
Patterns for Representing FMEA in Formal Specification of Control Systems

Ilya Lopatkin, Alexei Iliasov,
Alexander Romanovsky

School of Computing Science
Newcastle University

Newcastle upon Tyne, UK
{Ilya.Lopatkin, Alexei.Iliasov,

Alexander.Romanovsky}@ncl.ac.uk

Yuliya Prokhorova, Elena Troubitsyna
Turku Centre for Computer Science

Department of Information Technologies
Åbo Akademi University

Turku, Finland
{Yuliya.Prokhorova, Elena.Troubitsyna}@abo.fi

Abstract — Failure Modes and Effects analysis (FMEA) is a
widely used technique for inductive safety analysis. FMEA
provides engineers with valuable information about failure
modes of system components as well as procedures for error
detection and recovery. In this paper we propose an approach
that facilitates representation of FMEA results in formal
Event-B specifications of control systems. We define a number
of patterns for representing requirements derived from FMEA
in formal system model specified in Event-B. The patterns help
the developers to trace the requirements from safety analysis
to formal specification. Moreover, they allow them to increase
automation of formal system development by refinement. Our
approach is illustrated by an example - a sluice control system.

Keywords - formal specification; Event-B; FMEA; patterns;
safety; control systems

I. INTRODUCTION

A. Motivation and Overview of an Approach
Formal modelling and verification are valuable for

ensuring system dependability. However, often formal
development process is perceived as being too complex to be
deployed in the industrial engineering process. Hence, there
is a clear need for methods that facilitate adopting of formal
modelling techniques and increase productivity of their use.

Reliance on patterns – the generic solutions for certain
typical problems – facilitates system engineering. Indeed, it
allows the developers to document the best practices and
reuse previous knowledge.

In this paper we propose an approach to automating
formal system development by refinement. We connect
formal modelling and refinement with Failure Modes and
Effects Analysis (FMEA) via a set of patterns.

FMEA is a widely-used inductive technique for safety
analysis [5,13,16]. We define a set of patterns formalising
the requirements derived from FMEA and automate their
integration into the formal specification. Our formal
modelling framework is Event-B – a state-based formalism
for formal system development by refinement and proof-
based verification [1]. Currently, the framework is actively
used by several industrial partners of EU FP7 project Deploy
[2] for developing dependable systems from various
domains.

The approach proposed in this paper allows us to
automate the formal development process via two main
steps: choice of suitable patterns that generically define
FMEA result, and instantiation of chosen patterns with
model-specific information. We illustrate this process with
excerpts from the automated development of a sluice gate
system [7].

Our approach allows the developers to verify (by proofs)
that safety invariants are preserved in spite of identified
component failures. Hence we believe that it provides a
useful support for formal development and improves
traceability of safety requirements.

B. Related Work
Over the last few years integration of the safety analysis

techniques into formal system modelling has attracted a
significant research attention. There are a number of
approaches that aim at direct integration of the safety
analysis techniques into formal system development. For
instance, the work of Ortmeier et al. [15] focuses on using
statecharts to formally represent the system behaviour. It
aims at combining the results of FMEA and FTA to model
the system behaviour and reason about component failures
as well as overall system safety. Our approach is different –
we aim at automating the formal system development with
the set of patterns instantiated by FMEA results. The
application of instantiated patterns automatically transforms
a model to represent the results of FMEA in a coherent and
complete way. The available automatic tool support for the
Event-B modelling as well as for plug-in instantiation and
application ensures better scalability of our approach.

In our previous work, we have proposed an approach to
integrating safety analysis into formal system development
within Action Systems [18]. Since Event-B incorporates the
ideas of Action Systems into the B Method, the current
work is a natural extension of our previous results.

The research conducted by Troubitsyna [19] aims at
demonstrating how to use statecharts as a middle ground
between safety analysis and formal system specifications in
the B Method. This work has inspired our idea of deriving
Event-B patterns.

Patterns defined for formal system development by
Hoang et al. [17] focus on describing model manipulations
only and do not provide the insight on how to derive a

2011 IEEE 13th International Symposium on High-Assurance Systems Engineering

1530-2059/11 $26.00 © 2011 IEEE

DOI 10.1109/HASE.2011.10

146

formal model from a textual requirements description that
has a negative impact on requirements traceability.

Another strand of research aims at defining general
guidelines for ensuring dependability of software-intensive
systems. For example, Hatebur and Heisel [6] have derived
patterns for representing dependability requirements and
ensuring their traceability in the system development. In our
approach we rely on specific safety analysis techniques
rather than on the requirements analysis in general to derive
guidelines for modelling dependable systems.

