
Review of Software Design Diversity

P.G. Bishop, Adelard

This is a shortened version of a review on software design diversity which formed one chapter
of the book: Software Fault Tolerance, M. Lyu (ed.), Wiley Press, 1995. As such the use of
the material must conform to normal copyright restrictions. The document must not be re-
copied or sold.

1 Introduction

Generally speaking, diversity is a protection against uncertainty, and the greater the
uncertainty (or the greater the consequences of failure), the more diversity is employed. This
concept of “defence in depth” is reflected in, for example, aircraft control systems and nuclear
plant protection. At the general systems engineering level, diversity is an established approach
for addressing critical applications. Such an approach tends to utilise sub-systems that are
functionally different (e.g. concrete containment, shutdown rods, boronated water, etc.). Even
when subsystems perform a broadly similar function, the implementation technology can differ
(e.g. using discrete logic or a computer system).

With the advent of computers, N-version software diversity has been proposed [Avi77] as a
means of dealing with the uncertainties of design faults in a computer system implementation.
Since that time there have been a number of computer systems which are based on the diverse
software concept including railway interlocking and train control [And81], Airbus flight
controls [Tra88], and reactor protection [Vog82], [Con88].

The main question to ask is “does software diversity buy you more reliability?”. From a
systems engineering viewpoint, if the software diversity is ineffective or too costly, there may
be alternative design options at the systems engineering level that are more cost-effective. The
remainder of this paper will attempt to address this question, by summarising research in this
area, reviewing the practical application of diversity, and discussing where diversity can be
most effectively applied.

2 N-version Programming Research

One underlying assumption behind N-version programming is that independent developments
will produce diverse program faults and this will minimise the likelihood of coincident failures.
A much stronger assumption is that “ideal” diverse software would exhibit failure
independence. In this model the probability of simultaneous failure of a pair of programs A
and B is simply PfA.PfB where Pf is the probability of failure for a program execution.

Over the years a range of experiments have been mounted to test these underlying assumptions
[Vog94]. The experiments have examined factors that could affect the diversity of the
development process, including:

• independent teams

• diverse specification and implementation methods

• management controls

The common features in all these experiments are the use of independent teams to produce
diverse programs, followed by acceptance testing the diverse versions, and some form of

1

comparison testing (either against each other or against a “golden” program) to detect residual
faults and estimate reliability. Some typical N-version experiments are summarised below:

Experiment Specs Languages Versions Ref.

Halden, Reactor Trip 1 2 2 [Dah79]

NASA, First Generation 3 1 18 [Kel83]

KFK, Reactor Trip 1 3 3 [Gme80]

NASA/RTI, Launch Interceptor 1 3 3 [Dun86]

UCI/UVA, Launch Interceptor 1 1 27 [Kni86a]

Halden (PODS), Reactor Trip 2 2 3 [Bis86]

UCLA, Flight Control 1 6 6 [Avi88]

NASA (2nd Gen.) Inertial Guidance 1 1 20 [Eck91]

UI/Rockwell, Flight Control 1 1 15 [Lyu93]

Table 1: Some Software Diversity Experiments

The performance of N-version programming has been assessed by a number of different
criteria, including:

• diversity of faults

• empirical reliability improvement

• comparison with the independence assumption

Some of the main results in these areas will be discussed below.

2.1 Fault diversity

Most of the early research in this area [Dah79], [Gmei80], [Kel83], [Dun86] focused on
analysing the software faults produced and the empirical improvement in reliability to be
gained from design diversity.

One common outcome of these experiments was that a significant proportion of the faults were
similar, and the major cause of these common faults was the specification. Since faults in the
design and coding stages tended to be detected earlier, quite a high proportion of specification-
related faults were present in the final program versions. For example in the KFK experiment,
12 specification faults were found out of a total of 104, but after acceptance testing 10
specification-related faults were still present out of a total of 18. The major deficiencies in the
specifications were incompleteness and ambiguity which caused the programmer to make
incorrect (and potentially common) design choices (e.g. in the KFK experiment there were 10
cases where faults were common to two of the three versions).

An extreme example of this general trend can be found in the Project on Diverse Software
(PODS) [Bis86]. The project had three diverse teams (in England, Norway and Finland)
implementing a simple nuclear reactor protection system application. With good quality control

2

and experienced programmers no design-related faults were found when the diverse programs
were tested back-to-back. All the faults were caused by omissions and ambiguities in the
requirements specification. However, due to the differences in interpretation between the
programmers, five of the faults occurred in a single version only, and two common faults were
found in two versions.

