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Abstract

Due to their privileged position halfway between the physical 
and  the  cyber  universes,  user  interfaces  may  play  an 
important  role  in  preventing,  tolerating,  and  learning  from 
scenarios  potentially affecting mission safety and the user's 
quality  of  experience.  This  vision is  embodied  here  in  the 
main ideas and a proof-of-concepts  implementation of user 
interfaces that combine dynamic profiling with context- and 
situation-awareness and autonomic software adaptation. 

1 Introduction

The user interface (UI) may be considered as the contact point 
between two "universes"—the physical universe of the user 
(let  us  refer  to  this  universe  as  U)  and  the  cyber  universe 
where required computer services are executed (C). The UI is 
also the logical “place” where actions are selected and passed 
for execution in C. As well known U and C are very different 
from  each  other—in  particular  they  have  quite  different 
notions of time, behaviours,  actions, and quality of service. 
Despite so huge a difference, the consequences of the actions 
in  C often  reverberate  in  U—to  the  point  that  when  the 
computer  service  is  safety-critical  failures  or 
misinterpretations in  C may induce catastrophic events in  U 
possibly involving the loss of goods, capital, and even lives. 
As a matter of facts, the human factor is known as one of the 
major causes for system failures [2,15], and the UI is often 
the indirect player behind most interaction faults at the root of 
computer failures.

Due to its central role in the emergence of the user's quality of 
experience (QoE), the UI has been the subject  of extensive 
research.  As  a  result,  current  interfaces  are  adaptive, 
anticipative,  personalized,  and  to  some degree  “intelligent” 
[3].

We believe that much more can be done beyond this already 
noteworthy  progress.  Thanks  to  its  privileged  position 
halfway between the user and the computer, we argue that the 
UI  is  well  suited  for  hosting  several  non-functional  tasks, 
including:

● Gathering contextual information from both sides of 
the activity spectrum. 

 Deriving  situational  information  about  the  current 
interaction processes. 

 Producing  logs  of  the  knowledge  accrued  and 
situations unveiled.

 Executing  corrective  actions  in  U and  C so  as  to 
mitigate the extent of the consequences of safety or 
security violations.

In  this  paper  we propose  an approach  based  on  the  above 
argument. This approach instruments a UI so as to produce a 
stream  of  atomic  UI  operations  and  their  C-time  of 
occurrence—such as the user typing a key at clock tick t1 or 
selecting a widget at clock tick t2. This stream is transcoded 
into a suitable form (we call it an “interaction code”, or iCode 
for short) that can be logged for post-mortem analysis and/or 
used  for  run-time  analysis,  e.g.  dynamically  building  or 
refining  a  model  of  U.  Well-known  techniques  such  as 
stereotypes,  rules,  hidden  Markov  models,  or  Bayesian 
intelligence  [3]  may  then  be  used  e.g.  to  characterize  the 
expected, “normal” behaviour of a group of authorized “super 
users”  of  a  safety  critical  system.  When  such  behaviours 
would be represented in an adequate form, the UI could then 
be instructed to function as a sort of custom biometric sensor 
and  recognize  whether  the  current  usability  patterns 
correspond  to  one  of  these  users.  For  instance,  when  a 
stereotype would change dynamically from that of a known 
user  to  a  different  one,  this  may signal  the  occurrence  of 
several new situations, including:

1. The user is no more in command (e.g. due to stress, 
fatigue, drugs, or other external situations).

2. The user  has  changed  (e.g.  because  a  new person 
took control after the authorized person logged in, or 
because of a cyber attack).

3. The likely occurrence of a performance failures, i.e. 
a violation of an agreed-upon scheduling of events 
involving both C and U.

Correspondingly, UI may tolerate situations such as 1 and 2 
by  raising  local/global  alerts  and/or  shutting  down  critical 
functionality in the UI. The corresponding loss in availability 
or  functionality  would  be  the  price  to  pay  for  the 
enhancement  in  safety.  Detecting  a  loss  of  responsiveness 



jeopardising the real-time specifications of the service could 
be  avoided  by  defining  safe  default  actions  to  be  taken 
autonomically when the probability of performance failures 
arise.

In this paper we present a prototypic demonstrator meant as a 
proof  of  feasibility  for  UI-based  biometric  sensors.  Our 
system,  embedded  in  a  very  simple  Tcl/Tk  [14]  UI,  is 
currently  based  on  naïve  rules  able  to  detect  a  few  QoE 
failures. When such simple context changes are detected, we 
show  how  our  UI  can  take  simple  forms  of  autonomic 
adaptation during the system run-time. These adaptations may 
be used e.g. to adjust dynamically the privileges of the current 
user or request a new verification of the user's identity, which 
paves the way to full-fledged safety enforcement protocols.

