andrews/Loughborough University

= 0.199

The minimal cut sets of the fault tree are:

A B C B D T = A + BC + BD $Q_{S}(D = P(T) = P(A + BC + BD)$

Using three terms of the inclusion-exclusion expansion gives:

37

Convergence of Inclusion-Exclusion Expansion

$$\mathbf{P}(\mathbf{T}) = \sum_{\mathbf{I}=1}^{\mathbf{N}_{c}} \mathbf{P}(\mathbf{C}_{\mathbf{I}}) - \sum_{\mathbf{I}=2}^{\mathbf{N}_{c}} \sum_{\mathbf{J}=1}^{\mathbf{I}-1} \mathbf{P}(\mathbf{C}_{\mathbf{I}} \cap \mathbf{C}_{\mathbf{J}}) + \cdots (-1)^{\mathbf{N}_{c}-1} \mathbf{P}(\mathbf{C}_{\mathbf{I}} \cap \mathbf{C}_{\mathbf{2}} \cap \cdots \cap \mathbf{C}_{\mathbf{N}_{c}})$$

$$Q_{\text{RARE EVENT}} \sum_{I=1}^{N_c} P(C_I)$$

$$Q_{\text{LOWER}} \sum_{I=1}^{N_c} P(C_I) - \sum_{I=2}^{N_c} \sum_{J=1}^{I-1} P(C_I \cap C_J)$$

$$N_c - \text{NO OF MIN CUT SETS}$$

39

 $Q_{EXACT} = 0.117]$ $Q_{RARE EVENT} 0.12$ $Q_{LOWER} = 0.117$

Minimal Cut Set Upper Bound

$$Q_{MCSU} = 1 - \prod_{I=1}^{N_c} (I - P(C_I))$$

= 1 - (I - 0.1) (I - 0.01) (I - 0.01)
= 0.11791

Q_{LOWER} Q_{EXACF} Q_{MCSU} ≤ Q_{RARE EVE}

40

Pump System Example

Component probabilities

Relay K1 contacts	K1	1×10^{-4}
Relay K2 contacts	K2	1×10^{-4}
Pressure switch	PRS	5×10^{-4}
Timer relay	TIM	3×10^{-4}
Switch	S 1	5×10^{-3}

41

Minimal C	ut Sets
K2	1×10^{-4}
PRS S1	2.5×10^{-6}
PRS K1	5.0×10^{-8}
PRS TIM	1.5×10^{-7}

Top Event Probability

Rare Event $Q_{SYS} = \sum_{I=1}^{N_c} Q_{C_1}$ $= 1.027 \times 10^{-4}$

Minimal Cut Set Upper Bound

$$Q_{SYS} = 1 - \prod_{I=1}^{N_c} (1 - Q_{C_1})$$

= 1.027×10⁻⁴

Exact

 $Q_{SYS} = 1.026987 \times 10^{-4}$

42

Importance Measures

& Critical System State

For component i is a state of the remaining (n - 1) components such that the failure of component i causes the system to go from a working to a failed state.

Simbaums Measure (I_B) The probability that the system is in a critical state for the component. $I_{B_I} = \frac{\partial Q_{SYS}}{\partial Q_I}$

- **I**_B, Birnbaum importance measure for component i
- **Q**_{sys} System unavailability
 - Component unavailability

provided as a free service by www.fault-tree.net and Dr. John Andrews/Loughborough University

Q

$$Q_{SYS} = P(AB + AC)$$

$$= Q_A Q_B + Q_A Q_C - Q_A Q_B Q_C = 0.019$$

$$I_{B_A} = \frac{\partial Q_{SYS}}{\partial Q_A} = Q_B + Q_C - Q_B Q_C = 0.19$$

$$I_{B_B} = \frac{\partial Q_{SYS}}{\partial Q_B} = Q_A (1 - Q_C) = 0.09$$

$$I_{B_C} = \frac{\partial Q_{SYS}}{\partial Q_C} = Q_A (1 - Q_B) = 0.09$$

45

Fussell-Vesely Measure (I_{FV})

Probability of the union of all Minimal Cut Sets containing the component given that the system has failed.