Clearly any common faults limit the degree of reliability improvement that is possible, and it
would certainly be unreasonable to expect failure independence in such cases. Some of the
experiments have incorporated diverse specifications [Kel83], [Bis86] which can potentially
reduce specification-related common faults. In general it was found that the use of relatively
formal notations was effective in reducing specification-related faults caused by incompleteness
and ambiguity. The value of using diverse specifications on a routine basis is less obvious; the
performance in minimising common design faults is uncertain, and there is a risk that the
specifications will not be equivalent. In practice, only a single good specification method would
be used unless it could be shown that diverse specifications were mathematically equivalent.

The impact of the programming language has also been evaluated in various experiments such
as [Dah79], [Bis86], [Avi88]. In general fewer faults seem to occur in the strongly typed,
highly structured languages such as Modula 2 and Ada while low level assembler has the worst
performance. However the choice of language seems to bear little relationship to the incidence
of common specification-related or design-related faults, or the eventual performance the
programs after acceptance testing.

In recent years there has been a focus on the “design paradigm” for N-version programming to
improve the overall quality and independence of the diverse developments [Avi88], [Lyu93].
This paradigm requires the identification and specification of the key cross-check points (cc-
points) where voting is required between the diverse implementations. Another important
feature of the model is the protocol for communication between the development teams and the
project co-ordinator. When a problem is identified in the specification, a revision is broadcast
to all teams and subsequently followed-up to ensure that the update has been acted upon. This
helps to remove specification-related faults at an earlier stage. It is of course important to have
a good initial specification since the project co-ordinator can become very overloaded. This
situation was observed in the NASA experiment [Kel88] where there was an average of 150
questions per team compared with 11 questions per team in [Lyu93].

The first experiment using this paradigm (the UCLA Six Language Experiment) [Avi88] found
only two specification-related common faults (out of a total of 93 faults). These were caused
by procedural problems (illegible text and failure to respond to a specification change) and the
paradigm was modified to eliminate these problems. In the following experiment [Lyu93], no
specification-related faults were found after acceptance testing. The acceptance testing applied
was far more extensive than earlier experiments and a lower number of residual faults were
found compared with earlier experiments (e.g. around 0.5 faults/KLOC after one acceptance
test, 0.05 after both acceptance tests). This is a significant improvement on around 3
faults/KLOC for the Knight and Leveson experiment and 1 fault/KLOC for the NASA
experiment.

Perhaps the most important improvement to be noted is the reduction in identical or very
similar faults. The following table shows how many similar faults were created during
development and includes both common implementation faults and specification faults. The
table also shows the fault span (the number of versions in which the same fault exists).

3

Experiment Similar faults Max fault span Versions

Knight and Leveson 8 4 27

NASA 7 5 20

UCLA Flight Control 2 2 6

UI/RI Flight Control 2 2 12

Table 2: Span of similar Faults

One way of interpreting these results is to assess the capability of a set of diverse versions to
mask faults completely. This can be done by computing the odds that a randomly chosen tuple
of program versions will contain a majority of fault-free versions.

If we assume that, after development, there is a probability p of a fault-free program, then it is
easy to show that the chance of a fault-masking triple is:

p2(3-2p)

So where the chance of a fault-free version is 50%, the chance of creating a fault-masking
triple is also 50%. The odds of fault masking triples are computed below for a number of
experiments based on the quoted number of fault-free versions.

Experiment Versions Fault-free Fault-masking
Triples (%)

Knight and Leveson 27 6 12.6

NASA 20 10 50.0

UI/RI (AT1) 12 7 68.4

UI/RI (AT2) 12 11 98.0

Table 3: Probability of Complete Fault Masking (Triple)

Note that the table computes the probability of selecting a failure-masking triple from an
arbitrarily large population of versions. This does not correspond exactly to the number of
failure masking triples that can be constructed from the finite set of versions available in the
experiments. For example in the UI/RI (AT2) case, 100% of triples are failure-masking.

The above analysis works on the pessimistic assumption that all faulty versions contain similar
faults that cannot be masked. If however the odds of faults being dissimilar are incorporated,
then the chance of a fault-masking triple is increased. For example in the Knight and Leveson
experiment, the maximum fault span is 4 in 27 programs. If we assume the probability of
dissimilar or no faults to be 85% (23:27) the odds of selecting a fault-masking triple would
increase to 94%.

