
Model-driven Automated Software FMEA

Neal Snooke, PhD, Aberystwyth University
Chris Price PhD, Aberystwyth University

Key Words: Failure modes and effects analysis; software FMEA; model-driven software development

SUMMARY & CONCLUSIONS

This paper describes how software FMEA can be
automated both for low-level languages intended for safety
critical embedded systems, and also for model-driven software
developments.

It is possible for a computer to achieve a qualitative
analysis of software based on tracing dependencies through a
body of code. This can reveal the propagation of any failure in
the software, whatever the cause of the failure. Application of
a higher level representation of the intended purpose of the
software can then automatically interpret the implications of
failure in terms of the requirements put on the software.

These techniques have been used to automate the analysis
of several thousand lines of code. They have been shown to
provide useful results for software engineers, and would suit
embedded software in vehicles for example. This work is not a
cure-all for badly written software, but provides assistance in
software analysis for well designed systems in low-level
"safe" languages such as MISRA C. The software FMEA can
be used to improve automated or source code embedded
testing since tests can exonerate many potential faults
allowing the FMEA analysis to present an engineer with a
reduced set of potential faults.

Model-driven development (MDD) is a software
development philosophy which encourages the development
of models of the software to be produced, for example using a
language such as executable UML. The system is described in
a platform independent manner, and then the software to be
used is automatically generated from the model.

In MDD, the models make the intentions of the
programmer much more explicit than is the case for low-level
programming, and so the gap between the intended functions
of the system and the description of the software is not so
large. Representation of the design is much more explicit
through use cases, component diagrams, state charts and
sequence diagrams. All of this design information can be
utilized for the automated generation of software FMEA. This
means that FMEA for model-driven software can be done
more easily than for a system implemented in a low-level
language, because it is not necessary to attempt to reconstruct
the intentions of the programmer from the functions of the
system and the low-level code. The paper also discusses the
advantages and dangers of doing such analysis at the design
rather than the code level.

1 INTRODUCTION

Typically, FMEA is practiced on physical systems, and
the failure modes considered are the failures of physical
components, caused by wear or other damage to the system.
Since software has been introduced into automotive and
aeronautic systems, it has often been included in FMEA
reports as a component with no failure modes (the ECU
containing the software), and the system design FMEA has
been produced assuming that the software works correctly.

The concept of software failure mode and effects analysis
(software FMEA) has grown in attractiveness over recent
years as a way of assessing the reliability of software. Like its
hardware counterpart, software FMEA is immensely tedious
for an engineer to perform, as well as being error-prone.
Clearly, software components do not fail in the same manner
as hardware components — a function or method does not
break over time because it has become worn or damaged.
Software FMEA considers all potential faults such as faulty
inputs or software bugs (mutations) that could exist and
ensures the worst-case consequences are known, possibly
prompting actions to reduce risk. A software bug may be
treated analogously to a hardware component failure, the
essential difference being that hardware failures occur over
time whereas software bugs exist undetected but usually only
affect a very small (untested) region of the overall system
behavior.

One of the unique difficulties with software systems is the
complex relationship between faults and effects. A minor fault
can, for example, cause a complete crash of a software system
or have almost invisible but very complex, subtle, and long
lasting side effects. The result is that software often has very
non-uniform quality in terms of the effects of potential
failures, and it is not clear when effort is available, where it
should be expended to improve quality. An FMEA provides
just this information allowing targeting of effort at the highest
risk areas

Code-level software FMEA has been performed for some
years [1, 2, 3, 4], but has been considered impractical except
when applied to small pieces of highly critical code, because
of its cost. On the other hand, software FMEA of a more
abstract specification of the system can ignore important
implications of failures, especially where code is not
automatically generated from the abstract specification.

This paper describes work to automate much of the effort

978-1-4244-8856-8/11/$26.00 ©2011 IEEE

of performing software FMEA. It describes a novel method
for automating code-level software FMEA based on treating
the implemented software as a model of the desired system
and propagating faults through the model to identify
dependencies. High level descriptions of the implications of
each failure are produced through the use of functional
descriptions of what the software is intended to achieve.

The extension of this work to address the analysis of
software generated from executable models built in a language
such as executable UML is described, and the implications of
doing the analysis at such a high level are discussed.

2 ASSESSING SOFTWARE QUALITY

In much software engineering practice, engineers rely
almost exclusively on quality standards that define
development processes and practices in order to assess
whether quality software has been produced. While
development processes are vitally important in any
engineering endeavor, they do not guarantee the safety of a
product, as McDermid [5] has observed.

