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Abstract — Failure Modes and Effects analysis (FMEA) is a 
widely used technique for inductive safety analysis. FMEA 
provides engineers with valuable information about failure 
modes of system components as well as procedures for error 
detection and recovery. In this paper we propose an approach 
that facilitates representation of FMEA results in formal 
Event-B specifications of control systems. We define a number 
of patterns for representing requirements derived from FMEA 
in formal system model specified in Event-B. The patterns help 
the developers to trace the requirements from safety analysis 
to formal specification. Moreover, they allow them to increase 
automation of formal system development by refinement. Our 
approach is illustrated by an example - a sluice control system. 

Keywords - formal specification; Event-B; FMEA; patterns; 
safety; control systems 

I.  INTRODUCTION 

A. Motivation and Overview of an Approach 
Formal modelling and verification are valuable for 

ensuring system dependability. However, often formal 
development process is perceived as being too complex to be 
deployed in the industrial engineering process. Hence, there 
is a clear need for methods that facilitate adopting of formal 
modelling techniques and increase productivity of their use. 

Reliance on patterns – the generic solutions for certain 
typical problems – facilitates system engineering. Indeed, it 
allows the developers to document the best practices and 
reuse previous knowledge.  

In this paper we propose an approach to automating 
formal system development by refinement. We connect 
formal modelling and refinement with Failure Modes and 
Effects Analysis (FMEA) via a set of patterns. 

FMEA is a widely-used inductive technique for safety 
analysis [5,13,16]. We define a set of patterns formalising 
the requirements derived from FMEA and automate their 
integration into the formal specification. Our formal 
modelling framework is Event-B – a state-based formalism 
for formal system development by refinement and proof-
based verification [1]. Currently, the framework is actively 
used by several industrial partners of EU FP7 project Deploy 
[2] for developing dependable systems from various 
domains.  

The approach proposed in this paper allows us to 
automate the formal development process via two main 
steps: choice of suitable patterns that generically define 
FMEA result, and instantiation of chosen patterns with 
model-specific information.  We illustrate this process with 
excerpts from the automated development of a sluice gate 
system [7].  

Our approach allows the developers to verify (by proofs) 
that safety invariants are preserved in spite of identified 
component failures. Hence we believe that it provides a 
useful support for formal development and improves 
traceability of safety requirements. 

B. Related Work 
Over the last few years integration of the safety analysis 

techniques into formal system modelling has attracted a 
significant research attention. There are a number of 
approaches that aim at direct integration of the safety 
analysis techniques into formal system development. For 
instance, the work of Ortmeier et al. [15] focuses on using 
statecharts to formally represent the system behaviour. It 
aims at combining the results of FMEA and FTA to model 
the system behaviour and reason about component failures 
as well as overall system safety. Our approach is different – 
we aim at automating the formal system development with 
the set of patterns instantiated by FMEA results. The 
application of instantiated patterns automatically transforms 
a model to represent the results of FMEA in a coherent and 
complete way. The available automatic tool support for the 
Event-B modelling as well as for plug-in instantiation and 
application ensures better scalability of our approach. 

In our previous work, we have proposed an approach to 
integrating safety analysis into formal system development 
within Action Systems [18]. Since Event-B incorporates the 
ideas of Action Systems into the B Method, the current 
work is a natural extension of our previous results. 

The research conducted by Troubitsyna [19] aims at 
demonstrating how to use statecharts as a middle ground 
between safety analysis and formal system specifications in 
the B Method. This work has inspired our idea of deriving 
Event-B patterns. 

Patterns defined for formal system development by 
Hoang et al. [17] focus on describing model manipulations 
only and do not provide the insight on how to derive a 
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formal model from a textual requirements description that 
has a negative impact on requirements traceability. 

Another strand of research aims at defining general 
guidelines for ensuring dependability of software-intensive 
systems. For example, Hatebur and Heisel [6] have derived 
patterns for representing dependability requirements and 
ensuring their traceability in the system development. In our 
approach we rely on specific safety analysis techniques 
rather than on the requirements analysis in general to derive 
guidelines for modelling dependable systems. 