In the NASA experiment, the largest fault span is 5 (out of 10 faulty versions). Using a figure
of 75% for the odds of a version that is fault-free or dissimilar, the odds of failure masking

4

triple increase to 84%. This estimate is probably an upper bound since dissimilar faults do not
guarantee dissimilar failures, so complete masking of failures is not guaranteed.

Similar analyses can be performed for a fail-safe pair (a configuration that is often used in
shutdown systems). In this case, a fail-safe action is taken if either channel disagrees, so the
pair is only unsafe if both channels are faulty. This would occur with probability (1-p)2, which
means that the risk of unsafe pair can be up to 3 times less than the risk of a non-masking
triple. Some example figures are shown below.

Prob. version
Fault-free

Prob. of Fault-masking
Triple

Prob. of Fail-safe
Pair

0.5 0.50 0.75

0.75 0.84 0.94

0.9 0.97 0.99

Table 4: Probability of Fail-safe Pair

The use of odds for such applications is rather problematic, and might not be regarded as an
acceptable argument especially where the software is safety-related. A more convincing
argument could be made if it could be demonstrated that reliability is improved even when the
majority of channels are faulty. The improvement that can actually be achieved is determined
by the degree of failure dependency between the diverse channels, and this topic is discussed in
the following section.

2.2 Evaluation of failure dependency

One strong assumption that can be made about diversity is that the failures of diverse versions
will be independent. An experimental test of the assumption of independence was reported in
[Kni86a]. In this experiment, a set of 27 programs were implemented to a common Missile
Launch Interceptor specification. This experiment rejected the failure independence assumption
to a high confidence level. Furthermore, these dependent failures were claimed to be due to
design faults only, rather than faults in the specification. Analysis of the faults within the 27
programs showed that programmers tended to make similar mistakes.

Obviously the specification would be a potential source of similar mistakes and hence
dependent failures, but the specification was claimed not to affect the outcome. The main
justifications for this claim were careful independent review and that fact that it had built on
the experience of an earlier experiment [Dun86].

At the time there was some dispute over the results of this experiment, particularly over the
realism of an experiment which used students rather than professional software developers.
However, the results of the empirical study were supported by a theoretical analysis of
coincident failure [Eck85] which showed that, if mistakes were more likely for some specific
input values, then dependent failures would be observed. This theory was later refined [Lit89]
to show that it was possible to have cases where dependent failures occurred less frequently
than predicted by the independence assumption. The underlying idea here is that the “degree of
difficulty” distribution is not necessarily the same for all implementors. If the distribution can
be altered by using different development processes, then failures are likely to occur in different
regions of the input space, so the failures could in principle be negatively correlated.

5

Another experimental evaluation of failure dependency was made in a follow-up to the PODS
project [Bis87]. Rather than testing for independence, this experiment measured the degree of
dependency between the faults in early versions of the PODS programs (which contained both
specification- and implementation-related faults).

The experiment used modified versions of the original PODS programs where individual faults
could be switched on, so it was possible to measure the individual and coincident failure rates
of all possible fault pairs and make comparisons with the independence assumption. For
comparison purposes a dependency factor D was defined as the ratio of actual coincident
failure rate to that predicted by the independence assumption, i.e.:

D=Pab/(Pa.Pb)

The observed distribution of dependency factors for the fault pairs is summarised in the figure
below. In this diagram independent fault pairs would have a dependency factor of unity. In
practice, the distribution of dependency factors ranged from strong positive correlation to
strong negative correlation. These extreme values were well beyond the calculated 95%
confidence limits for the independence assumption.

10

10

10

10

10

10

10
0 100

1

+4

+3

+2

+1

-1

-2

-3

(95% confidence bands)

Pab

Pa . Pb

Fault-Pair Ranking

Independence

Figure 1: Dependency Factors for PODS Fault Pairs

On analysis, it was found that the strongly negatively correlated failures occurred between
similar functions in the two diverse programs, however the faults exhibited a failure bias on a
binary value. In one program the failure (when it occurred) produced a “1”, while in the other
program, the failure value was always “0”. This meant that coincident failures would never
occur because one function was always correct when the diverse function was faulty. Such
biased failures are an interesting example of a specific mechanism which could result in
negatively correlated failures.

