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SUMMARY & CONCLUSIONS 

This paper describes how software FMEA can be 
automated both for low-level languages intended for safety 
critical embedded systems, and also for model-driven software 
developments.  

It is possible for a computer to achieve a qualitative 
analysis of software based on tracing dependencies through a 
body of code. This can reveal the propagation of any failure in 
the software, whatever the cause of the failure. Application of 
a higher level representation of the intended purpose of the 
software can then automatically interpret the implications of 
failure in terms of the requirements put on the software. 

These techniques have been used to automate the analysis 
of several thousand lines of code. They have been shown to 
provide useful results for software engineers, and would suit 
embedded software in vehicles for example. This work is not a 
cure-all for badly written software, but provides assistance in 
software analysis for well designed systems in low-level 
"safe" languages such as MISRA C. The software FMEA can 
be used to improve automated or source code embedded 
testing since tests can exonerate many potential faults 
allowing the FMEA analysis to present an engineer with a 
reduced set of potential faults. 

Model-driven development (MDD) is a software 
development philosophy which encourages the development 
of models of the software to be produced, for example using a 
language such as executable UML. The system is described in 
a platform independent manner, and then the software to be 
used is automatically generated from the model. 

In MDD, the models make the intentions of the 
programmer much more explicit than is the case for low-level 
programming, and so the gap between the intended functions 
of the system and the description of the software is not so 
large. Representation of the design is much more explicit 
through use cases, component diagrams, state charts and 
sequence diagrams. All of this design information can be 
utilized for the automated generation of software FMEA. This 
means that FMEA for model-driven software can be done 
more easily than for a system implemented in a low-level 
language, because it is not necessary to attempt to reconstruct 
the intentions of the programmer from the functions of the 
system and the low-level code. The paper also discusses the 
advantages and dangers of doing such analysis at the design 
rather than the code level.  

1 INTRODUCTION 

Typically, FMEA is practiced on physical systems, and 
the failure modes considered are the failures of physical 
components, caused by wear or other damage to the system. 
Since software has been introduced into automotive and 
aeronautic systems, it has often been included in FMEA 
reports as a component with no failure modes (the ECU 
containing the software), and the system design FMEA has 
been produced assuming that the software works correctly. 

The concept of software failure mode and effects analysis 
(software FMEA) has grown in attractiveness over recent 
years as a way of assessing the reliability of software. Like its 
hardware counterpart, software FMEA is immensely tedious 
for an engineer to perform, as well as being error-prone. 
Clearly, software components do not fail in the same manner 
as hardware components — a function or method does not 
break over time because it has become worn or damaged. 
Software FMEA considers all potential faults such as faulty 
inputs or software bugs (mutations) that could exist and 
ensures the worst-case consequences are known, possibly 
prompting actions to reduce risk. A software bug may be 
treated analogously to a hardware component failure, the 
essential difference being that hardware failures occur over 
time whereas software bugs exist undetected but usually only 
affect a very small (untested) region of the overall system 
behavior.  

One of the unique difficulties with software systems is the 
complex relationship between faults and effects. A minor fault 
can, for example, cause a complete crash of a software system 
or have almost invisible but very complex, subtle, and long 
lasting side effects. The result is that software often has very 
non-uniform quality in terms of the effects of potential 
failures, and it is not clear when effort is available, where it 
should be expended to improve quality. An FMEA provides 
just this information allowing targeting of effort at the highest 
risk areas 

Code-level software FMEA has been performed for some 
years [1, 2, 3, 4], but has been considered impractical except 
when applied to small pieces of highly critical code, because 
of its cost. On the other hand, software FMEA of a more 
abstract specification of the system can ignore important 
implications of failures, especially where code is not 
automatically generated from the abstract specification. 

This paper describes work to automate much of the effort 
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of performing software FMEA. It describes a novel method 
for automating code-level software FMEA based on treating 
the implemented software as a model of the desired system 
and propagating faults through the model to identify 
dependencies. High level descriptions of the implications of 
each failure are produced through the use of functional 
descriptions of what the software is intended to achieve. 

