
Validating The Safety Of Embedded Real-Time
Control Systems Using FMEA

Peter L. Goddard; Hughes Aircraft, Fullerton

Key Words: Software safety, Software FMEA, FMECA, Software failure modes

SUMMARY AND CONCLUSIONS

Validating embedded real time systems for use in safety
critical applications is difficult for most applications. When
these systems are based on commercially available
microprocessors andor microcontrollers, the validation task
can be made significantly more difficult by the lack of basic
data integrity protection on board the processor and
peripherals. Additionally, basic address boundary protection
may not be provided by the real time scheduler being used.
Hardware FMEAs need to trace faults through their effect on
the software. Additionally, the software design, including the
real time scheduler or operating system, needs to be
completely analyzed to ensure that hardware data integrity
failures and software failures cannot cause the control
processing to place the controlled system into an unsafe state.

The techniques needed to perform hardware FMEAs are well
known in the reliability engineering discipline. However,
techniques which will allow the validation of software are not
well known and are difficult to apply. A variety of software
safety analysis techniques have been developed, including
software fault uees and time Petri nets. These techniques
attempt to assess the correctness of the software design when
it is operating on unfailed hardware. All software analysis
techniques are severely limited when the integrity of the data
being pl-ocessed cannot be guaranteed.

Hughes Aircraft has adapted and extended traditional FMEA
techniques to include assessment of software failures. Hughes
has been using the resulting technique to assess the safety of
embedded real-time control systems designed for use in
automotive applications. The use of FMEA techniques in
assessing the software safety of these controllers has allowed
analysis of the effects of a more comprehensive set of
potential failures, including data corruption, than is practical
using other software safety analysis techniques. The ability to
assess the results of data corruption has proven to be crucial in
providing feedback to design teams about the potential safety
risks of the designs being analyzed.

1. INTRODUCTION

Processing elements which provide safety critical control
functions need to be analyzed to determine if their contribution
to the probability of system hazard occurrence is within
acceptable limits prior to allowing their use in deployed
systems. These assessments take the form of analyses and
tests designed to assess the safety of the control function when
no hardware failures are present, and to determine any fault
sequences which can result in the occurrence of defined system
hazards. The results of these assessments are then used to

determine a numerical probability of Occurrence for each
system hazard. Alternately, when numeric probability figures
cannot be calculated, the number of independent faults which
must occur to cause each hazard can be used as a figure of
merit for system acceptance. Analysis results are compared to
system requirements to determine the acceptability of the
control processing design. These requirements can be specific
regulatory requirements, customer specification requirements,
or may be derived from less specific sources, such as liability
considerations. For any safety critical design, the developer has
an obligation to ensure that the processing design achieves the
needed safety in the expected use environment. System safety
must be maintained under normal, unfailed, operation, and
with failures present in the processing hardware and software.
Validating that small, real-time, embedded control processing
systems achieve the needed safety can be difficult due to the
close coupling between the processor hardware and software.
Failure modes and effects analysis (FMEA) provides a cost
effective way of assessing the impact of both hardware and
software failures in embedded control systems.

a

2. SOFTWARE VALIDATION

2. I Verification Approaches

Analytical verification methods for assessing the effect of
hardware failures are well known within the reliability
discipline. Failure modes and effects analysis [l] and fault tree
analysis (R A) [21 have been used to assess many safety
critical hardware systems and are proven methods. Analytical
verification methods for software exist, but are not as well
known within the reliability discipline. Examples include
Software fault tree analysis [3,41, Petri Net analysis 151 , and
Time Petri Nets [61. Each of these analysis methods can
provide an assessment of the software design under conditions
of healthy processing hardware. However, software coupled
failure effects, induced by hardware failures which compromise
data integrity, cannot be assessed using these analysis
techniques.