Most of the positively correlated (high dependency factor) fault pairs were related to the known
common mode faults caused by problems in the requirements specification. However some
strange clusters of high dependency fault pairs were observed which could not be accounted for
by the known common mode faults (see the high dependency “plateaus” in the figure above).

6

On examination, two of the high dependency plateaus were associated with failures on the same
single-bit output, but it was difficult to explain the very similar levels of dependency, as there
was little or no commonality between the input data variables, the faults, or the observed
failure rates.

Eventually it was found that these common dependency levels were caused by “error masking”
[Bis89]. The single-bit output value was determined by an “OR” of several logical conditions
as shown in the figure below. This meant that an incorrectly calculated condition value could
not be observed at the output unless all the other logical conditions were zero. This masking of
internal errors causes dependent failures to be observed even if the internal error rates are
independent.

Input 1

Input 2

Faulty

Input N

..........

..........

OR

Input X

The faulty value does not
affect the result unless
all the other input values
are set to zero

Figure 2: Error-masking with OR logic

The OR gate tends acts as a common “shutter” for the internal errors and will tend to open
simultaneously on both versions because it is controlled by common program input values.
This “shutter effect” results in correlation of the externally observed failures; high internal
error rates have low externally observable failure rates (due to shutter closure), but exhibit high
coincident failure rates (when the shutter opens).

In the case of the OR gate, it can be shown that for independent internal failures, the
dependency factor approximates to 1/P0, where P0 is the probability of observing a zero
(logical false) at the OR output in a fault-free program. This dependency level is not affected
by the error rates of the internal faults, which explains why the plateau of similar dependency
factors were observed.

This error masking effect is a general property of programs. Any output variable whose
computation relies on masking functions is likely to exhibit dependent failures in diverse
implementations. Simple examples of masking functions are AND gates, OR gates, MAX and
MIN functions or selection functions (IF.. THEN.. ELSE, CASE, etc.). In all these functions it
is possible to identify cases where a faulty input value can be masked by the remaining inputs
to yield a correct result. In fact any N to M mapping function is capable of some degree of
masking provided M is smaller, so this phenomenon will occur to some extent in all programs.

Interestingly, the Launch Interceptor example contains a large number of OR gates within its
specification (see the figure below). The failure masking process for the Launch Interceptor
Conditions (LICs) is somewhat different from the PODS example, but analysis indicates that

7

dependency factors of one or two orders of magnitude are possible [Bis91]. In experimental
terms therefore, the Launch Interceptor example could be something of a “worst case” in terms
of the degree of error masking that might be anticipated.

LIC 1 LIC 2 LIC 15....

OR

....

OR OR

Radar Points (between 2 and 100 points)

CMV Condition Met Vector

Combination Logic

PUM
Preliminary

Unlocking

Matrix

Logic

FUV

Logic

Launch

Basis for
Voting

Final

Vector

Unlocking

Launch
(boolean)

Error-masking funtion

Figure 3: Error Masking in the Launch Interceptor Application

The more recent experiments by NASA, UCLA and UI/RI have also attempted to estimate
reliability improvement. In these examples, there is very little scope for error masking. For
example the RSDIMU inertial measurement system [Kel88] has a limited number of inputs and
performs arithmetic computations which have limited potential for masking. This is also true
for the aircraft automatic lander example [Avi88]. If error masking were the only source of
dependency, low coincident failure rates might be expected. In practice, the reliability
improvements for arbitrary triples were still limited by dependent failures.

The NASA program versions contained significant numbers of near-identical design and
specification-related faults (largely caused by misunderstanding of the specification or by a
lack of understanding of the problem). This affected the achieved reliability very markedly and
a statistically unbiased estimation of the reliability showed that the average failure rate of a
triple was only 4 times lower than a single version.

However the variability in improvement is very wide. Depending on the operating mode,
between 60% to 80% of triples successfully masked all failures. This is not too surprising

8

since 50% of the triples contain only one faulty version (as discussed in the previous section).
Of the remaining triples, some provided reliability improvements of possibly one order of
magnitude, but the others (containing a high proportion of similar faults) exhibited very modest
improvements (e.g. 10% of the triples gave a 20% reduction or less).