 Testing is the primary (and often the only) evidence
based analysis performed on software, and although testing
can initially give indications of quality, once the results are
used to improve the software, the tests are no longer a reliable
indication of overall quality. The value of tests in assessing
quality is further reduced by hierarchical testing, because
lower-level modules will themselves have been made to pass a
set of tests before being included in a system. It is likely that
the system outside the scope of the tests performed has only
the quality achieved at the very first execution of the code [5].

Put another way, testing only finds faults, it does not help
prevent or assess them. The reason for this is clear. Tests can
only ever verify a tiny sample of the expected behavioral
envelope of the software and they are often focused on
verification of nominal function, with perhaps a few limiting
case examples.

Other domains such as electrical systems analysis also
have an infinite number of possible numerical behaviors, but
other kind of analysis are done. For example, failure effect
analysis is carried out by abstracting the infinite number of
possible behaviors into qualitatively similar regions, and
concentrating on a worst case analysis.

All substantial software will enter unanticipated regions
of behavior during its life, and all software will have to deal
with external failures either from hardware or other software,
and for most software there is limited understanding of how
the system might behave. Formal methods are often proposed
as the solution to these problems, but they can be difficult to
use, specification capture remains an issue, and pragmatically
these methods are too expensive for the majority of software.
Software Integrity Levels are often used to demonstrate a
specific level of integrity [6], however SIL level specification
most often results in a mechanism to change product
requirements into process requirements and for higher levels
may also require formal methods.

These mechanisms are typically very expensive to
implement and accordingly are used only for the highest risk

systems, leaving the vast majority of software development
relying solely on the talent and intuition of software
developers along with testing to verify basic functionality.

Testing can be addressed by a variety of means, some of
which begin to move towards a wider ranging type of analysis
that can consider both more comprehensive and/or abstract
behavioral considerations, for example functional analysis
testing and cause-effect graph testing. Other types of testing
such as statement coverage, path coverage, and modified
condition decision coverage can help discover obvious
inadequacies in test suites but they cannot reason about overall
system behavior and potential failure modes or problematic
operating states. Voas [7] proposed an analysis that identifies
where faults are more likely to remain undetected, and
although based on execution of test, sets it in the spirit of a
broader assessment of quality.

The need for lower precision but higher coverage
techniques that can reveal more general (good and bad)
characteristics and potential problems in software has led to
investigation of the adaptation of techniques from other areas
such as electrical systems analysis to the needs of software
analysis.

The next section considers developments in adapting
failure modes and effects analysis (FMEA), originally applied
to physical systems, to the task of software analysis, and
describes how such analysis can be automated, providing
useful results for little effort on the part of the engineer.

3 AUTOMATION OF SOFTWARE FMEA

Automation of software FMEA is inspired by success in
automated electrical system FMEA [8], where automated
analysis is now in routine use in the automotive industry [9].
In that work, the expected behavior of the system is simulated
from a model of the design, and results are abstracted to the
level of the function of the system.

 A comprehensive set of possible failures is identified
from the components that compose the structure of the system.
For each possible failure, the simulation and abstraction is
repeated, and the results with the failure present are compared
with the results when no failure is present. The difference
between the two sets of results gives the system-level effect of
that failure. For electrical system FMEA, the software
produces engineer oriented automated reports giving the
consequences of each potential failure.

These techniques can be applied to software by treating a
piece of software as a model of the desired system. It is then
possible to reason about the ways in which faults can be
propagated through the model in order to derive the possible
causes of a given set of symptoms.

There are three facets to the production of a useful report
on failures in a piece of software:
1. Automated model construction. Techniques have been

developed capable of automatically constructing a fault
propagation model which can generate all possible effects
of a failure from the piece of software being analyzed.

2. Injection and propagation of faults. All possible faults that
could occur in the software need to be identified, so that

their effect on the overall system can be explored. Given
a specific fault, the fault propagation model constructed
automatically from the software can be used to decide
what parts of the piece of software could be affected by a
specific fault, and in what way they could be affected.

3. Identification of system level effects. Generating a list of
all variables affected by a fault would be far too much
detail to report to an engineer. The results are abstracted
using the system requirements as a focus.

Each of these three facets will be explained in turn.

3.1 Automated model construction

The source code of the software to be analyzed is parsed
and transformed into a fault propagation model. This is
essentially a graph, where the source code statements are the
edges and the variables are the nodes of the graph. It is then
possible to use the graph to reason about how the effect of a
fault can propagate through the program.

