

Failure Modes and Effects Analysis during Design of
Computer Software

Nathaniel Ozarin, The Omnicon Group, New York

Key Words: FMEA, Software FMEA, Software failure, Mission critical software, Software fault tree

SUMMARY AND CONCLUSIONS

 Performing FMEA on computer software presents
problems and challenges not found in FMEA of electronic
hardware. Contractual directions are usually very limited or
nonexistent, leaving the analyst to establish and tailor
guidelines needed for a particular analysis. Where code is
unavailable or off limits to the analysis, the FMEA is of
limited usefulness but can still contribute to a more reliable
system design. Unfortunately, many reliability analysts will
have more difficulty developing an approach to software
analysis than doing it. An understanding of the software
design process and a discussion of various approaches to
software design FMEA is presented to make development of
an appropriate approach and performance of the analysis itself
easier to understand.
 Moving from the lowest level of analysis to the highest
level – typically from the method level to the module or
package level – a FMEA becomes less accurate, less precise,
and less informative, while the process becomes less difficult,
less tedious, and less time-consuming. Moving from the
lowest level of analysis to the highest also means a FMEA is
based increasingly on the stated intent of the software
designers and less on the actual product behavior. For any
analysis above the code level, the analyst’s conclusions about
effects at each level will unfortunately be no better than the
descriptions that the software designers provide.

1. INTRODUCTION

 Aerospace system developments sometimes require a
FMEA to be performed in the early stages of computer
software design to help avoid unpleasant surprises with the
finished product. Unfortunately, the contractual requirements
for FMEA on software are usually very vague, leaving the
software development management to decide when to
perform the FMEA, and leaving the analysts to figure out how
to perform it. Both groups need to determine an approach
whose goals are to remain within budget, keep the customer
satisfied, and provide an analysis that is genuinely useful.
 While is it naturally desirable to perform failure analyses
as early as possible in the design process, the accuracy and
completeness of the analysis can be no better than the
material on which it is based. When an analysis focuses on
software design rather than implementation in code, the
available material is usually sketchy and ambiguous because

the designers know that anything they write during the design
stages will be heavily revised or completely rewritten after the
design has been implemented. The design is also highly
subject to change because software development is a very
fluid process during which designers can (and continually do)
make beneficial changes without penalty to their development
schedule. It is therefore important for analysts to understand
the classical software development process and its many
modern variations, and how the processes are commonly
stretched and twisted to meet schedules.
 There is no generally accepted process for performing a
FMEA on software designs that exist only as diagrams and
descriptions. Moving from the highest level of analysis to the
lowest level – typically from the module level to the code
level – a FMEA becomes more accurate, more precise, and
more informative, while the process becomes increasingly
difficult, tedious, and time-consuming. Moving from the
highest level of analysis to the lowest also means a FMEA is
based less on the stated intent of the software designers and
more on the actual product behavior.
 In any particular analysis, the smallest part that can fail
is defined by the analysis level – for example, in an analysis
at the software object level, the lowest unit that can fail (i.e.,
that can produce unexpected inputs to other units) is the
object – but the resulting failure effects ripple upward and
may also appear at the module level, and they will certainly
appear at the system level.

2. WHAT SOFTWARE FMEA IS AND ISN’T

 Software FMEA is a means to determine whether any
single failure in computer software can cause catastrophic
system effects, and additionally identifies other possible
consequences of unexpected software behavior. Software
FMEA does not predict software reliability, but aims to
determine whether the failure of any single software element
can cause specific catastrophic events or other serious effects.
At the same time, the analysis can identify possibilities of less
serious consequence so that the design code can be made
more robust in specific areas before deployment. In a
software FMEA, a failure is a software variable that is
assigned an unintended value. This kind of failure can occur
in many ways – for example, when a memory location is
unintentionally overwritten, when internal processor or
memory circuits fail, or when bad data is received from the
outside world. The analysis seeks to determine observable

RAMS 2004 - 201 - 0-7803-8215-3/04/$17.00 © 2004 IEEE

system effects – usually manifest via system hardware and
therefore dependent upon hardware analysis – when any one
software failure occurs, and in particular to determine whether
any single software fault can result in a catastrophic event.
 The software FMEA looks for consequences of all
potential software failures without trying to determine the
causes of the failures. It is independent of two essential but
different kinds of analysis: (1) how the software design meets
requirements, and (2) the adequacy of the requirements

themselves. A subsequent analysis considers the design or the
implementation. At the code level, this means analyzing
effects of each variable when it takes on an unexpected value.
For analysis at a higher level, such as the software object
level, this means analyzing variables passed among the
objects. The FMEA also does not consider correctness of
algorithms or problems resulting from real-time design errors,
but makes the assumption that every variable passed between
software units might fail without regard to cause.