While common faults were the major cause of poor performance, it is interesting to note that
two dissimilar faults lead to high levels of coincident failure. This may again be an inherent
feature of the program function (but unrelated the error masking effect). In the NASA
experiment there is one function called the Fault Detection and Isolation (FDI) module. This
module is responsible for detecting faulty sensors so that subsequent modules can compute the
acceleration using the remaining good sensors. The two dissimilar faults affected this module.
A fault in this module should cause too many (or too few) sensors to be used. In either
circumstance the computed result will disagree with the “golden” value. The significant feature
is that failures in the faulty versions are likely to coincide with a change in the failure status of
a sensor. This would cause a burst of coincident failures (even if the reasons for the sensor
diagnosis errors differ).

The reliability improvements achieved in the UI/RI flight controller example are somewhat
better. Using the versions obtained after acceptance test 1 (AT1), the reliability improvement
for an average triple was around 13. This estimate did not include the error correction
capability of the voting system. If this is included the average reliability improvement factor is
increased to around 58.

The improved performance is largely the result of better quality programs containing fewer
common faults which spanned fewer program versions. While there is no direct analysis of the
distribution of reliability improvements over the triples, there is likely to be a significant
amount of variability. It is known that at least 68% of triples must mask all failures (from the
earlier fault distribution analysis), while the triples with similar faults (under 10%) are likely to
exhibit only modest improvements. The remaining triples might exhibit quite large reliability
improvements. In principle the improvement might approach that predicted by the independence
assumption (as they did in PODS), but other sources of dependency such as the mechanism
discussed in the NASA experiment could limit the gains.

The main lesson to be learned from these experiments is that the performance of N-version
programming is seriously limited if common faults are likely. The most probable sources are
likely to be common implementation mistakes (e.g. omitted cases or simple misunderstanding
of the problem) together with omissions and ambiguities in the specification. These factors
need to be closely controlled to minimise the risks and the diverse programming paradigm
seems to have made an important contribution. The risks could be further reduced if it possible
to predict where such common faults are likely to occur so that more effort can be devoted to
these areas. The use of metrics to identify “tough spots” in the program functions [Lyu94]
seems to be a promising approach.

3 Practical Application of N-version Programming

In addition to the research work undertaken to assess the potential for reliability improvement,
it is also necessary to examine other issues that could affect the decision to adopt N-version
programming. Some of the key areas are examined below.

3.1 Maintaining consistency

N-version programming can impose additional design constraints in order to deal with the
diversity in computation. The problems of dealing with such differences in computed values

9

were noted in [Bri89]. The main difficulty is that, within some given precision, there can be
multiple correct answers—any of the answers would be acceptable but to maintain consistency,
one should be chosen. This is particularly important where the program reaches a decision
point where alternative but incompatible actions may be taken. A simple example of this is a
railway interlocking system—two equally acceptable alternatives are to stop one train and
allow the other to pass or vice versa, but the choice must be agreed. Furthermore when there
are a number of related outputs (such as a set of train interlock outputs) it is not sufficient to
take a vote on individual values—a consistent set of values must be selected. Without such
arrangements it is, in principle, possible for all the diverse programs to make valid but
divergent choices. In order to achieve consistency, diverse programs must implement cc-points
to perform a vote at all key decision points. This design constraint is not unique to diverse
designs. Quite often redundant channels with common software require cc-points to ensure
consistency of action (e.g. for multiple sensor readings which can have slightly different
values). The main difficulty with cc-points in diverse programs is that they impose additional
design constraints which could compromise the diversity of the software designs.

The above discussion shows that design constraints have to be imposed in order to implement
consistent comparisons when decisions are based on numerically imprecise data. It is therefore
easiest to apply diversity in applications where such indeterminacy either does not exist or does
not affect any key decisions. Fortunately quite a few safety-related applications fall into this
category. For example, railway interlocking depends on binary status values (e.g. signal on or
off) which are not indeterminate. Reactor protection systems may base their decisions on
numerical calculations, but internal consistency is not needed to maintain safety. In borderline
conditions, either a trip or no-trip action would be acceptable, and the only effect of small
discrepancies would be to introduce a small delay until reactor conditions changed. The same
argument applies to the launch interceptor application; in practice the discrepancies would only
delay a launch by a few execution cycles since fresh data are arriving continuously. Many
continuous control applications could, in principle, operate without cc-points. This is possible
because most control algorithms are self-stabilising and approximate consistency can be
maintained by the feedback of the data from the plant.