Minimal Cut Sets

AB AC

$$I_{FV_{A}} = \frac{P(AB + BC)}{Q_{SYS}} = \frac{Q_{SYS}}{Q_{SYS}} = 1.0$$

$$I_{FV_{B}} = \frac{P(AB)}{Q_{SYS}} = \frac{Q_{A}Q_{B}}{Q_{SYS}} = \frac{0.01}{0.019} = 0.526$$

$$I_{FV_{C}} = \frac{P(AC)}{Q_{SYS}} = \frac{Q_{A}Q_{C}}{Q_{SYS}} = \frac{0.01}{0.019} = 0.526$$

47

Pump System Example

Importance Measures

	Fussell Vesely	Birnbaum
K2	0.974	0.9999
PRS	0.026	5.397 × 10 ⁻³
S1	0.024	4.9975×10^{-4}
TIM	0.0015	4.974×10^{-4}
K1	0.0005	4.973×10^{-4}

48

Session 2: Advanced Features

Minimal Cut Set Failure Frequency

 $W_{C_{\kappa}}(\mathbf{J}) - \text{UNCONDITIONAL FAILURE}$ OF CUT SET K N - COMPONENTS IN MIN CUT $W_{C_{\kappa}}(\mathbf{J}) = \sum_{I=1}^{N} W_{I}(\mathbf{J}) \quad (\prod_{J=1}^{N} Q_{J}(\mathbf{J}))$

Example Min Cut Set 1 = ABC

 $\mathbf{W}_{\mathbf{C}_{1}} = \mathbf{W}_{\mathbf{A}} \mathbf{Q}_{\mathbf{B}} \mathbf{Q}_{\mathbf{C}} + \mathbf{W}_{\mathbf{B}} \mathbf{Q}_{\mathbf{A}} \mathbf{Q}_{\mathbf{C}} + \mathbf{W}_{\mathbf{C}} \mathbf{Q}_{\mathbf{A}} \mathbf{Q}_{\mathbf{B}}$

50

w(t) - unconditional failure intensity

The probability that a component fails in (t, t + dt) $W(T) = \lambda (T)[1 - Q(T)]$

Expected Number of Failures W(0, t) W (0, T) = $\int_{0}^{T} W(U)DU$

Top Event Failure Frequency

(upper bound approximation)

$$W_{SYS} = \sum_{I=1}^{N_c} W_{C_I} (I - \prod_{J=1}^{N_c} (I - Q_{CJ}))$$

$$J \neq I$$

N_C – NO OF MIN CUT SETS

52

Initiator/Enabler Theory

Component Data

54

+
$$\mathbf{Q} = \frac{\lambda \tau}{\lambda \tau + \mathbf{I}}$$

* $\mathbf{Q} = \lambda (\tau + \frac{\theta}{2})$

Conventional Approach $W_{S}(1) = W_{C_{1}}(1)$ $= \sum_{J=1}^{4} W_{J}(J) \prod_{I=1}^{4} Q_{I}(J)$ I≠.J $= W_A Q_B Q_C Q_D + W_B Q_A Q_C Q_D + W_C Q_A Q_B Q_D$ + W_DQ_AQ_BQ_C $= 5.0075 \times 10^{-6} + 2.5037 \times 10^{-5}$ $+2.5037 \times 10^{-5} + 2.5037 \times 10^{-5}$ $= 8.012 \times 10^{-5}$

Expected number of failures over 10 years $W(0,87600) = \int_{0}^{87600} 8.012 \times 10^{-5} D'_{10}$ = 7.02

56

The Window for Initiating Events

57

Initiating Events

Initiating events perturb system variables and place a demand on control/protection Systems to respond.

Enabling Events

Enabling events are inactive control/ Protection systems which permit initiating Events to cause the top event.

Using initiator/enabler theory

$$W_{S}(1) = W_{C_{1}}(1)$$

= $W_{A} Q_{B} Q_{C} Q_{D}$
= 5.0075×10⁻⁴

Expected Number of Failures over 10 years

$$W (0,87600) = \int_{0}^{87600} 5.0075 \times 10^{-6} \text{D'}$$
$$= 0.4387$$

58

Not Logic

Noncoherent Fault Trees

Barlow - "A physical system would be quite unusual (or poorly designed) if improving the performance of a component (ie by replacing a failed component by a functioning component) causes the system to deteriorate (ie change from a functioning to a failed state)"

Example

 $Min Cut Set AB\overline{C}$

Is not a coherent structure as

AB C	\rightarrow	SYSTEM	I FAILS
ABC	\rightarrow	SYSTEM	I WORKS

Coherent structure consist of only:

AND gatesOR gates

Noncoherent Structures

Are those which do not conform to the definition of a coherent structure This occurs if the NOT operator is used or implied eg XOR

Laws of Boolean Algebra - Not Logic

61

 $A + \overline{A} = 1$ $A \cdot \overline{A} = 0$

De Morgan's Laws

 $\overline{(\mathbf{A} + \mathbf{B})} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ $\overline{(\mathbf{A} \cdot \mathbf{B})} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$

Road Junction Example

Implicant Set is a combination of basic events (success or failure) which produces the top event.