Hardware failures which compromise processing system
data integrity are not a concern for most large systems, or for
small systems with adequate protection built into the hardware
and operating systems. When the hardware provides a carefully
constructed memory architecture, requiring multiple failures to
impact more than one bit of any word, parity schemes can be
used to ensure any memory corruption is readily detected.
Similarly, parity on busses and registers, arithmetic residue
codes, cyclic redundancy codes, and similar techniques can be
used to ensure detection of data integrity loss. However, many
commercially available microcontrollers do not provide
support for data integrity protection. Also, some real-time

0149-144)(/93/$3.00 0 1993 IEEE

1993 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium 227

operating systems and schedulers are relatively unsophisticated
and cannot make use of the on-board data integrity features
which are available. Using microcontrollers in embedded, real-
time control processing applications allows the designer to
take advantage of device resident specialized features which can
include communications, pulse width modulated signal
generation, input buffering, and analog to digital conversion.
Using the wide range of device resident functionality available
can result in development and production cost savings in
addition to requiring less space. These savings can be
important in high volume and/or space constrained
applications, particularly automotive applications. However,
safety critical control systems which use these devices must be
carefully designed and their safety thoroughly validated prior to
use.

Embedded control systems for safety critical applications
require designs which protect against hardware failures,
software failures, and failures which cross the
hardware/software boundary; the system must never be allowed
to enter an unsafe state. Analytical methods applied to validate
these system must allow the analyst to assess the safety of
normal operations and the system impact of both hardware and
software failures. Extensive performance testing can provide
partial verification of system and hardware performance under
the expected use environment when failures are not present.
Petri net analysis can be used to assess the potential for the
control design to enter an unsafe state or to deadlock during
normal operation. FMEA applied to hardware allows
assessment of the effects of single point hardware failures.
FMEA can be extended to consider some multiple fault
conditions using Event Sequence Analysis [7]. Software and
system performance testing, fault trees, and Peui net analysis
of the software design allows software operation on unfailed
hardware to be assessed. FMEA applied to software allows
assessment of the impact of single point software failures and
of those failures in hardware whose effects are determined by
the software. For systems where undetected data hardware
integrity failures are possible, software FMEAs have
significant advantages over software fault tree analysis.
Software FMEAs are inductive, thus they ensure that the
analyst has assessed the impact of all potential failures. They
are also smaller than software fault trees, thus more easily
managed, for systems where hardware data integrity is not
assured. Software FMEAs provide a unique addition to the
analytical tools available to the system safety analyst.

HaZaldl - 1

2.2 Software FMEA

V U r V U ... valw

Software FMEA is performed based on a software hazard
analysis which establishes a mapping between the defined
system hazards and the software states which can cause the
hazards. The analyst then develops failure modes for the input
variables and for the software logic for each software routine.
An FMEA is performed on each software routine to map the
input variable and software logic failure modes to the output
variable failure effects for the routine being analyzed and then
to the critical software variable states which were established
by the software hazard analysis. If the resultant effects of any
failure mode maps to a set of critical variable values which are
defined as hazardous, then that failure is a potential single
point hazard cause.

Hazard2 Uvvl ValW Val40

228

... V U

Software Hazard Analvsis, Performing a software FMEA
requires that the system hazards be translated into software
compatible terms so that the effects of software failures can be
evaluated which respect to the system hazards. This is the first
step in the software FMEA process. Each defined system
hazard which could be caused by the control processing is
translated into a set of software variables and associated values
which directly equate to the hazard at the system level. A fault
tree analysis of the system design is performed to identify the
mapping between system hazards and software variable values.
The fault trees use the system hazards as the root undesired
event. The fault tree logic is developed deductively until the
specific hardware control signals and the associated values
which relate to each hazard and are identified. The fault trees
are then extended into the top level software design to identify
the softwhe variables and values which map to the system
hazards. The level of design detail at which to end the fault tree
mapping of the system hazards to software variables is system
dependent. The optimum level of detail is one which provides
a mapping to the minimum size set of variables which are
independent of each other and which fully describe the hazard
Occurrence conditions in software variable terms. Experienced
fault tree analysts should recognize the appropriate level of
detail without difficulty. The results of this fault tree analysis
are then documented in tabular form, as shown in Figure 1.
This table, mapping between the system hazards and the
software design, allows the analyst or analysis team to readily
identify which software failure effects, if any, relate to each