II. MODELLING CONTROL SYSTEMS IN EVENT-B

A. Event-B Overview
Event-B [1] is a specialisation of the B Method aimed at

facilitating modelling of parallel, distributed and reactive
systems [9]. The Rodin Platform provides an automated
support for modelling and verification in Event-B [4].

In Event-B system models are defined using the Abstract
Machine Notation. An abstract machine encapsulates the
state (the variables) of a model and defines operations on its
state. The machine is uniquely identified by its name. The
state variables of the machine are declared in the
VARIABLES clause and initialized in the
INITIALISATION event. The variables are strongly typed by
constraining predicates of invariants given in the
INVARIANTS clause. Usually the invariants also define
the properties of the system that should be preserved during
system execution. The data types and constants of the model
are defined in a separate component called CONTEXT. The
behaviour of the system is defined by a number of atomic
events specified in the EVENTS clause. An event is defined
as follows:

 E = ANY lv WHERE g THEN S END

where lv is a list of new local variables, the guard g is a
conjunction of predicates defined over the state variables,
and the action S is an assignment to the state variables.

The guard defines when the event is enabled. If several
events are enabled simultaneously then any of them can be
chosen for execution non-deterministically. If none of the
events is enabled then the system deadlocks.

In general, the action of an event is a composition of
variable assignments executed simultaneously. Variable
assignments can be either deterministic or non-
deterministic. The deterministic assignment is denoted as
x := E(v), where x is a state variable and E(v) is an
expression over the state variables v. The non-deterministic
assignment can be denoted as x :� S or x :| Q(v, x�), where S
is a set of values and Q(v, x�) is a predicate. As a result of
the non-deterministic assignment, x gets any value from S or
it obtains such a value x� that Q(v, x�) is satisfied.

The main development methodology of Event-B is
refinement. Refinement formalises model-driven
development and allows us to develop systems correct-by-
construction. Each refinement transforms the abstract
specification to gradually introduce implementation details.
For a refinement step to be valid, every possible execution

of the refined machine must correspond to some execution
of the abstract machine.

Next we describe specification and refinement of control
systems in Event-B. It follows the specification pattern
proposed earlier [11].

B. Modelling Control Systems
The control systems are usually cyclic, i.e., at periodic

intervals they get input from sensors, process it and output
the new values to the actuators. In our specification the
sensors and actuators are represented by the corresponding
state variables. We follow the systems approach, i.e., model
the controller together with its environment – plant. This
allows us to explicitly state the assumptions about
environment behaviour. At each cycle the plant assigns the
variables modelling the sensor readings. They depend on the
physical processes of the plant and the current state of the
actuators. In its turn, the controller reads the variables
modelling sensors and assigns the variables modelling the
actuators. We assume the controller reaction takes
negligible amount of time and hence the controller can react
properly on changes of the plant state.

In this paper, we focus on modelling failsafe control
systems. A system is failsafe if it can be put into a safe but
non-operational state to preclude an occurrence of a hazard.

The general specification pattern Abs_M for modelling a
failsafe control system in Event-B is presented in [14]. It
represents the overall behaviour of the system as an
interleaving between the events modelling the plant and the
controller. The behaviour of the controller has the following
stages: Detection; Control (Normal Operation or Error
Handling); Prediction. The variable flag of type
PHASE:{ENV, DET, CONT, PRED} models the current
stage.

In the model invariant we declare the types of the
variables and define the operational conditions. The system
is operational if it has not failed. However, it must be
stopped at the end of the current cycle if a failure occurred.

The events Environment, Normal_Operation and
Prediction abstractly model environment behaviour,
controller reaction and computation of the next expected
states of system components correspondingly. The event
Detection non-deterministically models the outcome of the
error detection. A result of error recovery is abstractly
modelled by the event Error_Handling.

In the next section we demonstrate how to arrive at a
detailed specification of a control system by refinement in
Event-B. We use the sluice gate control system to exemplify
the refinement process.

III. REFINEMENT OF CONTROL SYSTEMS IN EVENT-B

A. The Sluice Gate Control System
The general specification pattern Abs_M given in [14]

defines the initial abstract specification for any typical
control system. The sluice gate control system shown in
Fig. 1 is among them. The system is a sluice connecting
areas with dramatically different pressures [7]. The purpose
of the system is to adjust the pressure in the sluice area. The

147

sluice gate system consists of two doors - door1 and door2
that can be operated independently of each other and a
pressure chamber pump that changes the pressure in the
sluice area. To guarantee safety, a door may be opened only
if the pressure in the locations it connects is equalized.
Moreover, at most one door can be opened at any moment
and the pressure chamber pump can only be switched on
when both doors are closed.