This paper is structured as follows: in Sect. 2 we present the 
main assumptions and the  basic  elements  of  our approach. 
Section  3  deals  with  context  collection  and  analysis  –  the 
foundation  layer  of  our  approach.  Context  and  situation 
analysis  and  planning  are  the  focus  of  Sect.  4.  Section  5 
briefly  describes  how  adaptations  are  enacted.  Our 
conclusions are finally summarized in Sect. 6.

2 Assumptions and Approach

Our  approach  is  based  on  the  classic  steps  of  autonomic 
computing [9], specialised and adapted as follows: 

1. Collection of  the  user-context,  viz.  all  those  U 
actions  that  result  from  expected  and  unexpected 
human-computer interaction, as well as their times of 
occurrence. Context collection may be interpreted as 
the perception layer of our approach [5].

2. Context  analysis,  that is  analysis  of  the  collected 
actions and times meant to derive simple knowledge 
about the behaviour and the state of the current user, 
and in particular some indication of the current QoE. 

3. Situation  analysis  and  identification,  that  we 
interpret  here  simply1 as  the  analysis  of  multiple 
instances of the context knowledge derived in step 2 
so  as  to  detect  the  onset  of  complex  high-level 
situations [17] requiring proper corrective responses. 
The term apperception is used in [5] to refer to both 
context and situation analysis.

4. Planning  of  corrective  responses  to  the  onset  of 
situation or the detection of QoE losses. In practice, 
this  step  requires  the  definition  of  software 
evolutions matching the current situations and meant 
to optimize QoE and tolerate conditions threatening 
the  mission  design  goals  and  the  validity  of  the 
system assumptions [6]. Evolution engine is the term 
used  in  [4]  to  refer  to  a  system's  ability  to  plan 
corrective responses.

5. Execution of the selected software evolutions.

1 For a more general discussion of situation identification 
we refer the reader to [17].

In  what  follows  we introduce  the  solutions  we  adopted  to 
implement the above five steps.

Figure 1. Sequence diagram of Collection and Analysis steps.

3 Context Collection and Analysis

The Context collection and analysis steps in our strategy are 
described via Fig. 1. Four main actors are portrayed therein: 
the user in  U produces events by interacting with a Tcl/Tk 
graphical  UI.  In  addition  to  its  normal  processing  our  UI 
executes  an  extra  task  transparently  of  the  user:  for  each 
action  being  executed  or  activity  being  sensed,  the  UI 
requests an Interaction Logger to produce a string describing 
that action / activity and a time-stamp reporting the amount of 
milliseconds elapsed since a given epoch. We refer to such 
strings as to “the iCode”. The iCode may be considered as a 
concise  representation  of  UI  events  reflecting  some of  the 
use-time events. The choice of which events to reflect is an 
important design choice depending on technological, design, 
mission, and cost constraints and influencing the quality of 
the ensuing inferences, which are carried out by a component 
called Interaction Analyzer (IA). Aim of the IA is parsing the 
iCode—possibly producing a context knowledge base—and 
analysing  the  interaction  e.g.  looking  for  misbehaviours  or 
other  signs  of  non-optimal  QoE.  This  analysis  could  for 
instance infer that the user e.g. is is experiencing difficulties 
in operating the system. Reactions to this could range from 
distress signals to fail-safe enforcement, or just be used by the 
UI  itself  to  adjust  autonomically  its  look-and-feel  and 
features.

Figure 2. Summary of the interactions carried out through a 
simple Tcl/Tk UI.



A practical  example  of  our  Collection  &  Context  Analysis  
strategy is shown in Fig. 2. The picture shows on the left hand 
side a snapshot from the interactions between a user  and a 
Tcl/Tk UI. The right hand side picture is a summary of all 
interactions from the moment the UI is invoked until the user 
presses the “Finished” button. As can be seen, the ordinates 
represent  a  set  of  UI  actions  while  the  abscissas  state  the 
times  of  occurrence  of  those  actions.  In  this  particular 
example,  the  user  first  sets  his  age,  then  enters  data,  then 
clicks the “Push Me” button; after this, he edits data, sets age 
again,  then clicks “Push Me”; and so forth. Timing is also 
quite as it could be expected by an average user, with sudden 
editing actions followed by periods of inactivity.

Figure 3. Excerpts from the source code and iCode of the UI 
shown in Fig. 2.

Figure 3 shows excerpts from the UI code and the iCode 
corresponding to the interactions of Fig. 2.

