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SUMMARY AND CONCLUSIONS 

Validating embedded real time systems for use in safety 
critical applications is difficult for most applications. When 
these systems are based on commercially available 
microprocessors andor microcontrollers, the validation task 
can be made significantly more difficult by the lack of basic 
data integrity protection on board the processor and 
peripherals. Additionally, basic address boundary protection 
may not be provided by the real time scheduler being used. 
Hardware FMEAs need to trace faults through their effect on 
the software. Additionally, the software design, including the 
real time scheduler or operating system, needs to be 
completely analyzed to ensure that hardware data integrity 
failures and software failures cannot cause the control 
processing to place the controlled system into an unsafe state. 

The techniques needed to perform hardware FMEAs are well 
known in the reliability engineering discipline. However, 
techniques which will allow the validation of software are not 
well known and are difficult to apply. A variety of software 
safety analysis techniques have been developed, including 
software fault uees and time Petri nets. These techniques 
attempt to assess the correctness of the software design when 
it is operating on unfailed hardware. All software analysis 
techniques are severely limited when the integrity of the data 
being pl-ocessed cannot be guaranteed. 

Hughes Aircraft has adapted and extended traditional FMEA 
techniques to include assessment of software failures. Hughes 
has been using the resulting technique to assess the safety of 
embedded real-time control systems designed for use in 
automotive applications. The use of FMEA techniques in 
assessing the software safety of these controllers has allowed 
analysis of the effects of a more comprehensive set of 
potential failures, including data corruption, than is practical 
using other software safety analysis techniques. The ability to 
assess the results of data corruption has proven to be crucial in 
providing feedback to design teams about the potential safety 
risks of the designs being analyzed. 

1. INTRODUCTION 

Processing elements which provide safety critical control 
functions need to be analyzed to determine if their contribution 
to the probability of system hazard occurrence is within 
acceptable limits prior to allowing their use in deployed 
systems. These assessments take the form of analyses and 
tests designed to assess the safety of the control function when 
no hardware failures are present, and to determine any fault 
sequences which can result in the occurrence of defined system 
hazards. The results of these assessments are then used to 

determine a numerical probability of Occurrence for each 
system hazard. Alternately, when numeric probability figures 
cannot be calculated, the number of independent faults which 
must occur to cause each hazard can be used as a figure of 
merit for system acceptance. Analysis results are compared to 
system requirements to determine the acceptability of the 
control processing design. These requirements can be specific 
regulatory requirements, customer specification requirements, 
or may be derived from less specific sources, such as liability 
considerations. For any safety critical design, the developer has 
an obligation to ensure that the processing design achieves the 
needed safety in the expected use environment. System safety 
must be maintained under normal, unfailed, operation, and 
with failures present in the processing hardware and software. 
Validating that small, real-time, embedded control processing 
systems achieve the needed safety can be difficult due to the 
close coupling between the processor hardware and software. 
Failure modes and effects analysis (FMEA) provides a cost 
effective way of assessing the impact of both hardware and 
software failures in embedded control systems. 

a 

2. SOFTWARE VALIDATION 

2. I Verification Approaches 

Analytical verification methods for assessing the effect of 
hardware failures are well known within the reliability 
discipline. Failure modes and effects analysis [l] and fault tree 
analysis ( R A )  [21 have been used to assess many safety 
critical hardware systems and are proven methods. Analytical 
verification methods for software exist, but are not as well 
known within the reliability discipline. Examples include 
Software fault tree analysis [3,41, Petri Net analysis 151 , and 
Time Petri Nets [61. Each of these analysis methods can 
provide an assessment of the software design under conditions 
of healthy processing hardware. However, software coupled 
failure effects, induced by hardware failures which compromise 
data integrity, cannot be assessed using these analysis 
techniques. 

Hardware failures which compromise processing system 
data integrity are not a concern for most large systems, or for 
small systems with adequate protection built into the hardware 
and operating systems. When the hardware provides a carefully 
constructed memory architecture, requiring multiple failures to 
impact more than one bit of any word, parity schemes can be 
used to ensure any memory corruption is readily detected. 
Similarly, parity on busses and registers, arithmetic residue 
codes, cyclic redundancy codes, and similar techniques can be 
used to ensure detection of data integrity loss. However, many 
commercially available microcontrollers do not provide 
support for data integrity protection. Also, some real-time 
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operating systems and schedulers are relatively unsophisticated 
and cannot make use of the on-board data integrity features 
which are available. Using microcontrollers in embedded, real- 
time control processing applications allows the designer to 
take advantage of device resident specialized features which can 
include communications, pulse width modulated signal 
generation, input buffering, and analog to digital conversion. 
Using the wide range of device resident functionality available 
can result in development and production cost savings in 
addition to requiring less space. These savings can be 
important in high volume and/or space constrained 
applications, particularly automotive applications. However, 
safety critical control systems which use these devices must be 
carefully designed and their safety thoroughly validated prior to 
use. 