II. MODELLING CONTROL SYSTEMS IN EVENT-B 

A. Event-B Overview 
Event-B [1] is a specialisation of the B Method aimed at 

facilitating modelling of parallel, distributed and reactive 
systems [9]. The Rodin Platform provides an automated 
support for modelling and verification in Event-B [4].  

In Event-B system models are defined using the Abstract 
Machine Notation. An abstract machine encapsulates the 
state (the variables) of a model and defines operations on its 
state. The machine is uniquely identified by its name. The 
state variables of the machine are declared in the 
VARIABLES clause and initialized in the 
INITIALISATION event. The variables are strongly typed by 
constraining predicates of invariants given in the 
INVARIANTS clause. Usually the invariants also define 
the properties of the system that should be preserved during 
system execution. The data types and constants of the model 
are defined in a separate component called CONTEXT. The 
behaviour of the system is defined by a number of atomic 
events specified in the EVENTS clause. An event is defined 
as follows: 

 
 E = ANY lv WHERE g THEN S END 

 
where lv is a list of new local variables, the guard g is a 
conjunction of predicates defined over the state variables, 
and the action S is an assignment to the state variables. 

The guard defines when the event is enabled. If several 
events are enabled simultaneously then any of them can be 
chosen for execution non-deterministically. If none of the 
events is enabled then the system deadlocks. 

In general, the action of an event is a composition of 
variable assignments executed simultaneously. Variable 
assignments can be either deterministic or non-
deterministic. The deterministic assignment is denoted as 
x := E(v), where x is a state variable and E(v) is an 
expression over the state variables v. The non-deterministic 
assignment can be denoted as x :� S or x :| Q(v, x�), where S 
is a set of values and Q(v, x�) is a predicate. As a result of 
the non-deterministic assignment, x gets any value from S or 
it obtains such a value x� that Q(v, x�) is satisfied. 

The main development methodology of Event-B is 
refinement. Refinement formalises model-driven 
development and allows us to develop systems correct-by-
construction. Each refinement transforms the abstract 
specification to gradually introduce implementation details. 
For a refinement step to be valid, every possible execution 

of the refined machine must correspond to some execution 
of the abstract machine. 

Next we describe specification and refinement of control 
systems in Event-B. It follows the specification pattern 
proposed earlier [11]. 

B. Modelling Control Systems 
The control systems are usually cyclic, i.e., at periodic 

intervals they get input from sensors, process it and output 
the new values to the actuators. In our specification the 
sensors and actuators are represented by the corresponding 
state variables. We follow the systems approach, i.e., model 
the controller together with its environment – plant. This 
allows us to explicitly state the assumptions about 
environment behaviour. At each cycle the plant assigns the 
variables modelling the sensor readings. They depend on the 
physical processes of the plant and the current state of the 
actuators. In its turn, the controller reads the variables 
modelling sensors and assigns the variables modelling the 
actuators. We assume the controller reaction takes 
negligible amount of time and hence the controller can react 
properly on changes of the plant state. 

In this paper, we focus on modelling failsafe control 
systems. A system is failsafe if it can be put into a safe but 
non-operational state to preclude an occurrence of a hazard.  

The general specification pattern Abs_M for modelling a 
failsafe control system in Event-B is presented in [14]. It 
represents the overall behaviour of the system as an 
interleaving between the events modelling the plant and the 
controller. The behaviour of the controller has the following 
stages: Detection; Control (Normal Operation or Error 
Handling); Prediction. The variable flag of type 
PHASE:{ENV, DET, CONT, PRED} models the current 
stage. 

In the model invariant we declare the types of the 
variables and define the operational conditions. The system 
is operational if it has not failed. However, it must be 
stopped at the end of the current cycle if a failure occurred. 

The events Environment, Normal_Operation and 
Prediction abstractly model environment behaviour, 
controller reaction and computation of the next expected 
states of system components correspondingly. The event 
Detection non-deterministically models the outcome of the 
error detection.  A result of error recovery is abstractly 
modelled by the event Error_Handling.  

In the next section we demonstrate how to arrive at a 
detailed specification of a control system by refinement in 
Event-B. We use the sluice gate control system to exemplify 
the refinement process. 