At present, most of the industrial applications of design diversity fall into the class where
consistent comparisons are not a major issue. For example the rail interlocking system [Hag87]
operates on binary data, while the Airbus controller [Tra87] is an example of continuous
control where consistency is checked within some window. Actually the Airbus design utilises
the concept of a diverse self-checking pair—one diverse computer monitors the other and
shutdown occurs if the diverse pair disagrees outside some window. On shut-down the
functions are taken over by other self-checking pairs (with a different mix of software
functions). The CANDU reactor protection system utilises two diverse computer systems that
trigger separate shutdown mechanisms [Con88] so no voting is required at all between the
diverse systems.

In more complex systems, it is undeniable that standardised intermediate voting points would
have to be identified in order to prevent divergent results. The voting schemes used in such
cases are very similar to those that would be required for a parallel redundant system and
would be essential in any case in order to maintain system availability. It is not clear how much
these voting constraints compromise design diversity—most of the observed faults in diversity
experiments seem to occur in specific functional modules and are related to the programmer’s
knowledge or specification difficulties.

10

3.2 Testing

One potentially cost-saving feature of diversity is the capability for utilising back-to-back
testing to reduce the effort in test design. Experiments have shown that this form of testing is as
effective as alternative methods of fault detection; in a re-run of PODS using back-to-back
testing, 31 out of 33 unique faults were found [Bis87]. The remaining 2 faults were found by
back-to-back testing with final “silver” programs against the original “perfect” PODS
programs. Of these two faults one was a minor computation error which was within the
specified tolerance, and the other might not be a fault at all (given a quite reasonable
interpretation of the specification). The cross-check also revealed a common fault in the
original “perfect” programs caused by the use of an incorrect acceptance test.

Back-to-back tests on the Launch Interceptor programs were shown to detect the same number
of faults (18 out of 27) as alternative, more labour-intensive, methods [Lev90]. An earlier
experiment on a different program example [Lev88] also found that back-to-back testing was
as good as any alternative method at detecting faults (123 out of 270). The lower detection
performance of these two experiments compared with the PODS re-run might be partly
explained by a difference in procedure; in the PODS re-run, any discrepancy resulted in an
analysis of all three programs, while in the other two experiments fault detection was defined
to require a successful majority vote. In this context a “vote” assumes that if one program
disagrees with the other two and the outvoted program is actually correct, the fault is
unrevealed. The use of voting rather than a straight comparison as the detection test can
therefore leave two-fold common faults or three-fold distinct faults undetected. Another
procedural difference was that the PODS programs were re tested after fault removal, which
helps to reveal faults masked by the prior faults so the fault detection efficiency progressively
improves.

One of the problems encountered in such testing is deciding when a true failure has occurred;
as noted earlier there can be small differences in computation which result in discrepancy. Are
these discrepancies really faults? In actual real-time operation, such minor differences are
likely to be resolved soon afterwards. So, viewed in relation to the real-world need, the system
performs its function. Conventional engineering uses the concept of acceptable “tolerances”,
and perhaps it would be fruitful if such concepts could be used more widely in software
engineering.

4 Discussion and Conclusions

Almost from the beginning, it was recognised that N-version programming was vulnerable to
common faults. The primary source of common faults arose from ambiguities and omissions in
the specification. Provided the difficulties with the specification were resolved, it was hoped
that the implementation faults would be dissimilar and exhibit a low level of coincident failure
(possibly approaching the levels predicted under the independence assumption). The Knight
and Leveson experiment did a service to the computing community as a whole by showing that
failure independence of design faults cannot be assumed.

This result is backed up by later experiments and qualitative evidence from a number of
sources which shows that common design mistakes can be made. Also, from a theoretical
standpoint, it has been shown that any variation in the degree of difficulty for particular input
values will result in failure dependency. Furthermore the error masking phenomenon has been
identified as an explicit mechanism that will cause failure dependency.

This may paint too gloomy a picture of the potential for N-version programming, because:

11

• Back-to-back testing can certainly help to eliminate design faults, especially if some
of the intermediate calculations can be exposed for cross-checking.

• The problems of failure dependency only arise if a majority of versions are faulty. If
good quality controls are introduced the risk of this happening can be reduced
significantly.

This latter point is supported by the results of recent experiments indicating that the chance of
a fault-free version can range from 60% to 90%. In addition, good quality conventional
development processes can deliver software with fault densities between 1 and 0.1
faults/KLOC. In this scenario, with small applications, the probability of having multiple
design faults can be quite low, and so two fault-free diverse programs will have no problem
out-voting the single faulty one.