The extension of this work to address the analysis of 
software generated from executable models built in a language 
such as executable UML is described, and the implications of 
doing the analysis at such a high level are discussed.   

2 ASSESSING SOFTWARE QUALITY 

In much software engineering practice, engineers rely 
almost exclusively on quality standards that define 
development processes and practices in order to assess 
whether quality software has been produced. While 
development processes are vitally important in any 
engineering endeavor, they do not guarantee the safety of a 
product, as McDermid [5] has observed. 

 Testing is the primary (and often the only) evidence 
based analysis performed on software, and although testing 
can initially give indications of quality, once the results are 
used to improve the software, the tests are no longer a reliable 
indication of overall quality. The value of tests in assessing 
quality is further reduced by hierarchical testing, because 
lower-level modules will themselves have been made to pass a 
set of tests before being included in a system. It is likely that 
the system outside the scope of the tests performed has only 
the quality achieved at the very first execution of the code [5].  

Put another way, testing only finds faults, it does not help 
prevent or assess them. The reason for this is clear. Tests can 
only ever verify a tiny sample of the expected behavioral 
envelope of the software and they are often focused on 
verification of nominal function, with perhaps a few limiting 
case examples. 

Other domains such as electrical systems analysis also 
have an infinite number of possible numerical behaviors, but 
other kind of analysis are done. For example, failure effect 
analysis is carried out by abstracting the infinite number of 
possible behaviors into qualitatively similar regions, and 
concentrating on a worst case analysis. 

All substantial software will enter unanticipated regions 
of behavior during its life, and all software will have to deal 
with external failures either from hardware or other software, 
and for most software there is limited understanding of how 
the system might behave. Formal methods are often proposed 
as the solution to these problems, but they can be difficult to 
use, specification capture remains an issue, and pragmatically 
these methods are too expensive for the majority of software.  
Software Integrity Levels are often used to demonstrate a 
specific level of integrity [6], however SIL level specification 
most often results in a mechanism to change product 
requirements into process requirements and for higher levels 
may also require formal methods. 

These mechanisms are typically very expensive to 
implement and accordingly are used only for the highest risk 

systems, leaving the vast majority of software development 
relying solely on the talent and intuition of software 
developers along with testing to verify basic functionality.   

Testing can be addressed by a variety of means, some of 
which begin to move towards a wider ranging type of analysis 
that can consider both more comprehensive and/or abstract 
behavioral considerations, for example functional analysis 
testing and cause-effect graph testing.  Other types of testing 
such as statement coverage, path coverage, and modified 
condition decision coverage can help discover obvious 
inadequacies in test suites but they cannot reason about overall 
system behavior and potential failure modes or problematic 
operating states. Voas [7] proposed an analysis that identifies 
where faults are more likely to remain undetected, and 
although based on execution of test, sets it in the spirit of a 
broader assessment of quality.  

The need for lower precision but higher coverage 
techniques that can reveal more general (good and bad) 
characteristics and potential problems in software has led to 
investigation of the adaptation of techniques from other areas 
such as electrical systems analysis to the needs of software 
analysis. 

The next section considers developments in adapting 
failure modes and effects analysis (FMEA), originally applied 
to physical systems, to the task of software analysis, and 
describes how such analysis can be automated, providing 
useful results for little effort on the part of the engineer. 

3 AUTOMATION OF SOFTWARE FMEA 

Automation of software FMEA is inspired by success in 
automated electrical system FMEA [8], where automated 
analysis is now in routine use in the automotive industry [9]. 
In that work, the expected behavior of the system is simulated 
from a model of the design, and results are abstracted to the 
level of the function of the system.  

 A comprehensive set of possible failures is identified 
from the components that compose the structure of the system.  
For each possible failure, the simulation and abstraction is 
repeated, and the results with the failure present are compared 
with the results when no failure is present.  The difference 
between the two sets of results gives the system-level effect of 
that failure.  For electrical system FMEA, the software 
produces engineer oriented automated reports giving the 
consequences of each potential failure.  