III. REFINEMENT OF CONTROL SYSTEMS IN EVENT-B 

A. The Sluice Gate Control System 
The general specification pattern Abs_M given in [14] 

defines the initial abstract specification for any typical 
control system. The sluice gate control system shown in 
Fig. 1 is among them. The system is a sluice connecting 
areas with dramatically different pressures [7]. The purpose 
of the system is to adjust the pressure in the sluice area. The 
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sluice gate system consists of two doors - door1 and door2 
that can be operated independently of each other and a 
pressure chamber pump that changes the pressure in the 
sluice area. To guarantee safety, a door may be opened only 
if the pressure in the locations it connects is equalized.  
Moreover, at most one door can be opened at any moment 
and the pressure chamber pump can only be switched on 
when both doors are closed. 

 

 
Figure 1.  Sluice gate system. 

The sluice gate system is equipped with the sensors and 
actuators shown in Fig.1. The system has physical 
redundancy - the door position sensors have spares; and 
information redundancy - when the doors are fully opened 
or closed, the door position sensor readings should match 
the readings of the switch sensors. 

B. Introducing Error Detection and Recovery by 
Refinement 
At the first refinement step we aim at introducing 

models of system components, error detection procedures as 
well as error masking and recovery actions.  

To systematically define failure modes, detection and 
recovery procedures, for each component, we conduct 
Failure Modes and Effects Analysis. FMEA [5,13,16] is a 
well-known inductive safety analysis technique. For each 
system component it defines its possible failure modes, 
local and system effects of a failure as well as detection and 
recovery procedures. Fig. 2 shows an excerpt from FMEA 
of the Door1 component of our sluice system.  

The Door1 component is composed of several hardware 
units. Their failures correspond to the failure modes of the 
Door1 component. Next we discuss how to specify error 
detection and recovery for the failure mode described in the 
FMEA table in Fig. 2. 

 
Component Door1  
Failure mode Door position sensor value is different from the 

door closed sensor value 
Possible cause Failure of position sensor or closed sensor 
Local effects Sensor readings are not equal in corresponding 

states 
System effects Switch to degraded or manual mode or shut down 
Detection Comparison of the values received from position 

and closed sensors 
Remedial action Retry. If failure persists then switch to redundant 

sensor, diagnose motor failure. If failure still 
persists, switch to manual mode and raise the 
alarm. If no redundant sensor is available then 
switch to manual mode and raise the alarm. 

Figure 2.  FMEA table 

In the refined specification we introduce the variables 
representing the units of Door1: door position 
sensor - door1_position_sensor, motor - door1_motor and 
door opened and closed sensors - door1_opened_sensor, 
door1_closed_sensor. In the event Environment we 
introduce the actions that change the values of 
door1_position_sensor, door1_closed_sensor and 
door1_opened_sensor. The event Normal_Operation 
defines the action that non-deterministically changes the 
value of door1_motor. 

We refine the event Detection by splitting it into a group 
of events responsible for the detection of each failure mode 
of all system components. We introduce the variable 
door1_fail to designate a failure of the door component. 
This failure is assigned TRUE when any failure mode of 
Door1 component is detected. The event 
Detection_door1_checks included in this group contains 
the actual checks for the value ranges and consistency. The 
variables d1_exp_min and d1_exp_max are the new 
variables introduced to model the next expected sensor 
readings. These variables are updated in the Prediction 
event. The event Detection_Door1 combines the results of 
the checks of the status of the door1 component. 

 
event Detection_Door1_checks 
    where 
      flag = DET /\ Stop = FALSE 
    then 
      door1_position_sensor_pred � bool((door1_position_sensor < 
             d1_exp_min � door1_position_sensor > d1_exp_max) ��
���������������door1_sensor_disregard=FALSE) 
      door1_closed_sensor_inconsistent �  
             bool(¬(door1_closed_sensor=TRUE �    
                  (door1_position=0 � door1_sensor_disregard=TRUE))) 
      <other checks> 
end 