Embedded control systems for safety critical applications 
require designs which protect against hardware failures, 
software failures, and failures which cross the 
hardware/software boundary; the system must never be allowed 
to enter an unsafe state. Analytical methods applied to validate 
these system must allow the analyst to assess the safety of 
normal operations and the system impact of both hardware and 
software failures. Extensive performance testing can provide 
partial verification of system and hardware performance under 
the expected use environment when failures are not present. 
Petri net analysis can be used to assess the potential for the 
control design to enter an unsafe state or to deadlock during 
normal operation. FMEA applied to hardware allows 
assessment of the effects of single point hardware failures. 
FMEA can be extended to consider some multiple fault 
conditions using Event Sequence Analysis [7]. Software and 
system performance testing, fault trees, and Peui net analysis 
of the software design allows software operation on unfailed 
hardware to be assessed. FMEA applied to software allows 
assessment of the impact of single point software failures and 
of those failures in hardware whose effects are determined by 
the software. For systems where undetected data hardware 
integrity failures are possible, software FMEAs have 
significant advantages over software fault tree analysis. 
Software FMEAs are inductive, thus they ensure that the 
analyst has assessed the impact of all potential failures. They 
are also smaller than software fault trees, thus more easily 
managed, for systems where hardware data integrity is not 
assured. Software FMEAs provide a unique addition to the 
analytical tools available to the system safety analyst. 
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2.2 Software FMEA 
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Software FMEA is performed based on a software hazard 
analysis which establishes a mapping between the defined 
system hazards and the software states which can cause the 
hazards. The analyst then develops failure modes for the input 
variables and for the software logic for each software routine. 
An FMEA is performed on each software routine to map the 
input variable and software logic failure modes to the output 
variable failure effects for the routine being analyzed and then 
to the critical software variable states which were established 
by the software hazard analysis. If the resultant effects of any 
failure mode maps to a set of critical variable values which are 
defined as hazardous, then that failure is a potential single 
point hazard cause. 
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Software Hazard Analvsis, Performing a software FMEA 
requires that the system hazards be translated into software 
compatible terms so that the effects of software failures can be 
evaluated which respect to the system hazards. This is the first 
step in the software FMEA process. Each defined system 
hazard which could be caused by the control processing is 
translated into a set of software variables and associated values 
which directly equate to the hazard at the system level. A fault 
tree analysis of the system design is performed to identify the 
mapping between system hazards and software variable values. 
The fault trees use the system hazards as the root undesired 
event. The fault tree logic is developed deductively until the 
specific hardware control signals and the associated values 
which relate to each hazard and are identified. The fault trees 
are then extended into the top level software design to identify 
the softwhe variables and values which map to the system 
hazards. The level of design detail at which to end the fault tree 
mapping of the system hazards to software variables is system 
dependent. The optimum level of detail is one which provides 
a mapping to the minimum size set of variables which are 
independent of each other and which fully describe the hazard 
Occurrence conditions in software variable terms. Experienced 
fault tree analysts should recognize the appropriate level of 
detail without difficulty. The results of this fault tree analysis 
are then documented in tabular form, as shown in Figure 1. 
This table, mapping between the system hazards and the 
software design, allows the analyst or analysis team to readily 
identify which software failure effects, if any, relate to each 
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Figure 1.- 

e M& The analyst must develop a set 
of failure modes for all input variables, by type, and for the 
software logic of each routine which is to be analyzed. These 
failure modes must be logically complete, allowing all 
possible failures to be assessed. Failure modes for software 
variables, as shown in the partial list of Figure 2, are the set 
of potentially erroneous values for the variable type. For 
example, a boolean variable has the failure modes of true when 
it should be false and false when it should be true. The only 
other possible values for a boolean variable are Vue when it 
should be or false when it should be; these are both correct 
values. A similar process is followed in developing failure 
modes for other variable types. An analog variable, integer or 
real value, is either correct (within tolerance) or has the failure 
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Figure 2. SW Variable Failure Modes 
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The analyst develops software 
logic failure modes for each routine being analyzed based on 
the logical functionality of the routine. For example, if a 
routine calculates a value it will have the failure modes of 
calculates value high and calculates value low. When 
combined with the success state of calculates value correctly, a 
complete logical set of the possible outcomes of the assigned 
functionality "Calculates a value for" is formed by the failure 
modes. The analyst determines logic failure modes for each 
function which is assigned to the processing of each routine 
being analyzed. These failure modes are then used, in 
conjunction with the failure modes for the input variables, as 
the software failure modes for the FMEA. 