This is essentially a gambling argument—and it might be reasonable to ask whether you would
bet your life on the outcome; however you can only compare this option with the
alternative—betting your life on a single program. The relative risks are identical with a 50%
probability of a fault-free version and the residual risk only moves slowly in favour of a diverse
triple as the probability increases (3 times less risk at 90%, 30 times less at 99%).

This argument presupposes that the chance of a fault-free program would be the same in either
case. However N-version programming could improve the probability through extensive back-
to-back testing, while a single version could benefit if the same resources were devoted to
greater testing and analysis. The main argument in favour of N-version programming is that it
can also give protection against dissimilar faults, so absolute fault-freeness is not required in
any one channel—just dissimilarity. This is a less stringent requirement which should have a
marked effect on the odds of obtaining an (almost) failure-free system.

Based on its potential for intensive testing and the capability for outvoting dissimilar faults, N-
version programming can be a useful safeguard against residual design faults, but the main
concern is whether software diversity is justifiable in the overall system context. It could be
argued that the key limitation to reliability is the requirements specification. N-version
programming can have benefits in this area because the specification is subjected to more
extensive independent scrutiny; however this is only likely to reveal inconsistencies,
ambiguities and omissions. The system as a whole would still be vulnerable if the wrong
requirement was specified. Excessive reliance on software diversity may be a case of
diminishing returns (i.e. high conformity to the wrong specification). So it might make more
sense to utilise diversity at a higher level (e.g. a functionally diverse protective system) so that
there is some defence-in-depth against faults in the requirements.

Nevertheless in systems where there are no real options for functional diversity, and the
requirements are well-established (e.g. railway interlocking), then N-version programming
seems to be a viable option. Perhaps paradoxically, the greatest confidence can be gained from
the use of diversity when there is only a low probability of design faults being present in the
software. So software diversity is not an alternative to careful quality control—both methods
are necessary to achieve high levels of reliability.

5 References

[And81] H. Anderson and G. Hagelin, “Computer Controlled Interlocking System”,
Ericsson Review, No. 2, 1981

12

[Avi77] A. Avizienis and L. Chen, “On the Implementation of N-version Programming for
Software Fault Tolerance during Execution”, Proc. the First IEEE-CS
International Computer Software and Applications Conference (COMPSAC
77), Chicago, Nov 1977

[Avi88] A. Avizienis, M.R. Lyu and W. Schutz, “In Search of Effective Diversity: A Six
Language Study of Fault Tolerant Flight Control Software”, in Eighteenth
International Symposium on Fault Tolerant Computing (FTCS 18), Tokyo, June
1988

[Bis86] P.G. Bishop, D.G. Esp, M. Barnes, P. Humphreys, G. Dahll and J. Lahti,
“PODS—A Project on Diverse Software”, IEEE Trans. Software Engineering,
Vol SE-12, No 9, 1986

[Bis87] P.G. Bishop, D.G. Esp, F.D. Pullen, M. Barnes, P. Humphreys, G. Dahll, B.
Bjarland, H. Valisuo, “STEM—Project on Software Test and Evaluation
Methods”, Proc. Safety and Reliability Society Symposium (SARSS 87),
Manchester, Elsevier Applied Science, Nov. 1987

[Bis89] P.G. Bishop and F.D. Pullen, “Error Masking: A Source of Dependency in Multi-
version Programs”, in Dependable Computing for Critical Computing
Applications, Santa Barbara, August 1989

[Bis91] P.G. Bishop and F.D. Pullen, “Error Masking: A Source of Dependency in Multi-
version Programs”, Paper in: Dependable Computing and Fault Tolerant
Systems, Vol 4. “Dependable Computing for Critical Applications”, (ed. A.
Avizienis and J.C. Laprie), Springer Verlag, Wien-New York, 3-211-822249-6,
1991

[Bri89] S.S. Brilliant, J.C. Knight and N.G. Leveson, “The Consistent Comparison
Problem”, IEEE Trans. Software Engineering, Vol. 15, Nov, 1989

[Bri90] S.S. Brilliant, J.C. Knight and N.G. Leveson, “Analysis of Faults in an N-Version
Software Experiment”, IEEE Trans. Software Engineering, Vol. 16, No. 2, Feb,
1990

[Con88] A.E. Condor and G.J. Hinton, “Fault tolerant and fail-safe design of CANDU
computerised shutdown systems”, IAEA Specialist Meeting on Microprocessors
important to the Safety of Nuclear Power Plants, London, May 1988