Figure 1. Sluice gate system.

The sluice gate system is equipped with the sensors and
actuators shown in Fig.1. The system has physical
redundancy - the door position sensors have spares; and
information redundancy - when the doors are fully opened
or closed, the door position sensor readings should match
the readings of the switch sensors.

B. Introducing Error Detection and Recovery by
Refinement
At the first refinement step we aim at introducing

models of system components, error detection procedures as
well as error masking and recovery actions.

To systematically define failure modes, detection and
recovery procedures, for each component, we conduct
Failure Modes and Effects Analysis. FMEA [5,13,16] is a
well-known inductive safety analysis technique. For each
system component it defines its possible failure modes,
local and system effects of a failure as well as detection and
recovery procedures. Fig. 2 shows an excerpt from FMEA
of the Door1 component of our sluice system.

The Door1 component is composed of several hardware
units. Their failures correspond to the failure modes of the
Door1 component. Next we discuss how to specify error
detection and recovery for the failure mode described in the
FMEA table in Fig. 2.

Component Door1
Failure mode Door position sensor value is different from the

door closed sensor value
Possible cause Failure of position sensor or closed sensor
Local effects Sensor readings are not equal in corresponding

states
System effects Switch to degraded or manual mode or shut down
Detection Comparison of the values received from position

and closed sensors
Remedial action Retry. If failure persists then switch to redundant

sensor, diagnose motor failure. If failure still
persists, switch to manual mode and raise the
alarm. If no redundant sensor is available then
switch to manual mode and raise the alarm.

Figure 2. FMEA table

In the refined specification we introduce the variables
representing the units of Door1: door position
sensor - door1_position_sensor, motor - door1_motor and
door opened and closed sensors - door1_opened_sensor,
door1_closed_sensor. In the event Environment we
introduce the actions that change the values of
door1_position_sensor, door1_closed_sensor and
door1_opened_sensor. The event Normal_Operation
defines the action that non-deterministically changes the
value of door1_motor.

We refine the event Detection by splitting it into a group
of events responsible for the detection of each failure mode
of all system components. We introduce the variable
door1_fail to designate a failure of the door component.
This failure is assigned TRUE when any failure mode of
Door1 component is detected. The event
Detection_door1_checks included in this group contains
the actual checks for the value ranges and consistency. The
variables d1_exp_min and d1_exp_max are the new
variables introduced to model the next expected sensor
readings. These variables are updated in the Prediction
event. The event Detection_Door1 combines the results of
the checks of the status of the door1 component.

event Detection_Door1_checks
 where
 flag = DET /\ Stop = FALSE
 then
 door1_position_sensor_pred � bool((door1_position_sensor <
 d1_exp_min � door1_position_sensor > d1_exp_max) ��
���������������door1_sensor_disregard=FALSE)
 door1_closed_sensor_inconsistent �
 bool(¬(door1_closed_sensor=TRUE �
 (door1_position=0 � door1_sensor_disregard=TRUE)))
 <other checks>
end

The failure of the component Door1 is detected if any

check of the error detection events for any of its failure
modes finds a discrepancy between a fault free and the
observed states. In a similar manner, the system failure is
detected if a failure of any of the system components –
Door1, Door2 or PressurePump is detected, as specified in
the event Detection_Fault.

event Detection_Door1
 where
 flag = DET /\ Stop = FALSE
 then door1_fail � bool(door1_position_sensor_pred=TRUE ��
������������������� door1_closed_sensor_inconsistent=TRUE �
 <other check statuses>)
end
event Detection_Fault refines Detection
 where
 flag = DET /\ Stop = FALSE
 door1_fail=TRUE � door2_fail=TRUE � pressure_fail = TRUE
 with Failure' Failure'=TRUE
 then flag � CONT
end

Observe that by performing FMEA of each system

component we obtain a systematic textual description of all
procedures required to detect component errors and perform

148

Component Door1
Failure mode Door position sensor value is different from the

expected range of values
Possible cause Failure of the position sensor
Local effects Sensor reading is out of expected range
System effects Switch to degraded or manual mode or shut down
Detection Comparison of the received value with the

predicted range of values
Remedial action The same as for Fig. 2

Figure 3. FMEA table for “out of predicted range” failure mode of a
positioning sensor

their recovery. We gradually (by refinement) introduce the
specification of these requirements into the system model.