As anticipated in Fig. 1, a lexical analyser parses the iCode 
and executes one or more analyses  (see Fig.  4).  The nature 
and the extent of those analyses constitute a research topic in 
itself and are likely to link together as different a discipline as 
artificial  intelligence,  Bayesian  intelligence,  situation 
calculus,  and  temporal  logic—to name just  a  few [3].  The 
ensuing results would then be reflected in several “biometric 
sensors” as described e.g. in [7,8]. Our preliminary results are 
based on two illustrative analyses shown in next section.

 
Figure 4. Excerpts from the iCode parser.

Analyses are carried out by functions that are called, one by 
one, at the end of the parsing phase. As mentioned already, 
various strategies  may be employed,  though the illustrative 
ones we used here are based on the inspection of two stacks 
of  integer  variables,  called  actstack  and timestack and first 
shown in Fig. 4. These stacks are filled in during the lexical 
analysis  in  order  to  serialize  iCode  actions  and  their 
corresponding times of occurrence. By inspecting these stacks 
it is possible to detect several cases of discomfort or misuse. 
In  what  follows  we  describe  three  examples  by  means  of 
excerpts from their source code (Fig. 5).

The first  function in Fig.  5 checks whether  the “Push Me” 
button had been pressed before any input entry had occurred. 
The  second  function  checks  whether  multiple  consecutive 
occurrences of the same action (“Push Me”) are present in the 
stack. The third one measures the time gradient while typing 
in the input field. A typing rate of more than three characters 
per  second is  assumed to be senseless  and associated  with 
some source of distress. More complex analyses are likely to 
require  more  sophisticated  temporal-related  techniques—
again, a matter in itself worth of research attention.

Figure 5. Discomfort detection: Three examples.

Figure 6 and Fig.  7 provide a summary of  the interactions 
during  two  runs  of  our  Tcl/Tk  interface,  including  three 
discomfort detections.

As  mentioned  before,  discomfort  detections  may  trigger 
corrective measures—for instance, a reshaping of the UI or a 



request  to  reassert  the  user's  identity.  Such  corrective 
measures  should take other context properties into account, 
which  could  be  represented  as  context  models:  sets  of 
assumptions characterizing the context the UI is meant to be 
deployed  in  [6].  Context  models  could  be  as  simple  as  a 
device  model  and  consist  of  e.g.  a  screen's  dimensions,  or 
they could include complex assertions about the target user—
e.g. whether the user is impaired or not, or whether he or she 
is  accustomed  to  computer  technology  or  otherwise.  The 
design  of  domain-specific  context  models  should  be 
conducted  with domain experts—e.g.,  in  the  case  of  target 
user context models, by psychologists or sociologists able to 
capture and express the essence of what the target user would 
consider as positive QoE [3,16]. 

Figure  6.  Summary  of  interactions,  with  two  discomfort 
detections.

Figure 7. Summary of interactions, with a third type of 
discomfort detection. In this case during a burst of input 
actions the user typed in an average of 4.7 characters per 

second. As this is well above our threshold (3 chars/sec), a 
case of suspected discomfort is declared.

4 Analyses and Planning

When the UI mission is confined to optimizing the current 
user's  QoE,  Context analysis  may be sufficient to direct the 
ensuing Planning step. An example of this is described in Fig. 
8,  in which a simple UI adaptation is carried  out to adjust 
optimally the size of a widget. In this case we made use of a 
simple technological context model—a screen size model: the 
screen size is assumed to be that of a hand-held device with a 
resolution  of  260×H units  and  H>260  units.  The  case  is 
described in Fig. 8 and results in a progressive adjustment of 
a Scale widget [14]. Once the widget becomes too large to fit 
in horizontal mode, the UI is automatically adapted and the 
widget is set in vertical mode.

In  some  other  cases  Situation  analysis  and  identification  
(SAI)  as  a  higher  level  form of  analysis  may prove to  be 
indispensable in order to take higher level decisions—such as 
those pertaining to system safety and security.  In  fact  SAI 
allows  C or UI events and states to be put in relation with 
complex U situations. A thorough discussion on this situation 
identification and related techniques may be found in [17]. A 
simple example of this is the use of rules stating the onset of 
U situations after the occurrence of multiple UI events—for 
instance, situation s1 = “User is likely to have changed” may 
be declared after a given number of consecutive erroneous or 
senseless sequences of UI operations. Another example would 
be situation s2 = “User is likely to have been taken over by a 
computer”. Once situations such as s1 or s2   are declared, the 
Planning  and  Execution  steps  enforce  some  form  of 
corrective  adaptation  of  the  UI  meant  to  guarantee  the 
integrity of the mission. An example of this is shown in Fig. 
9. In this case the onset of situation  s1 triggers a temporary 
disabling  of  functionality  of  the  UI  until  the  user  has  re-
entered his or her credentials. Other forms of protection may 
involve raising alarms when suspicion periods are started and 
producing  “black-box”-like  logs  of  activities  for  off-line 
analysis  of  the  performance  of  the  operators.  Protection 
against situations such as  s2 may involve different strategies 
e.g. a request to solve a CAPTCHA [1]. 