These techniques can be applied to software by treating a 
piece of software as a model of the desired system. It is then 
possible to reason about the ways in which faults can be 
propagated through the model in order to derive the possible 
causes of a given set of symptoms. 

There are three facets to the production of a useful report 
on failures in a piece of software: 
1. Automated model construction. Techniques have been 

developed capable of automatically constructing a fault 
propagation model which can generate all possible effects 
of a failure from the piece of software being analyzed. 

2. Injection and propagation of faults. All possible faults that 
could occur in the software need to be identified, so that 



their effect on the overall system can be explored.  Given 
a specific fault, the fault propagation model constructed 
automatically from the software can be used to decide 
what parts of the piece of software could be affected by a 
specific fault, and in what way they could be affected. 

3. Identification of system level effects. Generating a list of 
all variables affected by a fault would be far too much 
detail to report to an engineer.  The results are abstracted 
using the system requirements as a focus.  

Each of these three facets will be explained in turn. 

3.1 Automated model construction 

The source code of the software to be analyzed is parsed 
and transformed into a fault propagation model.  This is 
essentially a graph, where the source code statements are the 
edges and the variables are the nodes of the graph.  It is then 
possible to use the graph to reason about how the effect of a 
fault can propagate through the program. 

This work is clearly programming language dependent. In 
the work described here, model construction has been 
achieved for a large subset of the JAVA language, but the 
work would be equally applicable to other imperative 
languages.  Limitations of this approach are discussed later, 
but generally correspond to the kind of coding restrictions 
recommended when constructing safety-critical software [10]. 

Fault propagation is complicated by the reuse of memory, 
and this problem has been overcome by using a Single 
Assignment Form (SAF) model [11] that transforms each 
memory write to allow symbolic memory locations to be 
logically written only once. SAF is used to generate a graph 
with distinct nodes for each value of a variable.  This is 
illustrated for a simple code fragment in figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Code to propagation graph example 

Fault propagation graphs of the kind shown in figure 1 
can be constructed for much more complex pieces of code, 
and used to predict the worst possible implications of any fault 
in terms of which other parts of the software it will affect. 

Fault propagation through non-sequential code, such as 
conditions and iterations can be simplified by assuming worst 

case scenarios for the propagation of faults [12]. When this 
assumption does not hold, either a set of faults will have no 
effect, or an effect will be generated where the engineer knows 
of application constraints that explain why the failure modes 
could not happen. 

3.2 Injection and propagation of faults 

All software faults can be characterized as faulty values:  
• faulty I/O 
• faulty transfer functions (whether due to wrong 

specification or wrong implementation) 
• loss of transfer function (due to crashing or hanging) 
• missing outputs 
• unexpected outputs 

In order to perform an FMEA, it is assumed that any 
value can become faulty and the propagation of that faulty 
value is explored to all statements that depend on it.  This is 
achieved by propagating the faulty value using the fault 
propagation model already discussed, until the effects on 
system outputs have been derived.  The scope and the path of 
the propagation define a failure mode. 

3.3 Identification of system level effects 

Functional  interpretation [13] is a vital part of organizing 
and abstracting the results of structural and behavioral analysis 
into the form of an FMEA report able to flag significant 
potential problems. Information regarding the purpose(s) of 
the system is required, and a functional model is used to 
provide this information in a principled form.  The functional 
model described in this section identifies the purposes of the 
system by means of associations with the system interface.   

We use the following definition of function: "An object or 
system O has a function f if it achieves an intended goal 
(purpose) by virtue of some external trigger T resulting in the 
achievement of an external (behavioral) effect E." 