While analysing the refined specification, it is easy to
note that there are several typical specification solutions
called patterns that represent certain groups of requirements.
This observation prompts the idea of creating an automated
tool support that would automatically transform a
specification by applying the patterns chosen and instantiated
by the developer. In the next section we describe the essence
of such a tool.

IV. PATTERNS AND TOOL FOR REPRESENTING RESULTS
OF FMEA IN EVENT-B

A. Patterns for Representing FMEA Results
Our approach aims at structuring and formalising FMEA

results via a set of generic patterns. These patterns serve as a
middle hand between informal requirements description and
their formal Event-B model.

While deriving the patterns we assume that the abstract
system specification adheres to the generic pattern given in
[14]. Moreover, we also assume that components can be
represented by the corresponding state variables. Our patterns
establish a correspondence between the results of FMEA and
the Event-B terms.

We distinguish four groups of patterns: detection,
recovery, prediction and invariants. The detection patterns
reflect such generic mechanisms for error detection as
discrepancy between the actual and expected component
state, sensor reading outside of the feasible range etc. The
recovery patterns include retry of actions or computations,
switch to redundant components and safe shutdown. The
prediction patterns represent the typical solutions for
computing estimated states of components, e.g., using the
underlying physical system dynamics or timing constraints.
Finally, the invariant patterns are usually used in
combination with other types of patterns to postulate how a
model transformation affects the model invariant. This type
contains safety and gluing invariant patterns. The safety
invariant patterns define how safety conditions can be
introduced into the model. The gluing invariant patterns
depict the correspondence between the states of refined and
abstract model.

A pattern is a model transformation that upon
instantiation adds or modifies certain elements of Event-B
model. By elements we mean the terms of Event-B
mathematical language such as variables, constants,
invariants, events, guards etc. A pattern can add or modify

several elements at once. Moreover, it can be composed of
several other patterns.

To illustrate how to match FMEA results with the
proposed patterns, let us consider FMEA of a door1 position
sensor shown in Fig. 3.

To simplify illustration, the patterns are shown in a
declarative form. The identifiers shown in brackets should
be substituted by those given by a user during the pattern
instantiation (see next sections).

Our sensor is a value type sensor. Hence we can apply
the Value sensor pattern to introduce the model of the
sensor into our specification:

variables [sensor]_value
invariants
 [sensor]_value : NAT
events
 event INITIALISATION
 then
 [sensor]_value := 0
 end
end

An application of the value sensor pattern leads to

creating a new variable, its typing invariant, and an
initialisation action. To model identified detection of the
failure mode, we use the Expected range pattern:

variables
 [component]_[sensor]_[error], [component]_fail, [sensor]_exp_min,
 [sensor]_exp_max
invariants
 [component]_[sensor]_[error] : BOOL
 [component]_fail : BOOL
 [sensor]_exp_min : NAT
 [sensor]_exp_max : NAT
events
 event Detection_[component]_checks
 where flag = DET /\ Stop = FALSE then
 [component]_[sensor]_[error] � bool(
 [sensor]_value<[sensor]_exp_min�[sensor]_value>[sensor]_exp_max)
 <other checks>
 end
 event Detection_[component]
 where flag = DET /\ Stop = FALSE then
 [component]_fail � bool([component]_[sensor]_[error] ��
 <other check statuses>)
 end
end

This pattern adds the detection events and the variables

required to model error detection: expected minimal and
maximal values. The pattern ensures that the detection
checks added previously by other patterns are preserved (this
is informally shown in the angle brackets). The expected
range of values used by this pattern must be assigned by
some event in the previous control cycle. To ensure that such
assignment exists in the model, the Expected range pattern
instantiates the Range prediction pattern. An application of
this pattern results in a non-deterministic specification of
prediction. It can be further refined to take into account the
specific functionality of the system under development.

Let us observe that the Expected range pattern and
Range prediction pattern affect the same variables. To avoid
conflicts and inconsistencies, only the first pattern to be

149

instantiated actually creates the required variables. The same
rule applies to events, actions, guards etc.