The complete software FMEA process using a database
tool is summarized in Table 1 (adapted from Ref. 3). The
steps in the table all apply to software FMEA, but the table
does not address the software development process or the
relative merits of analysis at different stages of development.
The table also does not address how one determines what
parts of a software development should
be subject to FMEA.

3. THE SOFTWARE DEVELOPMENT

PROCESS AND FMEA

 Books and articles on software
development processes can fill a library
and developers are continually
developing new ways to build software
better-faster-cheaper. Fortunately, it is
possible to summarize the process
basics to the extent that it affects
FMEA. Table 2 lists the logical,
classical steps to software development

in which each step must be completed – and checked against
lists of specific accomplishments and required products –
before proceeding to the next step. In the real world,
however, a development can be completed only by bending
and stretching the process. Many commercial software
developments deliberately break the process and still manage
to succeed (never mind that the resulting product may well be
failure-prone and unmaintainable) but aerospace
developments generally require developers to adhere to a
detailed process-based plan. How can developers bend these
steps in a highly-structured aerospace environment where
detailed requirements are dictated by a customer-approved
development plan, and what needs of the FMEA analyst do
the steps fail to address?
 First, it makes no sense to hold up an entire
development because some requirements need further
refinement. Software developers therefore apply the Table 2
steps independently to different parts of the software, where
each part has its own set of steps and its own schedule. One
section of the design may be stuck in the requirements stage
while another section with better-understood requirements
may be in the detailed design stage. Developer judgment
further blurs the lines between steps when the designers
decide that incomplete requirements affect only a relatively
isolated part of a software item and it is safe to proceed with
the rest of that item’s design.
 Second, the steps in Table 2 are highly iterative,
sometimes to the extent that they are performed
simultaneously. The classical descriptions of the Table 2
steps recognize that iteration is both inevitable and natural,
but iteration – going back and taking time to revise
requirements and designs – has a time and dollar price and
developers tend to put off revising documents as long as
possible. Sometimes documents are never properly revised.
There are two main consequences here: one, documentation is
always out of date during design stages, and two, when it is
finally revised, it’s often revised from memory and will be
less accurate than when the changes were first made in
someone’s head.
 Third, the documentation prepared during the design
process is often heavy with diagrams and pseudo-code, and
light on text. Pseudo-code, or program design language
(PDL) are vague terms applied to descriptions of detailed

Table 1. Summary of the Software FMEA Process

Step Subject Description

1 System and Software
Familiarization

Using tools and guidelines to
understand the system under
analysis.

2 Database Tool
Development

Development of linked tables to
maintain information and guide
analysts.

3 Developing Rules and
Assumptions

Applying knowledge and experience
to lay out clear rules for analysis.

4 Developing Descriptive
Failure Modes

Defining the ways that software
units can be fail, and establishing
failure causes.

5 Determining System Effects
of Individual Failures

Examining software units one by
one while using data in previously
developed tables to aid the analysis.