This work is clearly programming language dependent. In
the work described here, model construction has been
achieved for a large subset of the JAVA language, but the
work would be equally applicable to other imperative
languages. Limitations of this approach are discussed later,
but generally correspond to the kind of coding restrictions
recommended when constructing safety-critical software [10].

Fault propagation is complicated by the reuse of memory,
and this problem has been overcome by using a Single
Assignment Form (SAF) model [11] that transforms each
memory write to allow symbolic memory locations to be
logically written only once. SAF is used to generate a graph
with distinct nodes for each value of a variable. This is
illustrated for a simple code fragment in figure 1.

Figure 1: Code to propagation graph example

Fault propagation graphs of the kind shown in figure 1
can be constructed for much more complex pieces of code,
and used to predict the worst possible implications of any fault
in terms of which other parts of the software it will affect.

Fault propagation through non-sequential code, such as
conditions and iterations can be simplified by assuming worst

case scenarios for the propagation of faults [12]. When this
assumption does not hold, either a set of faults will have no
effect, or an effect will be generated where the engineer knows
of application constraints that explain why the failure modes
could not happen.

3.2 Injection and propagation of faults

All software faults can be characterized as faulty values:
• faulty I/O
• faulty transfer functions (whether due to wrong

specification or wrong implementation)
• loss of transfer function (due to crashing or hanging)
• missing outputs
• unexpected outputs

In order to perform an FMEA, it is assumed that any
value can become faulty and the propagation of that faulty
value is explored to all statements that depend on it. This is
achieved by propagating the faulty value using the fault
propagation model already discussed, until the effects on
system outputs have been derived. The scope and the path of
the propagation define a failure mode.

3.3 Identification of system level effects

Functional interpretation [13] is a vital part of organizing
and abstracting the results of structural and behavioral analysis
into the form of an FMEA report able to flag significant
potential problems. Information regarding the purpose(s) of
the system is required, and a functional model is used to
provide this information in a principled form. The functional
model described in this section identifies the purposes of the
system by means of associations with the system interface.

We use the following definition of function: "An object or
system O has a function f if it achieves an intended goal
(purpose) by virtue of some external trigger T resulting in the
achievement of an external (behavioral) effect E."

The function interpretation language allows functions to
be decomposed into subsidiary functions to build a functional
hierarchy. A good deal of intuition regarding the function
model can be obtained from an example functional description
for a simple travel expenses payment program shown below:

FUNCTION pay_expenses
 ACHIEVES pay_money_owed
 BY run_program
 TRIGGERS display_expenses_total
 AND print_cheque

FUNCTION make_envelope
 ACHIEVES allow_delivery_cheque
 BY run_program
 TRIGGERS address_envelope

FUNCTION display_expenses_total
 ACHIEVES verify_expense_items
 BY show_expense_items_on_screen
 AND
 show_total_on_screen

FUNCTION print_cheque
 ACHIEVES transfer_money
 BY print_in_figures
 AND
 print_in_text
 AND
 print_details

The functional model must be linked to the behavior of

the program via the causes (identified by "BY") and effects
(identified by "TRIGGERS"). These will be system inputs and
outputs and could be memory locations, or ports that influence
external devices or system calls at higher levels.
The causes and effects from the function definitions need to be
mapped onto variables in the program implementing the
functions, either global variables or instantiated variables.

3.4 Application of these techniques

The techniques described here have been applied to a
payroll program consisting of a few thousand lines of Java
code. This has shown that the computation is tractable for
useful sized programs, and that the results produced are useful
when considering the reliability of software. Both the
techniques used and the results obtained are described in
greater detail in a longer paper elsewhere [12].

These techniques provide an evidence-based analysis that
deals with a wide range of possible behaviors at a low level of
precision. They consider hypothetical faults and determine the
possible effects assigning significance to them. Any statement,
module, or subsystem is assumed to have the potential to fail
or produce incorrect output, and the techniques assess the
potential effects.

The results can be used to identify design or
implementation issues that might lead to faults with
disproportionate or unexpected consequences, identifying
areas of design or implementation that allow significant
failures to occur. Engineering effort can then be expended to
address the most significant faults.

The work described here does not cover all constructs in
all languages. It would be impossible to apply these
techniques to assembler programming, for example.
However, modern software languages both encourage and
enforce higher levels of structuring and this helps to inherently
constrain faults. Decades ago, high level-languages introduced
typed data and procedures to help structure data and code and
these have been refined ever since. Object-oriented methods
provide common structures to partition data with code. These
techniques make software FMEA analysis feasible at the level
of code because they constrain potential fault impacts.