 
The failure of the component Door1 is detected if any 

check of the error detection events for any of its failure 
modes finds a discrepancy between a fault free and the 
observed states. In a similar manner, the system failure is 
detected if a failure of any of the system components – 
Door1, Door2 or PressurePump is detected, as specified in 
the event Detection_Fault. 

 
event Detection_Door1 
  where 
    flag = DET /\ Stop = FALSE 
  then door1_fail �  bool( door1_position_sensor_pred=TRUE ��
�������������������     door1_closed_sensor_inconsistent=TRUE �  
                      <other check statuses>) 
end 
event Detection_Fault refines Detection 
  where 
    flag = DET /\ Stop = FALSE 
    door1_fail=TRUE � door2_fail=TRUE � pressure_fail = TRUE 
  with Failure' Failure'=TRUE 
  then flag � CONT 
end

 
Observe that by performing FMEA of each system 

component we obtain a systematic textual description of all 
procedures required to detect component errors and perform 
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Component Door1  
Failure mode Door position sensor value is different from the 

expected range of values 
Possible cause Failure of the position sensor 
Local effects Sensor reading is out of expected range 
System effects Switch to degraded or manual mode or shut down 
Detection Comparison of the received value with the 

predicted range of values 
Remedial action The same as for Fig. 2 

Figure 3.  FMEA table for “out of predicted range” failure mode of a 
positioning sensor 

their recovery. We gradually (by refinement) introduce the 
specification of these requirements into the system model.  

While analysing the refined specification, it is easy to 
note that there are several typical specification solutions 
called patterns that represent certain groups of requirements. 
This observation prompts the idea of creating an automated 
tool support that would automatically transform a 
specification by applying the patterns chosen and instantiated 
by the developer. In the next section we describe the essence 
of such a tool. 

IV. PATTERNS AND TOOL FOR REPRESENTING RESULTS 
OF FMEA IN EVENT-B 

A. Patterns for Representing FMEA Results 
Our approach aims at structuring and formalising FMEA 

results via a set of generic patterns. These patterns serve as a 
middle hand between informal requirements description and 
their formal Event-B model. 

While deriving the patterns we assume that the abstract 
system specification adheres to the generic pattern given in 
[14]. Moreover, we also assume that components can be 
represented by the corresponding state variables. Our patterns 
establish a correspondence between the results of FMEA and 
the Event-B terms. 

We distinguish four groups of patterns: detection, 
recovery, prediction and invariants. The detection patterns 
reflect such generic mechanisms for error detection as 
discrepancy between the actual and expected component 
state, sensor reading outside of the feasible range etc. The 
recovery patterns include retry of actions or computations, 
switch to redundant components and safe shutdown. The 
prediction patterns represent the typical solutions for 
computing estimated states of components, e.g., using the 
underlying physical system dynamics or timing constraints. 
Finally, the invariant patterns are usually used in 
combination with other types of patterns to postulate how a 
model transformation affects the model invariant. This type 
contains safety and gluing invariant patterns. The safety 
invariant patterns define how safety conditions can be 
introduced into the model. The gluing invariant patterns 
depict the correspondence between the states of refined and 
abstract model.  

A pattern is a model transformation that upon 
instantiation adds or modifies certain elements of Event-B 
model. By elements we mean the terms of Event-B 
mathematical language such as variables, constants, 
invariants, events, guards etc. A pattern can add or modify 

several elements at once. Moreover, it can be composed of 
several other patterns. 

To illustrate how to match FMEA results with the 
proposed patterns, let us consider FMEA of a door1 position 
sensor shown in Fig. 3. 

To simplify illustration, the patterns are shown in a 
declarative form. The identifiers shown in brackets should 
be substituted by those given by a user during the pattern 
instantiation (see next sections). 

Our sensor is a value type sensor. Hence we can apply 
the Value sensor pattern to introduce the model of the 
sensor into our specification: 

 
variables [sensor]_value
invariants 
    [sensor]_value : NAT 
events 
    event INITIALISATION 
    then 
         [sensor]_value := 0 
    end 
end 

 
An application of the value sensor pattern leads to 

creating a new variable, its typing invariant, and an 
initialisation action. To model identified detection of the 
failure mode, we use the Expected range pattern: 

 
variables 
    [component]_[sensor]_[error], [component]_fail, [sensor]_exp_min, 
    [sensor]_exp_max 
invariants 
    [component]_[sensor]_[error] : BOOL 
    [component]_fail : BOOL 
    [sensor]_exp_min : NAT 
    [sensor]_exp_max : NAT 
events 
   event Detection_[component]_checks 
   where flag = DET /\ Stop = FALSE then 
   [component]_[sensor]_[error] � bool( 
   [sensor]_value<[sensor]_exp_min�[sensor]_value>[sensor]_exp_max) 
   <other checks> 
    end 
   event Detection_[component] 
   where flag = DET /\ Stop = FALSE then 
   [component]_fail �  bool([component]_[sensor]_[error] ��
   <other check statuses>) 
   end 
end 

 
This pattern adds the detection events and the variables 

required to model error detection: expected minimal and 
maximal values. The pattern ensures that the detection 
checks added previously by other patterns are preserved (this 
is informally shown in the angle brackets). The expected 
range of values used by this pattern must be assigned by 
some event in the previous control cycle. To ensure that such 
assignment exists in the model, the Expected range pattern 
instantiates the Range prediction pattern. An application of 
this pattern results in a non-deterministic specification of 
prediction. It can be further refined to take into account the 
specific functionality of the system under development. 

Let us observe that the Expected range pattern and 
Range prediction pattern affect the same variables. To avoid 
conflicts and inconsistencies, only the first pattern to be 

149



instantiated actually creates the required variables. The same 
rule applies to events, actions, guards etc. 

To establish refinement between the model created using 
patterns and the abstract model, we use the Gluing invariant 
pattern, which links the sensor failure with the component 
failure: 

 
variables 
    [component]_fail 
invariants 
    flag�DET � (Failure=TRUE � [component]_fail=TRUE ��
������������������������������������������	
�����
��
��������������
    flag�CONT �  ([component]_fail=TRUE �  
                                     [component]_[sensor]_[error]=TRUE �
������������������������������������������	
�������
����
���) 

 
In our example, the remedial action can be divided into 

three actions. The first action retries reading the sensor for a 
specified number of times (Retry recovery pattern). The 
second action deactivates the faulty component and activates 
its spare (Component redundancy recovery pattern). The 
third action is enabled when the spare component has also 
failed. It switches the system from the operational state to the 
non-operational one (Safe stop recovery pattern). The system 
effect can be represented as a safety property (Safety 
invariant pattern). We omit showing all the patterns due to 
the lack of space. 

As shown in the example, each FMEA field is mapped to 
one or more patterns. The patterns have interdependencies. 
Moreover, they are composable. For instance, the recovery 
patterns reference the variables set by the sensor, and thus 
depend on the results of the Value sensor pattern. The 
Expected value detection pattern needs to instantiate the 
Range prediction pattern to rely on the values predicted at 
the previous control cycle. Each pattern creates Event-B 
elements specific to the pattern, and requires elements 
created by other patterns. Such interdependency and 
mapping to FMEA is schematically shown in Fig. 4. 

 

 
Figure 4.  FMEA representation patterns 

Let us note that the Expected range pattern creates new 
constants and variables (dark grey rectangle, variable 
[sensor]_exp_min from the example) and instantiates the 
Value sensor pattern to create the elements it depends on 
(light grey rectangle, variable [sensor]_value from the 
example). 

B. Automation of Patterns Implementation 
The automation of the pattern instantiation is 

implemented as a tool plug-in for the Rodin Platform [4]. 
Technically, each pattern is a program written in a 
simplified Eclipse Object Language (EOL). It is a general 
purpose programming language in the family of languages 
of the Epsilon framework [10] which operates on EMF [3] 
objects. It is a natural choice for automating model 
transformations since Event-B is interoperable with EMF. 

The tool extends the application of EOL to Event-B 
models: it adds simple user interface features for 
instantiation, extends the Epsilon user input facility with 
discovery of the Event-B elements, and provides a library of 
Event-B and FMEA-specific transformations. 

To apply a pattern, a user chooses a target model and a 
pattern to instantiate. A pattern application may require user 
input: variable names or types, references to existing 
elements of the model etc. The input is performed through a 
series of simple dialogs. 

The requested input comprises the applicability 
conditions of the pattern. In many cases it is known that 
instantiation of a pattern depends primarily on the results of 
a more basic pattern. In those cases the former directly 
instantiates the latter and reuses the user input. Also more 
generally, if several patterns require the same unit of user 
input then the composition of such patterns will ask for such 
input only once. Typically, a single pattern instantiation 
requires up to 3-4 inputs. 

If a pattern only requires user input and creates new 
elements then its imperative form is close to declarative as 
shown in the example below: 
 
var flag: Variable= 
chooseOrCreateVariable("Phase variable"); 
createTypingInvariant(flag, "PHASE"); 
var failure: Variable = 
chooseOrCreateVariable("Failure variable"); 
createTypingInvariant(failure, "BOOL"); 
newEvent("Detection") 
.addGuard("phase_grd", flag.name+" = DET") 
.addGuard("failure_grd", failure.name+"=FALSE") 
.addAction("phase_act", flag.name+":=CONT") 
.addAction("failure_act",failure.name+"::BOOL");

 

Here the tool will ask the user to select two variables (or 
create new ones). It will create typing invariants and a new 
model event with several guards and actions. We have used 
the tool to automate the first refinement of the sluice gate 
control system. The complete specification can be found in 
[14].  

C. Ensuring Safety by Refinement 
In the second refinement step we introduce the detailed 
specification of the normal control logic. This refinement 
step leads to refining the event Normal_Operation into a 
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group of events that model the actual control algorithm. 
These events model opening and closing the doors as well 
as activation of the pressure chamber pump.  

Refinement of the normal control operation results in 
restricting non-determinism. This allows us to formulate 
safety invariants that our system guarantees: 

 
failure = FALSE � door1_position = door1_position ��
����door1_position = 0 
 

failure = FALSE � (door1_position > 0 ��
����door1_motor=MOTOR_OPEN) � pressure_value = 
    PRESSURE_OUTSIDE 
 

failure = FALSE � (door2_position > 0 ��
����door2_motor=MOTOR_OPEN) � pressure_value = 
    PRESSURE_INSIDE 
 

failure = FALSE � pressure_value � PRESSURE_INSIDE ��
����pressure_value � PRESSURE_OUTSIDE  � door1_position=0 ��
����door2_position=0 
 

failure = FALSE � pump�PUMP_OFF � (door1_position=0 �
����door2_position=0) 

 
These invariants formally define the safety requirements 

informally described in subsection III.A. While verifying 
the correctness of this refinement step, we formally ensure 
(by proofs) that safety is preserved while the system is 
operational. 

At the consequent refinement steps we introduce the 
error recovery procedures. This allows us to distinguish 
between criticality of failures and ensure that if a non-
critical failure occurs then the system can still remain 
operational. 

V. CONCLUSIONS 
In this paper we have made two main technical 

contributions. Firstly, we derived a set of generic patterns 
for elicitation and structuring of safety and fault tolerance 
requirements from FMEA. Secondly, we created an 
automatic tool support that enables interactive pattern 
instantiation and automatic model transformation to capture 
these requirements in formal system development. Our 
methodology facilitates requirements elicitation as well as 
supports traceability of safety and fault tolerance 
requirements within the formal development process. 

Our approach enables guided formal development 
process. It supports the reuse of knowledge obtained during 
formal system development and verification. For instance, 
while deriving the patterns we have analysed and 
generalised our previous work on specifying various control 
systems [8,11,12].  

We believe that the proposed approach and tool support 
provide a valuable support for formal modelling that is 
traditionally perceived as too cumbersome for engineers. 
Firstly, we define a generic specification structure. 
Secondly, we automate specification of a large part of 
modelling decisions. We believe that our work can 
potentially enhance productivity of system development and 
improve completeness of formal models. 

As a future work we are planning to create a library of 
domain-specific patterns and automate their application. 
This would result in achieving even greater degree of 
development automation and knowledge reuse. 
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