The function interpretation language allows functions to 
be decomposed into subsidiary functions to build a functional 
hierarchy. A good deal of intuition regarding the function 
model can be obtained from an example functional description 
for a simple travel expenses payment program shown below: 

 
FUNCTION pay_expenses 
  ACHIEVES pay_money_owed 
  BY run_program  
    TRIGGERS display_expenses_total 
    AND print_cheque 
       
FUNCTION make_envelope 
  ACHIEVES allow_delivery_cheque 
  BY run_program 
  TRIGGERS  address_envelope 
 
FUNCTION display_expenses_total 
  ACHIEVES verify_expense_items 
  BY show_expense_items_on_screen 
       AND 
       show_total_on_screen 



 
FUNCTION print_cheque 
  ACHIEVES transfer_money 
 BY print_in_figures 
      AND 
       print_in_text 
       AND 
       print_details 
 
The functional model must be linked to the behavior of 

the program via the causes (identified by "BY") and effects 
(identified by "TRIGGERS"). These will be system inputs and 
outputs and could be memory locations, or ports that influence 
external devices or system calls at higher levels.  
The causes and effects from the function definitions need to be 
mapped onto variables in the program implementing the 
functions, either global variables or instantiated variables. 

3.4 Application of these techniques 

The techniques described here have been applied to a 
payroll program consisting of a few thousand lines of Java 
code. This has shown that the computation is tractable for  
useful sized programs, and that the results produced are useful 
when considering the reliability of software. Both the 
techniques used and the results obtained are described in 
greater detail in a longer paper elsewhere [12]. 

These techniques provide an evidence-based analysis that 
deals with a wide range of possible behaviors at a low level of 
precision. They consider hypothetical faults and determine the 
possible effects assigning significance to them. Any statement, 
module, or subsystem is assumed to have the potential to fail 
or produce incorrect output, and the techniques assess the 
potential effects. 

The results can be used to identify design or 
implementation issues that might lead to faults with 
disproportionate or unexpected consequences, identifying 
areas of design or implementation that allow significant 
failures to occur. Engineering effort can then be expended to 
address the most significant faults.   

The work described here does not cover all constructs in 
all languages.  It would be impossible to apply these 
techniques to assembler programming, for example.  
However, modern software languages both encourage and 
enforce higher levels of structuring and this helps to inherently 
constrain faults. Decades ago, high level-languages introduced 
typed data and procedures to help structure data and code and 
these have been refined ever since. Object-oriented methods 
provide common structures to partition data with code. These 
techniques make software FMEA analysis feasible at the level 
of code because they constrain potential fault impacts. 

The main limitations of this approach at present come 
from the need to trace dependencies between variables.  This 
is impossible with dangerous programming constructs such as 
pointer arithmetic. In such cases, it would be impossible to 
accurately propagate faults - a fault could propagate to any 
part of the system. Some other programming constructs such 
as generation of dynamic structures, keeping track of variables 

in dynamic heap based structures, and recursion are still to be 
included in the analysis. However, the types of programming 
construct that cannot presently be addressed with this 
approach are similar to the types of construct that the MISRA 
C guidelines for safety critical embedded software recommend 
should be avoided [10]. Embedded software is a promising 
area for early application of this software FMEA tool, because 
of the safety critical demands and the limited, well defined 
external functionality. We are currently working on a further 
case study application in the embedded domain. 

4 EXTENSION TO MODEL-DRIVEN ARCHITECTURES 

Model driven software development (MDD) is 
characterized by descriptions of the operation of a system 
which can be transformed automatically into code to run on a 
specific platform using a specific architecture. The models in 
MDD explicitly represent the important aspects of the system. 
This contrasts with the work in the previous section, where a 
model of the functionality of the system is inferred from the 
code. In this case, the model is explicit, and so it would seem 
that application of the propagation and abstraction techniques 
described previously should be much simpler. 

This section will examine the models used in MDD and 
where potential problems might occur in using them in an 
automated software FMEA.  

The first assumption in this work is that generation of 
code from the models is completely automatic. If code is 
generated by hand from UML (as has often been the case in 
model-driven software design in the past), then 
correspondence between the model and the implementation 
would need to be proven in order to have any confidence in 
the analysis. Another level of compromise would be that 
platform dependent annotations are made to the models in 
order to generate code for a specific platform - those 
annotations would need to be taken into account in the 
analysis if they existed. 

The second assumption is that the automated process of 
transformation to a platform dependent model does not itself 
introduce new potential for generating and propagating errors. 
This assumption is related to the assumption for a high level 
language that the compiler does not introduce errors to the 
program, although the potential for problems to be introduced 
in transformation is probably greater than the likelihood of a 
compiler error.  Clearly people using such tools for important 
work should ask questions about the risks that the tools 
themselves introduce to the process. 