6 Generating the Report Using the database tool to automate
report generation.

Table 2. Classical Software Development Process

Phase Title Description How Documented

1 Requirements Analysis
Understanding and organizing customer
requirements, deriving new requirements
as needed

Database tools or paper
documents

2 Requirements Allocation Assigning each requirement to one or
more parts of the software design

Database tools

3 Architectural Design Developing high-level design units,
communication needs

Design tools

4 Detailed Design Pursuing design details to the coding
phase

Design tools

5 Implementation Writing, debugging, and integrating code Software source code

6 Test Testing high-level and system-level
functions and performance

Usually paper
documents, initially

RAMS 2004 - 202 - 0-7803-8215-3/04/$17.00 © 2004 IEEE

software operations presented as step-by-step statements that
should be in plain English sentences and phrases.
Unfortunately, pseudo-code in documentation at any design
stage often looks like real computer code, and sometimes it is
actual code put there in an attempt to meet documentation
requirements. Finally, document authors are generally
development team members who naturally consider their own
needs (and document requirements) rather than address needs
of outsiders concerned with reliability.
 Fourth, design-stage documentation generally focuses
on what the software does during normal operation rather than
how it handles unexpected problems. This emphasis occurs in
part because handling of unexpected situations such as
dividing by zero, illegal attempts to access memory, or
dealing with out-of-range input data is usually handled at the
code level as a matter of good code design and good code
standards. Software exception and error handling is rarely
part of design-stage documentation.
 These four considerations mean the analyst facing
software FMEA of an in-process software design should
expect several things.

(1) At any stage of software development some parts of
the software will be less mature than others, where ‘mature’
means, for FMEA purposes, that descriptive source material
(including verbal discussions with the developers) is probably
less likely to be ambiguous and incorrect, and less likely to
change as the design proceeds. Since the analyst
must work with one set of baseline documents,
the software manager must understand that the
FMEA, upon completion, will have been based
on obsolete information.
 (2) Documentation will generally be vague,
ambiguous, and often incorrect. As a result, the
analyst and the software manager must expect
the developers to consider and answer many
questions. Seeking developer assistance can be
politically delicate (or worse) because the
developers have their own problems and
deadlines, and because some answers may not
exist yet. For the same reasons, getting written
answers to your questions may not be possible.
The analyst must therefore be prepared to make
some assumptions about software behavior (and state the
assumptions in the analysis) where answers cannot be
obtained.
 (3) If the task is to perform a FMEA at a level higher
than the code level, then the analyst should not be looking at
pseudo-code if it is in fact real code, or something very close
to it. Examination of code should be beyond the scope of a
high-level analysis, unless the terms of the effort establish
otherwise.

4. GRAPHICAL REPRESENTATIONS OF SOFTWARE

DESIGNS

 Large, modern software projects are usually developed
using software tools to help designers graphically represent
requirements and the evolving design. The diagrams

produced with these tools – if designers put the effort into
them – are an excellent basis for software FMEA. Unified
Modeling Language (UML) is currently the most widely used
modeling mechanism for capturing system design structure.
The following four sections describe four of the most widely
used kinds of UML diagrams. These descriptions are intended
as introductions and are major oversimplifications of real
UML diagrams. Ref. 1 gives an excellent detailed description
of real UML notation and usage. Note that UML is a visual
design representation that does not address code
implementation – that is, it won’t tell you anything about the
programming language selected to implement the design or
details of coding.
 4.1. Use case diagrams are among the first diagrams
developed by the software development team. These
diagrams illustrate software functionality at the highest level
by echoing functional requirements. Functional requirements
establish what the software does, as distinct from performance
requirements, which specify (for example) how accurately or
quickly the software does them.
 A use case is drawn as a bubble or oval whose label
should be a meaningful description of that use case’s
functional requirement – for example, Provide User Display
(Figure 1). A use case may be shown with connecting lines or
arrows to other use cases that expand upon the details of its
functionality – for example, Provide User Display may be

surrounded with connections to other use cases labeled
Provide Sign-on Display, Format Error Text, and Resize
Graphic Panels. Finally, use cases show interactions with
outside things such as external software, hardware, databases
or people. Outside things are represented at a high level as
stick figures called “actors,” although they usually don’t
represent people, and connecting lines or arrows to actors
show interactions. In sum: use case diagrams show, at the
highest level, what software does and the external things with
which the software interacts, but not how it does things.

Use case diagrams become particularly useful for design
development because they are generally accompanied by
descriptive introductory text and additional text describing
each use case. The text should include a step-by-step
sequence of very brief events that explain how each use case
operates. For example, imaginary use case Resize Graphics
might include these steps: (1) Get graphics item from user

Figure 1. A simple use case diagram, “Provide User Display.”

Provide User
Display

Provide Sign-
on Display

Format Error
Text

Resize
Graphics

Operator Other Software

RAMS 2004 - 203 - 0-7803-8215-3/04/$17.00 © 2004 IEEE

preferences, (2) Determine graphics window size based on
graphic complexity other data with higher display priority, (3)
rescale display items, (4) Send results to graphics buffer.
Such steps focus on how use case requirements are
approached and are the beginning of the software design.