The main limitations of this approach at present come
from the need to trace dependencies between variables. This
is impossible with dangerous programming constructs such as
pointer arithmetic. In such cases, it would be impossible to
accurately propagate faults - a fault could propagate to any
part of the system. Some other programming constructs such
as generation of dynamic structures, keeping track of variables

in dynamic heap based structures, and recursion are still to be
included in the analysis. However, the types of programming
construct that cannot presently be addressed with this
approach are similar to the types of construct that the MISRA
C guidelines for safety critical embedded software recommend
should be avoided [10]. Embedded software is a promising
area for early application of this software FMEA tool, because
of the safety critical demands and the limited, well defined
external functionality. We are currently working on a further
case study application in the embedded domain.

4 EXTENSION TO MODEL-DRIVEN ARCHITECTURES

Model driven software development (MDD) is
characterized by descriptions of the operation of a system
which can be transformed automatically into code to run on a
specific platform using a specific architecture. The models in
MDD explicitly represent the important aspects of the system.
This contrasts with the work in the previous section, where a
model of the functionality of the system is inferred from the
code. In this case, the model is explicit, and so it would seem
that application of the propagation and abstraction techniques
described previously should be much simpler.

This section will examine the models used in MDD and
where potential problems might occur in using them in an
automated software FMEA.

The first assumption in this work is that generation of
code from the models is completely automatic. If code is
generated by hand from UML (as has often been the case in
model-driven software design in the past), then
correspondence between the model and the implementation
would need to be proven in order to have any confidence in
the analysis. Another level of compromise would be that
platform dependent annotations are made to the models in
order to generate code for a specific platform - those
annotations would need to be taken into account in the
analysis if they existed.

The second assumption is that the automated process of
transformation to a platform dependent model does not itself
introduce new potential for generating and propagating errors.
This assumption is related to the assumption for a high level
language that the compiler does not introduce errors to the
program, although the potential for problems to be introduced
in transformation is probably greater than the likelihood of a
compiler error. Clearly people using such tools for important
work should ask questions about the risks that the tools
themselves introduce to the process.

If both of these assumptions were true, then the models
would be a complete representation of the operation of the
system, and could give a good indication of the potential for
problems presented by the system.

4.1 Generating software FMEA from models

Let us say that the system is specified in executable UML
with a specific set of models. USE CASES are used to
describe the purpose of the system. Class diagrams are used to
describe objects in the system. The behavior of the system is
described with lifecycle statements for each class containing

state-based snippets of high level business logic describing the
actions in each state.

The three facets of code-level automated software FMEA
can be adapted to this situation in the following way:

1) Automated model construction. This stage has been
made much simpler. The interactions between objects and
variables are much more explicit in this representation, and
can be extracted from the class descriptions, the lifecycle
statements and the business logic. Complications are added by
the dynamic objects, but an easy simplification of the analysis
might be to consider only one instance of each class and the
links between the classes. This simplification is likely to err on
the side of caution in identifying potential problems.

2) Injection and propagation of faults. This does not
change from the previous version.

3) Identification of system level effects. The USE CASE
diagrams are useless in themselves, merely identifying the
functions that are required. Typically, they would be fleshed
out with a textual description of what is involved in each USE
CASE. In order to be used for automated software FMEA, that
description needs to be more formalized, ideally given as the
kind of functional description that was used for the code-level
software FMEA. If this is done, then that clear description of
requirements can be linked to the model in the same way, and
used to abstract results. It has further advantages, in that it
clarifies the functional requirements of the system, and records

them in a clear, unambiguous, executable form.

4.2 Challenges and potential

In some ways, automated generation of software FMEA
from model-driven software is an easier task than it is for a
system implemented in a low-level language. In a lower level
language, it is necessary to attempt to reconstruct the
intentions of the programmer from the functions of the system
and the low-level code. Because the model-driven software
expresses the intentions of the programmer much more
explicitly, the gap between the intended functions of the
system and the description of the software is not so large. The
models are executable, typically expressed as state-charts, and
it is possible to use those executable model descriptions to
understand how the different parts of the system relate to each
other, and to understand how failures might be propagated
through the system.

A software FMEA of the platform independent model is
potentially extremely valuable, as it can identify problems
with the design of the system, as opposed to the way in which
it is chosen to implement it. However, the models leave many
of the lower level implementation decisions to the platform
dependent code generation, and it is possible for extra
problems and interactions to creep into an implemented
system at that point.