To establish refinement between the model created using
patterns and the abstract model, we use the Gluing invariant
pattern, which links the sensor failure with the component
failure:

variables
 [component]_fail
invariants
 flag�DET � (Failure=TRUE � [component]_fail=TRUE ��
��	
�����
��
��������������
 flag�CONT � ([component]_fail=TRUE �
 [component]_[sensor]_[error]=TRUE �
��	
�������
����
���)

In our example, the remedial action can be divided into

three actions. The first action retries reading the sensor for a
specified number of times (Retry recovery pattern). The
second action deactivates the faulty component and activates
its spare (Component redundancy recovery pattern). The
third action is enabled when the spare component has also
failed. It switches the system from the operational state to the
non-operational one (Safe stop recovery pattern). The system
effect can be represented as a safety property (Safety
invariant pattern). We omit showing all the patterns due to
the lack of space.

As shown in the example, each FMEA field is mapped to
one or more patterns. The patterns have interdependencies.
Moreover, they are composable. For instance, the recovery
patterns reference the variables set by the sensor, and thus
depend on the results of the Value sensor pattern. The
Expected value detection pattern needs to instantiate the
Range prediction pattern to rely on the values predicted at
the previous control cycle. Each pattern creates Event-B
elements specific to the pattern, and requires elements
created by other patterns. Such interdependency and
mapping to FMEA is schematically shown in Fig. 4.

Figure 4. FMEA representation patterns

Let us note that the Expected range pattern creates new
constants and variables (dark grey rectangle, variable
[sensor]_exp_min from the example) and instantiates the
Value sensor pattern to create the elements it depends on
(light grey rectangle, variable [sensor]_value from the
example).

B. Automation of Patterns Implementation
The automation of the pattern instantiation is

implemented as a tool plug-in for the Rodin Platform [4].
Technically, each pattern is a program written in a
simplified Eclipse Object Language (EOL). It is a general
purpose programming language in the family of languages
of the Epsilon framework [10] which operates on EMF [3]
objects. It is a natural choice for automating model
transformations since Event-B is interoperable with EMF.

The tool extends the application of EOL to Event-B
models: it adds simple user interface features for
instantiation, extends the Epsilon user input facility with
discovery of the Event-B elements, and provides a library of
Event-B and FMEA-specific transformations.

To apply a pattern, a user chooses a target model and a
pattern to instantiate. A pattern application may require user
input: variable names or types, references to existing
elements of the model etc. The input is performed through a
series of simple dialogs.

The requested input comprises the applicability
conditions of the pattern. In many cases it is known that
instantiation of a pattern depends primarily on the results of
a more basic pattern. In those cases the former directly
instantiates the latter and reuses the user input. Also more
generally, if several patterns require the same unit of user
input then the composition of such patterns will ask for such
input only once. Typically, a single pattern instantiation
requires up to 3-4 inputs.

If a pattern only requires user input and creates new
elements then its imperative form is close to declarative as
shown in the example below:

var flag: Variable=
chooseOrCreateVariable("Phase variable");
createTypingInvariant(flag, "PHASE");
var failure: Variable =
chooseOrCreateVariable("Failure variable");
createTypingInvariant(failure, "BOOL");
newEvent("Detection")
.addGuard("phase_grd", flag.name+" = DET")
.addGuard("failure_grd", failure.name+"=FALSE")
.addAction("phase_act", flag.name+":=CONT")
.addAction("failure_act",failure.name+"::BOOL");

Here the tool will ask the user to select two variables (or
create new ones). It will create typing invariants and a new
model event with several guards and actions. We have used
the tool to automate the first refinement of the sluice gate
control system. The complete specification can be found in
[14].

C. Ensuring Safety by Refinement
In the second refinement step we introduce the detailed
specification of the normal control logic. This refinement
step leads to refining the event Normal_Operation into a

150

group of events that model the actual control algorithm.
These events model opening and closing the doors as well
as activation of the pressure chamber pump.

Refinement of the normal control operation results in
restricting non-determinism. This allows us to formulate
safety invariants that our system guarantees:

failure = FALSE � door1_position = door1_position ��
����door1_position = 0

failure = FALSE � (door1_position > 0 ��
����door1_motor=MOTOR_OPEN) � pressure_value =
 PRESSURE_OUTSIDE

failure = FALSE � (door2_position > 0 ��
����door2_motor=MOTOR_OPEN) � pressure_value =
 PRESSURE_INSIDE

failure = FALSE � pressure_value � PRESSURE_INSIDE ��
����pressure_value � PRESSURE_OUTSIDE � door1_position=0 ��
����door2_position=0

failure = FALSE � pump�PUMP_OFF � (door1_position=0 �
����door2_position=0)

These invariants formally define the safety requirements

informally described in subsection III.A. While verifying
the correctness of this refinement step, we formally ensure
(by proofs) that safety is preserved while the system is
operational.

At the consequent refinement steps we introduce the
error recovery procedures. This allows us to distinguish
between criticality of failures and ensure that if a non-
critical failure occurs then the system can still remain
operational.

V. CONCLUSIONS
In this paper we have made two main technical

contributions. Firstly, we derived a set of generic patterns
for elicitation and structuring of safety and fault tolerance
requirements from FMEA. Secondly, we created an
automatic tool support that enables interactive pattern
instantiation and automatic model transformation to capture
these requirements in formal system development. Our
methodology facilitates requirements elicitation as well as
supports traceability of safety and fault tolerance
requirements within the formal development process.

Our approach enables guided formal development
process. It supports the reuse of knowledge obtained during
formal system development and verification. For instance,
while deriving the patterns we have analysed and
generalised our previous work on specifying various control
systems [8,11,12].

We believe that the proposed approach and tool support
provide a valuable support for formal modelling that is
traditionally perceived as too cumbersome for engineers.
Firstly, we define a generic specification structure.
Secondly, we automate specification of a large part of
modelling decisions. We believe that our work can
potentially enhance productivity of system development and
improve completeness of formal models.

As a future work we are planning to create a library of
domain-specific patterns and automate their application.
This would result in achieving even greater degree of
development automation and knowledge reuse.

ACKNOWLEDGMENT
The work reported in this paper is supported by FP7 ICT

DEPLOY.

REFERENCES
[1] J.-R. Abrial, “Modeling in Event-B: system and software

engineering”, Cambridge University Press, 2010.
[2] Deploy project, www.deploy-project.eu.
[3] Eclipse GMT – Generative Modeling Technology,

http://www.eclipse.org/gmt.
[4] Event-B and the Rodin Platform, http://www.event-b.org/, 2010.
[5] FMEA Info Centre, http://www.fmeainfocentre.com/.
[6] D. Hatebur and M. Heisel, “A foundation for requirements analysis of

dependable software”, Proceedings of the International Conference on
Computer Safety, Reliability and Security (SAFECOMP), Springer,
2009, pp. 311-325.

[7] I. Lopatkin, A. Iliasov, A. Romanovsky, “On Fault Tolerance Reuse
during Re�nement”. In Proc. Of the 2nd International Workshop on
Software Engineering for Resilient Systems (SERENE), April 13-16,
2010.

[8] D. Ilic and E. Troubitsyna, “Formal development of software for
tolerating transient faults”. In Proc. of the 11th IEEE Pacific Rim
International Symposium on Dependable Computing, IEEE Computer
Society, Changsha, China, December 2005.

[9] ClearSy, Safety critical systems engineering,
http://www.clearsy.com/.

[10] D. S. Kolovos, “Extensible platform for specification of integrated
languages for model management (Epsilon)”, Official web-site:
http://www.cs.york.ac.uk/~dkolovos/epsilon.

[11] L. Laibinis and E. Troubitsyna, “Refinement of fault tolerant control
systems in B”, SAFECOMP 2004, Springer, Potsdam, Germany,
2004.

[12] L. Laibinis and E. Troubitsyna, “Fault tolerance in a layered
architecture: a general specification pattern in B”, In Proc. of
International Conference on Software Engineering and Formal
Methods SEFM’2004, IEEE Computer Society Press, pp.346-355,
Beijing, China, September 2004.

[13] N.G. Leveson, “Safeware: system safety and computers”, Addison-
Wesley, 1995.

[14] I. Lopatkin, Y. Prokhorova, E. Troubitsyna, A. Iliasov and
A. Romanovsky, “Patterns for Representing FMEA in Formal
Specification of Control Systems”, Technical Report 1003, TUCS,
March 2011.

[15] F. Ortmeier, M. Guedemann and W. Reif, “Formal failure models”,
Proceedings of the IFAC Workshop on Dependable Control of
Discrete Systems (DCDS 07), Elsevier, 2007.

[16] N. Storey, “Safety-critical computer systems”, Addison-Wesley,
1996.

[17] Thai Son Hoang, A, Furst and J.-R. Abrial, “Event-B patterns and
their tool support”, SEFM 2009, IEEE Computer Press, 2009,
pp. 210-219.

[18] E. Troubitsyna, “Elicitation and specification of safety requirements”,
Proceedings of the Third International Conference on Systems
(ICONS 2008), 2008, pp. 202-207.

[19] E. Troubitsyna, “Integrating safety analysis into formal specification
of dependable systems”, Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS’03), 2003, p. 215b.

151