4.2. Sequence diagrams pick up where use case
diagrams leave off by adding new information to a use case’s
sequences of events. In general, each use case will have an
associated sequence diagram, although a use case representing
a simple item of functionality may not need a use case to
explain how the associated software works, and a use case

with more complex functionality may require several
sequence diagrams to illustrate the events needed to make the
function happen. Figure 2 is an imaginary sequence diagram.
Software units that usually become software objects are
shown as rectangles with tails. Event sequences are shown as
interactions among objects (and externals) by descriptively
labeled arrows. The object at the tail of the arrow initiates the
event, and the object at the head of the arrow reacts to it. The
labels in time become method names (function calls) between
objects. As with use case diagrams, designers generally
supply descriptive text to briefly explain each event.
Sequence diagram development furthers explains the
software design.
 4.3. Class diagrams bring together information from
one or more sequence diagrams by putting all methods
belonging to an object– which may appear over several
different sequence diagrams – into one location on a
diagram (Figure 3). Although “class” and “object” are
often used interchangeably in conversation, there is an
important distinction: a class is a definition of a particular
software unit with methods (function calls) and attributes
(variables), but when the methods and attributes are
assigned to and occupy memory where they can be do
something useful, the working unit is called an object. For
example, one engine class may be made into four engine
objects in memory, with each behaving identically.

A class diagram generally shows several related classes
and indicates interclass communication. A class is shown as a
rectangle in which all class methods (function calls) are listed
in one part of the rectangle, and attributes (variables) are
shown in another section. A labeled line between two classes
is called an association and indicates that there is
communication between the classes, although the direction of
the communication and its contents isn’t always obvious from

the label. The label’s meaning is also usually at too high a
level to be useful for FMEA purposes. Associations may also
show interaction with external elements such as groups of
software classes called packages. Packages are represented
by other labeled symbols, usually rectangular and perhaps
shaded to distinguish them from classes.
 Text accompanying classes should summarize what the
class does but should also contain detailed steps explaining
how each class method works. These steps are often in some
form of program design language (PDL). In a perfect world,
class diagrams and their associated text should be sufficient

for programmers to take over. Unfortunately,
during the design process, and even after, the
information will be neither complete nor
correct, but should give a pretty good idea of
how the implementation works.
 Real class diagrams also include attribute
data types, names of arguments passed to
methods and their data types, return data
types, plus other important information not
shown in Figure 3 due to space limitations.
 4.4. Architecture diagrams show the big
picture – major system components as
hardware or software, external items,
component communications, and any other
free-form information that designers wish to

include. Architecture diagrams are often developed early in
the design to clarify early system concepts and guide
development of other UML diagrams.
 In addition to the four diagram types introduced here,
UML includes several other diagrams, notably constraint
diagrams that show performance requirements along with
their associated design parts, and data flow diagrams. From
the FMEA viewpoint, the more diagrams, the better.

5. BRINGING IT ALL TOGETHER

 The phases of classical software design phases and the
major UML diagrams seem like two different worlds, but
there is correspondence between them. Table 3 summarizes
groupings of software units from highest (package) to lowest
(method). These groupings are not emphasized in the
classical design phases – although they evolve during the
design – but they are integral to UML. Table 4 shows the

Figure 2. A simple sequence diagram, “Resize Graphics.”

User Preferences Display Priorities Graphics BufferResize Graphics
getUserPreferences

setBuffer

getPriorities

computePanelSize

Figure 3. A simple class diagram.

class:ResizeGraphics

 attribute1
 attribute2
 attribute3
 initialize()
 computePanelSize()
 reset()
 getAttribute2()

class:UserPreferences

 attributeA
 attributeB
 attributeC
 initialize()
 reset()
 getPreferences()
 getUserIdent()

Get data

RAMS 2004 - 204 - 0-7803-8215-3/04/$17.00 © 2004 IEEE

(imperfect) correspondence between the software design
phases, UML diagrams, and software groupings. Table 4 is
the basis for exploring the merits of software FMEA at
various stages of a software design.