Prime Implicant Set is a combination of basic events (success of failure) which is both necessary and sufficient to cause the top event.

64

 $TOP = A \overline{C} + \overline{A} B$

What about $\overline{\mathbf{C}}\mathbf{B}$

it is a prime implicant

Conventional approaches to fault tree reduction do not deliver all prime implicants for every non-coherent tree

65

SO: **TOP** = $A \overline{C} + \overline{A} B + \overline{C} B$

Coherent approximation TOP = A + B

OK if

 $P(\overline{C}) \approx 1$

System Functions - on detecting gas

- a) to alert the operator via a lamp
- b) to alert the operator via a siren
- c) to isolate electrical ignition sources

66

System Outcomes

	SIREN	LAMP	ISOLATION	SYSTEM
	W	w	W	?
	W	W	F	
6	W	F	W	
	W	F	Fillen	
5 1 1 1	F	W	W	
5	F	W	F	
1	F	F	W	
3	F	F	F	

68

TOP = $(\overline{S} \overline{LU} (\overline{D} \overline{1} + \overline{D} \overline{2})).(\overline{L} \overline{LU} (\overline{D} \overline{1} + \overline{D} \overline{2})).(R + LU + D 1.D 2)$ = $\overline{S} \overline{L} \overline{LU} (\overline{D} \overline{1} + \overline{D} \overline{2}).(R + LU + D 1.D 2)$ = $\overline{S} \overline{L} \overline{LU} (\overline{D} \overline{1} + \overline{D} \overline{2}).R$

70

Coherent Approximation

TOP = R

Session 3: Current Research

Problem areas in conventional Fault Tree Analysis

& Qualitative Analysis

For very large fault trees it may not be possible to produce a complete list of minimal cut sets.

Solution

Evaluate only those minimal cut sets which have the most significant contribution to system failure

- Order culling
- Probability or Frequency culling
& Quantitative Analysis

- Requires minimal cut sets
- Calculations are too computer intensive to perform fully

Solution

- Use most significant minimal cut sets
- Use approximate calculation techniques.

Binary Decision Diagrams

BDD's

- 1 Developed over last 5 years.
- 2 Fault Tree Good representation of engineering failure logic
 - Poor efficiency/accuracy in mathematical calculations
 - BDD Poor representation of engineering failure logic
 - Good efficiency/accuracy in mathematical calculations.
- 3 Trade-off for improved efficiency/accuracy is conversion between $FT \rightarrow BDD$.
- 4 Minimal cut sets not required to perform quantification.

B.D.D. Structure

75

Fault Tree -> B.D.D

- 1. Initially requires basic events in the fault tree to be placed in an ordering.
- 2. Most common method If-Then-Else Structure
 - * ITE(X1, f1, f2) means if X1 fails then consider f1 else consider f2

76

Simple Conversion - ite method

Rules: G = ite (x, g1, g2), H = ite (y, h1, h2) $G^*H=$ $if (x < y) => ite (x, g1^*H, g2^*H)$ $if (x = y) => ite (x, g1^*h1, g2^*h2)$

> if * = AND => 1 * G = G, 0 * G = 0if * = OR => 1 * G = 1, 0 * G = G

> > 77

Simple Conversion cont...

A < B < COrder G1 = A + B = ite(A, 1, 0) + ite(B, 1, 0)= ite(A, 1+ite(B, 1, 0), 0+ite(B, 1, 0)) = ite(A, 1, ite(B, 1, 0)) TOP = G1.C = ite(A, 1, ite(B, 1, 0)).ite(C, 1, 0) = ite(A, 1.ite(C, 1, 0), ite(B, 1, 0).ite(C, 1, 0)) = ite(A, ite(C, 1, 0), ite(B, 1.ite(C, 1, 0), 0.ite(C, 1, 0)))= ite(A, ite(C, 1, 0), ite(B, ite(C, 1, 0), 0)) $\left\{ \right\}$ Root Vertex 1 branch 0 branch

Resulting Diagram

Top Event Probability from B.D.D

=> Probability of the sum of disjoint paths through the bdd.

Disjoint Path - included in a path are the basic events that lie on a 0 branch on the way to a terminal 1 vertex.