I

. . . I U U) U 1 1 1 1 ... 1 valw vw I V h I -sen I

I

... I u U 1 V I U I . . . valw I valw I C v r s n I

I I I

...] U U 1 U) U) ... I value VahN I valw I cause" I
~

Figure 1.-

e M& The analyst must develop a set
of failure modes for all input variables, by type, and for the
software logic of each routine which is to be analyzed. These
failure modes must be logically complete, allowing all
possible failures to be assessed. Failure modes for software
variables, as shown in the partial list of Figure 2, are the set
of potentially erroneous values for the variable type. For
example, a boolean variable has the failure modes of true when
it should be false and false when it should be true. The only
other possible values for a boolean variable are Vue when it
should be or false when it should be; these are both correct
values. A similar process is followed in developing failure
modes for other variable types. An analog variable, integer or
real value, is either correct (within tolerance) or has the failure

1993 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium

Vaub* Tw Fz4n tkmElld

Figure 2. SW Variable Failure Modes

cc&

The analyst develops software
logic failure modes for each routine being analyzed based on
the logical functionality of the routine. For example, if a
routine calculates a value it will have the failure modes of
calculates value high and calculates value low. When
combined with the success state of calculates value correctly, a
complete logical set of the possible outcomes of the assigned
functionality "Calculates a value for" is formed by the failure
modes. The analyst determines logic failure modes for each
function which is assigned to the processing of each routine
being analyzed. These failure modes are then used, in
conjunction with the failure modes for the input variables, as
the software failure modes for the FMEA.

. .

F h M l

ut Failure Effects, The output failure effects for each
module are based on the variable types which are either defined
outputs of the routine being analyzed or are global variables
which are accessed by the routine. If global variables are
accessed by the routine, software errors or hardware failures
could potentially change their value. The failure modes for the
output variables of a routine are based on their type and are the
same as those developed for the failure modes for input
variables. Additional failure modes will need to be developed
to allow assessment of failures which cause either no effect or
which cause a correct effect under conditions of failure. For
example, if an analog variable is calculated incorrectly, but the
incorrect value is detected by the software and the variable's
validity flag is set to false, the software is performing
correctly. However, the effect of this condition needs to be
traced through the software to ensure that the validity flag is
read and appropriate actions taken. The output failure effects
for correct actions under conditions of failure will need to be
developed for each routine being analyzed and carefully
assessed as an input failure mode at higher levels of indenture.

I wv-l I Fvlln M 2 I I I

Software FME A Methodo logv, Software FMEA is similar in
structure and approach to hardware FMEAs. However, as
discussed above, the failure modes used for assessing software
are different. The failure modes for software are based on
logical synthesis of the possible error states instead of on
physical failure phenomena. Also, the mapping between
software elements is based on the software variables instead of
wiring diagrams. Because of the highly modular structure of
software, software FMEAs fit naturally into a matrix notation.
Matrix FMEA [8,9,10] approaches yield a highly compact
FMEA notation which is compact, and can be assigned to
multiple analysts. Also, the logical structure of software
minimizes the need for extensive remarks and explanatory
material, a known limitation of matrix FMEA approaches
[IO].

To perform the FMEA, the analyst structures a matrix
with input variable failure modes and software logical failure
modes along the vertical axis of the matrix and output
variables along the horizontal top row of the matrix. As
shown in Figure 3, the matrix is then completed by inserting
the codes for the appropriate failure effect at the junction of the
input failure mode being analyzed and the output variable
which is being effected. Each failure mode is assessed until the
matrix for the routine being analyzed is complete. The output
variables of the routine are then used as a mapping to the
input of other software routines. If the system and software
have been developed using either structured systems analysis
[l l] or the real time system design approaches of reference
[12], the data flow diagrams, developed during the software
design, provide a mapping of the variables between modules.
Once the FMEA matrices for all routines have been
completed, the output effects of each matrix are mapped to
either the input of one or more software routines, or to one or
more of the critical software variable values identified by the
software hazard analysis. If a failure mode maps to a set of
critical values defined by the software hazard analysis, then the
failure mode causes the hazard associated with that value set.
The performance of software FMEA closely parallels the
methods described in reference [lo], and can easily be
supported by automated aids, such as data base managers.

t - i

Figure 3. SW FMEA Matrix

1993 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium 229

Software FMEA can be performed at many levels of design
detail. The only requirement is that the software input and
output variables along with the functional assignment to each
software element be identified. Final code is not required for
software FMEA. Performing the software FMEA as early as
practical in the design process allows early identification of
single point failures which can lead to hazards. The software,
and possibly the hardware, design can then be changed to
ensure that the system delivered for use cannot be driven to an
unsafe state by any single point software failure. If a thorough
hardware FMEA has been performed on the system, the design
can be tailored to ensure that no single point failure, hardware
or software based, can cause system safety to be compromised.