If both of these assumptions were true, then the models 
would be a complete representation of the operation of the 
system, and could give a good indication of the potential for 
problems presented by the system. 

4.1 Generating software FMEA from models 

Let us say that the system is specified in executable UML 
with a specific set of models. USE CASES are used to 
describe the purpose of the system. Class diagrams are used to 
describe objects in the system. The behavior of the system is 
described with lifecycle statements for each class containing 



state-based snippets of high level business logic describing the 
actions in each state.  

The three facets of code-level automated software FMEA 
can be adapted to this situation in the following way: 

1) Automated model construction. This stage has been 
made much simpler. The interactions between objects and 
variables are much more explicit in this representation, and 
can be extracted from the class descriptions, the lifecycle 
statements and the business logic. Complications are added by 
the dynamic objects, but an easy simplification of the analysis 
might be to consider only one instance of each class and the 
links between the classes. This simplification is likely to err on 
the side of caution in identifying potential problems. 

2) Injection and propagation of faults. This does not 
change from the previous version. 

3) Identification of system level effects. The USE CASE 
diagrams are useless in themselves, merely identifying the 
functions that are required. Typically, they would be fleshed 
out with a textual description of what is involved in each USE 
CASE. In order to be used for automated software FMEA, that 
description needs to be more formalized, ideally given as the 
kind of functional description that was used for the code-level 
software FMEA. If this is done, then that clear description of 
requirements can be linked to the model in the same way, and 
used to abstract results. It has further advantages, in that it 
clarifies the functional requirements of the system, and records 

them in a clear, unambiguous, executable form. 

4.2 Challenges and potential 

In some ways, automated generation of software FMEA 
from model-driven software is an easier task than it is for a 
system implemented in a low-level language. In a lower level 
language, it is necessary to attempt to reconstruct the 
intentions of the programmer from the functions of the system 
and the low-level code. Because the model-driven software 
expresses the intentions of the programmer much more 
explicitly, the gap between the intended functions of the 
system and the description of the software is not so large. The 
models are executable, typically expressed as state-charts, and 
it is possible to use those executable model descriptions to 
understand how the different parts of the system relate to each 
other, and to understand how failures might be propagated 
through the system.  

A software FMEA of the platform independent model is 
potentially extremely valuable, as it can identify problems 
with the design of the system, as opposed to the way in which 
it is chosen to implement it. However, the models leave many 
of the lower level implementation decisions to the platform 
dependent code generation, and it is possible for extra 
problems and interactions to creep into an implemented 
system at that point. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Possible architecture for automated software FMEA testing robustness of generated code 
 
 



In order to assess the fault tolerance of the generated 
system, you would need to know the reliability of the 
transformation from model to code. The proponents of MDD 
claim that in future, we will have the same level of confidence 
in the model-to-code transformation as we presently have in 
compilers for high-level languages, but that is not presently 
the case. In addition, they typically think in terms of the 
correctness of the transformation, but even if the 
transformation is correct for the normal behavior of the 
system, that does not guarantee that it will be robust under 
failure. Faults often propagate through a software system 
because of the lack of checks that values are consistent and 
within sensible values. The level of confidence in a model to 
code generator should depend on the degree to which it had 
automated such protection against failure. 

Where the transformation from model to code uses a 
standard high-level language as its target, then an intermediate 
scheme between just analyzing the high-level model and just 
doing low-level analysis on code might be possible as pictured 
in figure 2. Further confidence in the robustness of the 
designed system can be obtained by linking the analysis of the 
high-level model to the kind of low-level analysis of the 
generated system that our original system was capable of. The 
high-level model can be used both to focus the low level 
analysis and to decompose it into manageable pieces. 

The combination of low-level analysis of the 
dependencies within specific code, and the high-level analysis 
of the dependencies within the abstract design provides the 
potential to efficiently produce a useful software FMEA for a 
complex system of a practical size, giving early warning of 
design problems but also taking into account the robustness of 
the generated code. 
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