[Dah79] G. Dahll and J. Lahti, “An investigation into the methods of production and
verification of highly reliable software”, Proc. SAFECOMP 79

[Dun86] J.R. Dunham, “Experiments in software reliability: life critical applications”,
IEEE Trans. Software Engineering, Vol SE-12, No. 1, 1986

[Eck85] D.E. Eckhardt and L.D. Lee, “A Theoretical Basis for the Analysis of Multi-
version Software Subject to Coincident Failures”, IEEE Trans. Software
Engineering, Vol. SE-11, No. 12, 1985

[Eck91] D.E. Eckhardt, A.K. Caglayan, J.C. Knight, L.D. Lee, D.F. McAllister, M.A.
Vouk and J.P.J. Kelly, “An experimental evaluation of software redundancy as a

13

strategy for improving reliability”, IEEE Trans. Software Eng., vol. SE-17, no. 7,
pp. 692–702, 1991

[Gme80] L. Gmeiner and U. Voges, “Software diversity in reactor protection systems: an
experiment”, in Safety of computer control systems, R. Lauber, Ed., New York:
Pergamon, 1980

[Gme88] G. Gmeiner and U. Voges, “Use of Diversity in Experimental Reactor Safety
Systems”, in Software Diversity in Computerised Control Systems, U. Voges,
Ed., Springer Verlag, 1988

[Hag87] G. Hagelin, “Ericsson System for Safety Control”, Software Diversity in
Computerised Control Systems, U. Voges, Ed., Springer Verlag, 1988

[Kel83] J.P.J. Kelly and A. Avizienis, “A specification-oriented multi-version software
experiment”, in Thirteenth International Symposium on Fault Tolerant
Computing (FTCS 13), Milan, June 1983

[Kel88] J.P.J. Kelly, D.E. Eckhardt, M.A. Vouk, D.F. McAllister, A. Caglayan, “A Large
Scale Second Generation Experiment in Multi-Version Software: Description and
Early Results”, in Eighteenth International Symposium on Fault Tolerant
Computing (FTCS 18), Tokyo, June 1988

[Kni86a] J.C. Knight and N.G. Leveson, “An Experimental Evaluation of the Assumption
of Independence in Multiversion Programming”, Proc IEEE Trans on Software
Engineering, Vol SE-12 Jan 1986

[Kni86b] J.C. Knight and N.G. Leveson, “An Empirical Study of the Failure Probabilities
in Multi-Version Software”, Proc. FTCS 16, Vienna, July 1986

[Lev88] N.G. Leveson and T.J. Shimeall, “An Empirical Exploration of Five Software
Fault Detection Methods”, IFAC SAFECOMP 88, Fulda Germany, Nov. 1988

[Lev90] N.G. Leveson, S.S. Cha, J.C. Knight and T.J. Shimeall, “The use of Self Checks
and Voting in Software Error Detection: An Empirical Study”, IEEE Trans.
Software Engineering, Vol. 16, No. 4, April 1990

[Lit89] B. Littlewood and D. Miller, “Conceptual modelling of coincident failures in
multi-version software”, IEEE Trans on Software Engineering, vol. SE-15, no.
12, pp.1596–1614, 1989.

[Lyu92] M.R. Lyu, “Software reliability measurements in an n-version software execution
environment”, Proc. Int’l Symp. Software Reliability Engineering, Oct 1992

[Lyu93] M.R. Lyu and Y. He, “Improving the N-Version Programming Process Through
the Evolution of a Design Paradigm”, Proc. IEEE Trans. Reliability, Vol. 42, No.
2, June 1993

[Lyu94] M.R. Lyu, J-H. Chen, A. Avizienis, “Experience in Metrics and Measurements
for N-Version Programming”, Int. J. of Reliability, Quality and Safety
Engineering, Vol. 1, No. 1, 1994

14

[Tra87] P. Traverse, “Airbus and ATR System Architecture and Specification”, Software
Diversity in Computerised Control Systems, U. Voges, Ed., Springer Verlag,
1988

[Vog82] U. Voges, F. French and L. Gmeiner, “Use of Microprocessors in a Safety-
oriented Reactor Shutdown System”, EUROCON, Lyngby, Denmark, June 1982

[Vog94] U. Voges, “Software Diversity”, Reliability Engineering and System Safety, No.
43, 1994

15