Software FMEA can accurately and effectively identify
software design and data integrity based vulnerability to
hazards. The analysis technique, when combined with hardware
FMEA, provides an invaluable tool for assessing the behavior
of an embedded control system under single point failures.
However, FMEA must be supplemented by analyses and tests
designed to ensure that the control system cannot enter a
hazardous state during unfailed operation. Also, simulation of
failures which impact control loop constants may be needed. A
static analysis, such as software FMEA cannot fully assess the
dynamics of control loops. Detailed timing analysis to identify
any possible race conditions may also be needed. If the
applications software is not running under a known, certified,
real-time executive, analysis of the executive software will be
l=l*

3. CONCLUSIONS

Failure modes and effects analysis is a crucial part of the
validation analyses required for safety critical, embedded, real-
time control processors. When hardware FMEAs are combined
with software FMEAs, a complete assessment of system
response to single point failures results. This assessment can
be used to help direct the team assigned to the control
p m s i n g design toward robust hardware and software designs
which can successfully provide safety critical services in an
environment where hardware data integrity is not assured.
When hardware and software FMEAs are supplemented with
analysis techniques which assess operation under normal
conditions and simulation of dynamic timing and failure
occurrence conditions, a complete verification and validation of
the safety characteristics of embedded, real-time, control
systems can result.

REFERENCES

1. Military Standard 1629A, Procedures for Peforming
a Failure Mode, Effects and Criticality Analysis,
24 November 1980.

2. Vesely, W. E. et al, Fault Tree Handbook U. S. Nuclear
Regulatory Commission, NUREG-0492, January 1981.

230

~~ .

3. Harvey, P. R., Fault Tree Analysis of Software, Masters
Thesis, University of Califomia, Irvine, 1982.

4. Leveson, N. G., Cha, S. S., and Shimeall, T. J., Safety
Verijication of Ada Programs Using Software Fault Trees,
University of Califomia, Irvine, February 1991.

5. Peterson, J. L., Petri Net Theory and the Modeling of
Systems, Prentice Hall, 1981.

6. Leveson, N. G., and Stolzy, J. L., "Safety Analysis Using
Petri Nets", IEEE Transactions On Software Engineering,
Vol. SE-13, NO. 3, March 1987.

7. Yellman, T. W., "Event Sequence Analysis", Proceedings
of the Annual Reliability and Maintainability Symposium,

January 1975.

8. Barbour, G., "Failure Modes and Effects Analysis by
Matrix Method", Proceedings of the Annual Reliability and
Maintainability Symposium, January 1977.

9. Herrin, S., "System Interface FMEA by Matrix Method",
Proceedings of the Annual Reliability and Maintainability
Symposium, January 1982.

10. Goddard, P. L., and Davis, R., Automated FMEA
Techniques, Final Technical Report, RADC-TR-84-244,
AD-154161, 1984.

11. DeMarco, T., Structured Analysis and System
Specification, Yourdon Press, 1978.

12. Hatley, D. J. and Pirbhai, I. A., Strategies for Real Time
System Spec$cation, Dorset House Publishing, 1987.

BIOGRAPHY

Peter L. Goddard
Hughes Aircraft Company
P. 0. Box 3310
Fullerton, Calif. , 92634, USA

Pete Goddard is currently employed as the head of the Systems
Dependability Technology Section of the Systems
Effectiveness Department of Hughes Aircraft, Ground Systems
Group. He holds a bachelors degree in Mathematics from the
University of Laverne, and a masters degree in Computer
Science from West Coast University. Mr. Goddard has
previously published technical papers in the proceedings of the
Annual International Logistics Symposium (SOLE), the
RAMS Symposium, the AIAA Computers in Aerospace
Symposium, and the NCOSE Symposium. He was the
principle investigator for the 1984 Rome Labs sponsored
"Automated FMEA Techniques" research study and was
program manager, and part of the research team for the 1991
Rome Labs sponsored "Reliability Techniques For Combined
Hardware And Software Systems" research study.

1993 PROCEEDINGS Annual RELIABILITY AND MAINTAINA ILITY Symposium I