5 The Execution Step

When embedded in a UI, execution requires an evolution of 
the  structure  and  functions  of  the  user  interface.   In  our 
prototypic implementation this is carried out by embedding 
the analysis  in  the UI itself  (cf.  Fig.  10),  which  of  course 
means intertwining functional and adaptation concerns.
Another approach we carried out involved a Java UI that was 
serialized, evolved, and then reloaded to execute the planned 
adaptations.  This  allowed  a straightforward  implementation 
of  what  we  refer  to  as  widget  paging—a  technique  that 
manages the widgets in a UI similarly to memory pages in 
virtual memory. In so doing the screen space is allocated to 
widgets  in  a  way  that  reflects  the  frequency  of  usage  of 
widgets, with the least frequently used widgets removed from 
the screen.  Figure  11 shows an experiment  with a  winner-
takes-all strategy—the most frequently used widget taking all 
the screen space.



Figure 8. Adaptation actions triggered by rapid bursts of 
“scale” actions. The UI is deployed in a screen with a 

width of 260 units (on a conventional PC screen, about 
6cm). Height is assumed to be greater than 260 units. The 
Scale widget is initially set to a width of 200 units. In a) 

no adaptation is carried out. In b) and c) as a result of two 
bursts of “scale” actions the size of the widget reaches 240 
units. A further burst in d) triggers a change in orientation 
of the widget, which now is set to a height of 260 units.

Extensively  used  in  software  adaptation,  aspect  orientation 
[13] is a well-known technique that can be used to achieve 
effectively  separation  of  design  concerns  in  the  Execution  
step of our approach. Aspects allow adaptation logics to be 
modularized  as  individually  deployable  units  that  can  be 
directly weaved in the application business logics either off-
line  or  during  the  run-time  [12],  which  makes  aspect 
orientation an ideal  tool to realize systems such as the one 
reported in this paper. One major drawback is that it calls for 
specific  linguistic  support,  which  is  not  available  e.g.  for
Tcl/Tk. An interesting alternative is given by Transformer, a 
Java / OSGi framework for adaptation behaviour composition 
that dynamically selects and merges reusable and adaptation 
modules in function of the current context [10,11,12]. Finally, 
the Execution step may be realized as callbacks on so-called 
reflective and refractive variables [7,8].

6 Conclusions

Human errors are at the core of many a catastrophic failure. 
Such errors often take place behind a user interface,  which 

usually is the inert witness of behaviours and situations that, 
when correctly understood, could trigger actions to mitigate 
the extent and severity of those failures—if not tolerate them. 
By making user interfaces aware of those dynamic situations 
and  context  changes  we argued  that  it  may be  possible  to 
enhance at the same time system safety, usability, and quality 
of  experience.  In  this  paper  we  have  introduced  the  main 
concepts and a prototypic implementation of user interfaces 
compliant to this vision and coupling dynamic profiling [3], 
situation awareness [17], and autonomic computing [9]. 

Figure 9. “Too many” QoE failures (in this case, 6 or more) 
trigger a request for confirming the identity of the user.

Figure 10. Trivial way to enact the Execution step: procedure 
react is called each time a context change is detected. 

Despite  the simplistic  design of our proof of concepts,  our 
system  already  allows  several  behaviours  to  be  tracked 
turning a user interface into a simple and cheap usability and 
biometric sensor.  When coupled with a framework such as 
Transformer  [10,11,12]  our  system  may  also  allow  the 
computer system to be reshaped after the dynamic model of 



the  current  user,  preventing  unnecessary  or  unsafe 
functionality to be “unloaded” from both the system and the 
user interface. This may also be used to produce “big data” 
about the usability of computer services and tell enterprises 
what  features  are the most desired or the most despised in 
their products. Yet another by-product could be the realisation 
of design-for-all interfaces based on a WYSIWYE (“what you 
see is what you expect”) principle.
Many issues still remain open – in particular our monitoring 
system is currently a single-point-of-failure, analyses are still 
very limited, and current experiments have only been carried 
out with very simple user interfaces. Such open issues are part 
of our future research directions.
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