Figure 2: Possible architecture for automated software FMEA testing robustness of generated code

In order to assess the fault tolerance of the generated
system, you would need to know the reliability of the
transformation from model to code. The proponents of MDD
claim that in future, we will have the same level of confidence
in the model-to-code transformation as we presently have in
compilers for high-level languages, but that is not presently
the case. In addition, they typically think in terms of the
correctness of the transformation, but even if the
transformation is correct for the normal behavior of the
system, that does not guarantee that it will be robust under
failure. Faults often propagate through a software system
because of the lack of checks that values are consistent and
within sensible values. The level of confidence in a model to
code generator should depend on the degree to which it had
automated such protection against failure.

Where the transformation from model to code uses a
standard high-level language as its target, then an intermediate
scheme between just analyzing the high-level model and just
doing low-level analysis on code might be possible as pictured
in figure 2. Further confidence in the robustness of the
designed system can be obtained by linking the analysis of the
high-level model to the kind of low-level analysis of the
generated system that our original system was capable of. The
high-level model can be used both to focus the low level
analysis and to decompose it into manageable pieces.

The combination of low-level analysis of the
dependencies within specific code, and the high-level analysis
of the dependencies within the abstract design provides the
potential to efficiently produce a useful software FMEA for a
complex system of a practical size, giving early warning of
design problems but also taking into account the robustness of
the generated code.

REFERENCES

1. J. B. Bowles, "Failure modes and effects analysis for a
small embedded control system". Proc. Ann. Reliability &
Maintainability Symp., (Jan.) 2001, pp1-6.

2. T. Cichocki, J. Gorski. "Failure mode and effect analysis
for safety-critical systems with software components."
SAFECOMP 2000, vol. LNCS1943, 2001, pp382-394.

3. P.L. Goddard. "Software FMEA techniques". Proc. Ann.
Reliability & Maintainability Symp., (Jan.) 2000, pp118-
123.

4. N. Ozarin and M. Siracusa. "A process for failure modes
and effects analysis of computer software". Proc. Ann.
Reliability & Maintainability Symp., (Jan.) 2003, pp365-
370.

5. J. McDermid. "Software safety: Where’s the evidence?"
6th Australian Workshop on Industrial Experience with
Safety Critical Systems (SCS ’01). Australian Computer
Society, 2001, http: //www-users.cs.york.ac.uk/ jam/.

6. Functional Safety of Electrical / Electronic /
Programmable Electronic Safety-related Systems (IEC
61508). International Electrotechnical Commission,
International Electrotechnical Commission, 3 rue de

Varembé, Geneva, Switzerland, http://www.iec.org.ch.
7. J. M. Voas,. "Pie: A dynamic failure-based technique".

IEEE Transactions on Software Engineering, 1992,
vol18, pp717– 727.

8. C. J. Price, N. A. Snooke, S. D. Lewis. "A layered
approach to automated electrical safety analysis in
automotive environments". Computers in Industry, 2006,
vol 57: pp451–461.

9. P. Struss and C. J. Price. "Model-based systems in the
automotive industry", AI Magazine, special issue on
Qualitative Reasoning, Winter 2003, vol 24(4), pp17–34.

10. ISO/TR 15497: 2000. Road vehicles – Development
Guidelines for Vehicle Based Software. 2000.

11. J. Collard, Reasoning About Program Transformations.
Springer, 2003.

12. C. J. Price, N. Snooke; "An Automated Software FMEA";
Proceedings of the International System Safety and
Reliability Conference, (ISSRC 2008); Singapore; April
2008; *ISBN: 978-981-08-0446-6*

13. C. J. Price. "Function Directed Electrical Design
Analysis", Artificial Intelligence in Engineering, 1998,
vol 12(4), pp445–456.

BIOGRAPHIES

Neal Snooke, PhD
Computer Science Department
Aberystwyth University
Aberystwyth, SY23 3DB
United Kingdom

e-mail: nns@aber.ac.uk

Neal Snooke is a Lecturer in the Computer Science
Department at Aberystwyth University. He has 15 years
experience of working with automotive and aerospace
companies building software tools that assist engineers by
automating the design analysis of engineering designs. The
two latest applications of such work have concerned the
automated generation of on-board diagnostics from
engineering designs, and the use of the techniques that have
proved successful in other engineering domains for the
analysis of software.

Chris Price, PhD
Computer Science Department
Aberystwyth University
Aberystwyth, SY23 3DB
United Kingdom

e-mail: cjp@aber.ac.uk

Chris Price is a full professor in the Computer Science
Department at Aberystwyth University. He is a Fellow of the
BCS, and a Chartered Engineer, He leads a research group
concerned with the application of artificial intelligence
techniques to engineering problems. The group has worked
with many leading companies in the automotive and aerospace
industries developing advanced software.