. .  
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ut Failure Effects, The output failure effects for each 
module are based on the variable types which are either defined 
outputs of the routine being analyzed or are global variables 
which are accessed by the routine. If global variables are 
accessed by the routine, software errors or hardware failures 
could potentially change their value. The failure modes for the 
output variables of a routine are based on their type and are the 
same as those developed for the failure modes for input 
variables. Additional failure modes will need to be developed 
to allow assessment of failures which cause either no effect or 
which cause a correct effect under conditions of failure. For 
example, if an analog variable is calculated incorrectly, but the 
incorrect value is detected by the software and the variable's 
validity flag is set to false, the software is performing 
correctly. However, the effect of this condition needs to be 
traced through the software to ensure that the validity flag is 
read and appropriate actions taken. The output failure effects 
for correct actions under conditions of failure will need to be 
developed for each routine being analyzed and carefully 
assessed as an input failure mode at higher levels of indenture. 
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Software FME A Methodo logv, Software FMEA is similar in 
structure and approach to hardware FMEAs. However, as 
discussed above, the failure modes used for assessing software 
are different. The failure modes for software are based on 
logical synthesis of the possible error states instead of on 
physical failure phenomena. Also, the mapping between 
software elements is based on the software variables instead of 
wiring diagrams. Because of the highly modular structure of 
software, software FMEAs fit naturally into a matrix notation. 
Matrix FMEA [8,9,10] approaches yield a highly compact 
FMEA notation which is compact, and can be assigned to 
multiple analysts. Also, the logical structure of software 
minimizes the need for extensive remarks and explanatory 
material, a known limitation of matrix FMEA approaches 
[IO]. 

To perform the FMEA, the analyst structures a matrix 
with input variable failure modes and software logical failure 
modes along the vertical axis of the matrix and output 
variables along the horizontal top row of the matrix. As 
shown in Figure 3, the matrix is then completed by inserting 
the codes for the appropriate failure effect at the junction of the 
input failure mode being analyzed and the output variable 
which is being effected. Each failure mode is assessed until the 
matrix for the routine being analyzed is complete. The output 
variables of the routine are then used as a mapping to the 
input of other software routines. If the system and software 
have been developed using either structured systems analysis 
[ l l ]  or the real time system design approaches of reference 
[12], the data flow diagrams, developed during the software 
design, provide a mapping of the variables between modules. 
Once the FMEA matrices for all routines have been 
completed, the output effects of each matrix are mapped to 
either the input of one or more software routines, or to one or 
more of the critical software variable values identified by the 
software hazard analysis. If a failure mode maps to a set of 
critical values defined by the software hazard analysis, then the 
failure mode causes the hazard associated with that value set. 
The performance of software FMEA closely parallels the 
methods described in reference [lo],  and can easily be 
supported by automated aids, such as data base managers. 
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Figure 3. SW FMEA Matrix 
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Software FMEA can be performed at many levels of design 
detail. The only requirement is that the software input and 
output variables along with the functional assignment to each 
software element be identified. Final code is not required for 
software FMEA. Performing the software FMEA as early as 
practical in the design process allows early identification of 
single point failures which can lead to hazards. The software, 
and possibly the hardware, design can then be changed to 
ensure that the system delivered for use cannot be driven to an 
unsafe state by any single point software failure. If a thorough 
hardware FMEA has been performed on the system, the design 
can be tailored to ensure that no single point failure, hardware 
or software based, can cause system safety to be compromised. 

Software FMEA can accurately and effectively identify 
software design and data integrity based vulnerability to 
hazards. The analysis technique, when combined with hardware 
FMEA, provides an invaluable tool for assessing the behavior 
of an embedded control system under single point failures. 
However, FMEA must be supplemented by analyses and tests 
designed to ensure that the control system cannot enter a 
hazardous state during unfailed operation. Also, simulation of 
failures which impact control loop constants may be needed. A 
static analysis, such as software FMEA cannot fully assess the 
dynamics of control loops. Detailed timing analysis to identify 
any possible race conditions may also be needed. If the 
applications software is not running under a known, certified, 
real-time executive, analysis of the executive software will be 
l=l* 

3. CONCLUSIONS 

Failure modes and effects analysis is a crucial part of the 
validation analyses required for safety critical, embedded, real- 
time control processors. When hardware FMEAs are combined 
with software FMEAs, a complete assessment of system 
response to single point failures results. This assessment can 
be used to help direct the team assigned to the control 
p m s i n g  design toward robust hardware and software designs 
which can successfully provide safety critical services in an 
environment where hardware data integrity is not assured. 
When hardware and software FMEAs are supplemented with 
analysis techniques which assess operation under normal 
conditions and simulation of dynamic timing and failure 
occurrence conditions, a complete verification and validation of 
the safety characteristics of embedded, real-time, control 
systems can result. 
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