6. RELATIVE MERITS OF ANALYSIS AT
DIFFERENT STAGES OF DEVELOPMENT

 Several decisions must be made before performing
software FMEA when the software is under design. When
should the analysis be performed? What level of analysis
detail is appropriate? What sort of results should be expected
for a given budget and schedule? Who decides these things?
The idea of FMEA on computer software is far from a well-
understood concept, and related contract requirements are
usually vague. The practical result is that most decisions will
be made (or guided) by the analyst responsible for the effort,
while the software development manager, as budget watcher,
will naturally limit the cost – and therefore the scope – of the
effort. The initial activity is therefore often a tradeoff
exercise between the hours available for doing the work and
the usefulness of results achievable in the available time.

6.1. Method-level Analysis.

FMEA at the code level requires the most extensive

effort but gives the most useful results because it will identify

more potential problems. This paper
precludes code-level analysis (explored in
Ref. 3). The next higher level (Table 3) is
the method level. At this level, each
method in each class is assumed to be
given unexpected inputs – this is
equivalent to failure of the method
supplying the data or control, or receipt of
bad data or control from the outside world.
The analysis seeks to determine the local
and system-level effects, and possibly
intermediate-level effects, of each type of
input failure.

Analysis at the method level requires
detailed descriptions of each
method’s behavior, clear
relationships between behavior
and its inputs and outputs,
relationships and data exchanges
with other methods, and a
complete description of system
behavior. Since a FMEA is based
on failure modes, the analyst
must determine how each method
can fail – and while a great deal
of the conclusions will be
intelligent guesswork, they are
still guesswork. In addition,
method-level FMEA may not be
practical because methods may
not be sufficiently described at
the time of FMEA baseline

definition. Worse, not all methods that eventually wind up in
the design may have been identified at baseline time, and
others may be dropped. In other words, a software design and
its documentation must be pretty far along for a FMEA at the
method level to be meaningful.
 Despite these problems, FMEA at the method level may
be acceptable – given the understanding that the analysis is
based on a preliminary design. The conclusions can still be
useful to software designers who must design their code to be
sufficiently robust to detect unexpected inputs without
causing system failures. Finally, due to the relatively large
number of methods in a large project, analysis on this level
can be the most costly to perform.

6.2. Class-level Analysis.

 This could also be called object-level analysis. At the
next level above the method level, FMEA performed at the
class level can take less time because there are generally far
fewer classes then methods, but compared to method analysis,
class analysis must deal with increased ambiguity and, unless
class behavior is well-defined, the analyst will need to supply
intelligent guesswork more often. Your understanding of a
class is limited by the class description, and perhaps
descriptions the class’s methods and attributes. A class-level
analysis by definition should not include study of step-by-step
PDL characterizations, and analysis of method details should

Table 3. Typical Software Groupings

Title Description

Package A collection of logically grouped software modules. Examples: Built-
In Test (BIT), Interface Drivers, Operational Flight Program

Module Typically a collection of software classes. Examples:
Communications BIT, Memory BIT, Serial Drivers, OFP Navigation

Class Typically a collection of software methods. Examples: BIT External
Interface, ARINC drivers, Air Data Inertial Reference Interface

Method

Typically a single-function software unit called by another method to
perform some specific low-level service. Examples: Save Error
Report, Service Interrupt, Compute Velocity, Format Serial Data.
Code developers implement methods.

Table 4. Design Phases and Related UML Representations

Design Phase UML Diagram What Diagram Represents Related Software Groupings

Use Case Operational requirements in logical
groupings

Requirements

Analysis
Constraints Performance requirements

Requirements
Allocation

Sequence,
Collaboration

Interactions necessary to meet use
case requirements

Class, Method
(without details)

Architectural
Design Architectural Software allocations in logical pieces Package, Module, Class

Data Flow Data exchange among logical pieces
Class, Method
(without details)

Detailed Design
Class Related functions allocated in

logical, encapsulated groups
Class, Method
(with details)