Basic Events lying on a 0 branch are denoted as Xi, ie. 'Not' Xi

Disadvantages of BDD

- FTA \rightarrow BDD conversion
- Poor ordering can give poor efficiency

Advantage of BDD

- improved efficiency
- improved accuracy

Result of Different Ordering Permutations

Result of Ordering : X1 < X2 < X3 < X4

85

Result of Ordering : X4 < X3 < X2 < X1

Training Methods

- Classifier System
- Neural Networks

Direct evaluation of Fault Tree Structure

Safety System Design Considerations

Redundancy and diversity levels
Component selection
Time interval between testing the system

*Choice of design not unrestricted

System Analysis

- **Fault Trees** represent and quantify the system unavailability of each potential design
- House events used to construct a single fault tree representing the failure mode of EACH design

90

System Analysis, contd.

Binary Decision Diagrams improve efficiency of system analysis BDD

- Connecting branches
- Non-terminal vertices
 - correspond to basic events
- Terminal vertices
 - 0, i.e. system works
 - 1, i.e. system fails

The Optimisation Problem

- System performance CANNOT be expressed as an explicit objective function
- * Most design variables are integer or Boolean
- Constraints are of both implicit and explicit type

High Integrity Protection System

	Sub-system 1 Su		b-system 2	
Master W	ving ESDV1	ESDV2	HIPS1 HIPS2	
Designer Options				
Designe	er Options		Variable	
Designe ↔No. ES	er Options D valves (0,1,2)?	,	E Variable	
Designe ↔No. ES v No. HI	er Options D valves (0,1,2)? PS valves (0,1,2)	?	E H	
Designe ↔No. ES v No. HI v No. PT	er Options D valves (0,1,2)? PS valves (0,1,2) ''s each subsyster	? n (0 to 4)?	Variable E H N ₁ , N ₂	
Designe No. ES	er Options D valves (0,1,2)? PS valves (0,1,2) 's each subsyster 's to trip?	? n (0 to 4)?	$ \begin{array}{l} $	
Designe	er Options D valves (0,1,2)? PS valves (0,1,2) 's each subsyster 's to trip? f valve?	? n (0 to 4)?	$ \begin{array}{l} $	
Designe	er Options D valves (0,1,2)? PS valves (0,1,2) ''s each subsyster ''s to trip? f valve? f PT?	? n (0 to 4)?	$\frac{Variable}{E}$ H N_1, N_2 K_1, K_2 V_1, V_2 P_1, P_2	

Limitations on Design

Cost < 1000 units
Maintenance Dwn Time (MDT) < 130 hours
Spurious trip occurrences < 1 per year

Genetic Algorithms

Structure of the GA Set up initial population

Loop

- Evaluate **fitness** of each string
- **Selection** biased roulette wheel
- Crossover/Mutation on selected offspring

*One iteration of each loop

= generation

Initialising a System Design

Evaluating Design Fitness

The fitness of each string comprises of four parts;

- Probability of system unavailability
- v Penalty due to excess cost
- v Penalty due to excess MDT
- v Penalty due to excess spurious trip frequency

As a sole fitness value;

$$Q'_{SYS} = Q_{SYS} + CP + MDTP + STFP$$

= penalised probability of system unavailability

*

Best Design's Characteristics

				<u>Subsys 1 & 2</u>	
•	No. ESD/	HIPS valves	0	2	2
V	No. PT's		3	3	1
V	No. PT's	to trip system	2	2	
V	M.T.I.		23	57	
	v v	 MDT Cost Spurious trip 	12 84 0.4	3 hours 2 units 455	
		<u>System</u> Unavailabilit	<u>0.(</u>	<u>0011</u>	

98

Diagram of The Deluge System

99

Design Variables of Deluge System

- ✤ No. of electric pumps firewater system (1 to 4) type E1 to E5
- v No. of electric pumps AFFF system (1,2) type E6, E7
- v No. of diesel pumps firewater system (1 to 4) type D1 to D5
- v No. of diesel pumps AFFF system (1,2) type 6, D7
- v No. of pressure sensors firewater ringmain (1 to 4)
- v No. of sensors to trip
- v Type of pressure sensor
- v Type of water deluge valve
- v Type of afff deluge valve
- v Type of pipework
- v Maintenance interval for pump tests
- v Maintenance interval for pump and ringmain tests
- v Maintenance interval for full tests

Deluge system

- Fault tree in excess of 450 gates and 420 basic events
- * Fault tree converted to 17 BDD's
- In excess of 4400000000 design variations!!