Implementation,
Test none n/a Code

RAMS 2004 - 205 - 0-7803-8215-3/04/$17.00 © 2004 IEEE

be declared out of scope. In fact, a full set of PDL
characterizations – or any PDLs at all – may not exist if a
FMEA must be started before design details have settled.
 For class-level FMEA to be meaningful, the designers
must have grouped functions into classes in a meaningful
way. As a design goal, a software class should represent or be
associated with one real-world thing – for example, an
operator display capability. Unfortunately, classes sometimes
include functionality not directly associated with one real-
world thing, and in many designs some classes are designed
simply to help other classes do their jobs – for example, data
conversion classes. When you consider how a particular real-
world class would behave with unexpected inputs, there may
be dozens of failure effects – the nature of which requires
some intelligent guesswork. Some failure effects may be very
unclear because class behavior isn’t clearly defined.
Accordingly, class-level FMEA may be just an exercise to
meet contract requirements. On the other hand, if class
behavior is limited and well-defined, if relationships among
classes and externals are clear, and if helper class
functionality is lumped with the classes they assist, then an
analyst should be able to conclude that bad input data will
cause high-level effects that could be described as “inability
to control horizontal stabilizer,” “loss of error logging
capability,” or “loss of operator display.” It must be
understood that a class-level analysis is a high-level analysis
that identifies only high-level failure effects.

6.3. Module-level Analysis

 At the next level above classes, FMEA could be
performed at the module level. A module of source code is
usually a stand-alone software file that contains any number
of classes in one long text file. FMEA at this level may not
be worthwhile because too much detail must be ignored. The
effort can also be viewed as giving obvious results. For
example, if a module contains a set of classes that handle
ARINC serial communications, then one can conclude that
failure of this module to handle bad input data will result in
loss of all ARINC data, and the FMEA report can simply list
all hardware items that depend on ARINC data via this
module. A FMEA at this level will not be nearly as extensive
as FMEA at lower levels.
 FMEA at module level may still be acceptable for large
systems with extensive backup facilities or systems with
many modules that individually contain relatively few classes.
The more modules in a system, the more meaningful the
FMEA.

6.4. Package-level analysis

 At the highest level, FMEA probably makes the least
sense because of the obvious and limited nature of the results.
For example, loss of a Built-In Test package or loss of a

Hydraulics package is a system-level consideration that is
arguably beyond the scope of a software analysis. FMEA at
this level is unlikely to meet analysis requirements. Even so,
analysis of this sort is a good start to an analysis at a lower
level because many lower-level failures will ultimately yield
failure effects at the package level.

7. SUGGESTIONS FOR FMEA AT ANY SOFTWARE LEVEL

 It is a good idea to for the analysis team to develop rules
and guidelines before starting the FMEA (Ref. 4). During the
effort, assumptions about software behavior should be worst-
case, and expect the software designers to take issue with
your conclusions. A database tool (Ref. 3) will speed the
FMEA effort, minimize human errors, and make it much
easier to produce and revise the final report.

REFERENCES

 1. Douglass, Bruce Powel, Real-Time UML, Real-Time
UML: Developing Efficient Objects for Embedded Systems,
2nd Edition, Addison-Wesley 2000, ISBN 0201657848
 2. Haapanen Pentti, Helminen Atte, “Failure Mode and
Effects Analysis of Software-Based Automation Systems,”
STUK-YTO-TR 190, Helsinki 2002. Available at
www.stuk.fi/julkaisut/tr/stuk-yto-tr190.html.
 3. Ozarin, Nathaniel and Siracusa, Michael., “A Process
for Failure Modes and Effects Analysis of Computer
Software,” Proceedings of the Annual Reliability and
Maintainability Symposium, January 2003.
 4. Ozarin, Nathaniel, “Developing Rules for Failure
Modes and Effects Analysis of Computer Software,
Proceedings of SAE Conference on Aircraft Safety,
September 2003.

BIOGRAPHY

Nathaniel W. Ozarin
The Omnicon Group Inc.
40 Arkay Drive
Hauppauge, NY 11788 USA

nozarin@omnicongroup.com

Nat Ozarin is a senior engineering consultant at The Omnicon
Group Inc., a company specializing in reliability and safety
analysis for the military, medical, industrial, and
transportation industries. His background includes hardware
engineering, software engineering, systems engineering,
programming, and reliability engineering. He received a
BSEE from Lehigh University, an MSEE from Polytechnic
University of New York, and an MBA from Long Island
University. He is an IEEE member.

RAMS 2004 - 206 - 0-7803-8215-3/04/$17.00 © 2004 IEEE

	footer1:

