
SAFETY ENHANCEMENT THROUGH
SITUATION-AWARE USER INTERFACES

V. De Florio, C. Blondia

PATS research group, Universiteit Antwerpen & IBBT
Middelheimlaan 1, 2020 Antwerp, Belgium

vincenzo.deflorio@ua.ac.be

Keywords: Adaptive user interfaces, safety, human errors,
situation awareness, human-computer interaction.

Abstract

Due to their privileged position halfway between the physical
and the cyber universes, user interfaces may play an
important role in preventing, tolerating, and learning from
scenarios potentially affecting mission safety and the user's
quality of experience. This vision is embodied here in the
main ideas and a proof-of-concepts implementation of user
interfaces that combine dynamic profiling with context- and
situation-awareness and autonomic software adaptation.

1 Introduction

The user interface (UI) may be considered as the contact point
between two "universes"—the physical universe of the user
(let us refer to this universe as U) and the cyber universe
where required computer services are executed (C). The UI is
also the logical “place” where actions are selected and passed
for execution in C. As well known U and C are very different
from each other—in particular they have quite different
notions of time, behaviours, actions, and quality of service.
Despite so huge a difference, the consequences of the actions
in C often reverberate in U—to the point that when the
computer service is safety-critical failures or
misinterpretations in C may induce catastrophic events in U
possibly involving the loss of goods, capital, and even lives.
As a matter of facts, the human factor is known as one of the
major causes for system failures [2,15], and the UI is often
the indirect player behind most interaction faults at the root of
computer failures.

Due to its central role in the emergence of the user's quality of
experience (QoE), the UI has been the subject of extensive
research. As a result, current interfaces are adaptive,
anticipative, personalized, and to some degree “intelligent”
[3].

We believe that much more can be done beyond this already
noteworthy progress. Thanks to its privileged position
halfway between the user and the computer, we argue that the
UI is well suited for hosting several non-functional tasks,
including:

● Gathering contextual information from both sides of
the activity spectrum.

 Deriving situational information about the current
interaction processes.

 Producing logs of the knowledge accrued and
situations unveiled.

 Executing corrective actions in U and C so as to
mitigate the extent of the consequences of safety or
security violations.

In this paper we propose an approach based on the above
argument. This approach instruments a UI so as to produce a
stream of atomic UI operations and their C-time of
occurrence—such as the user typing a key at clock tick t1 or
selecting a widget at clock tick t2. This stream is transcoded
into a suitable form (we call it an “interaction code”, or iCode
for short) that can be logged for post-mortem analysis and/or
used for run-time analysis, e.g. dynamically building or
refining a model of U. Well-known techniques such as
stereotypes, rules, hidden Markov models, or Bayesian
intelligence [3] may then be used e.g. to characterize the
expected, “normal” behaviour of a group of authorized “super
users” of a safety critical system. When such behaviours
would be represented in an adequate form, the UI could then
be instructed to function as a sort of custom biometric sensor
and recognize whether the current usability patterns
correspond to one of these users. For instance, when a
stereotype would change dynamically from that of a known
user to a different one, this may signal the occurrence of
several new situations, including:

1. The user is no more in command (e.g. due to stress,
fatigue, drugs, or other external situations).

2. The user has changed (e.g. because a new person
took control after the authorized person logged in, or
because of a cyber attack).

3. The likely occurrence of a performance failures, i.e.
a violation of an agreed-upon scheduling of events
involving both C and U.

Correspondingly, UI may tolerate situations such as 1 and 2
by raising local/global alerts and/or shutting down critical
functionality in the UI. The corresponding loss in availability
or functionality would be the price to pay for the
enhancement in safety. Detecting a loss of responsiveness

jeopardising the real-time specifications of the service could
be avoided by defining safe default actions to be taken
autonomically when the probability of performance failures
arise.

In this paper we present a prototypic demonstrator meant as a
proof of feasibility for UI-based biometric sensors. Our
system, embedded in a very simple Tcl/Tk [14] UI, is
currently based on naïve rules able to detect a few QoE
failures. When such simple context changes are detected, we
show how our UI can take simple forms of autonomic
adaptation during the system run-time. These adaptations may
be used e.g. to adjust dynamically the privileges of the current
user or request a new verification of the user's identity, which
paves the way to full-fledged safety enforcement protocols.

This paper is structured as follows: in Sect. 2 we present the
main assumptions and the basic elements of our approach.
Section 3 deals with context collection and analysis – the
foundation layer of our approach. Context and situation
analysis and planning are the focus of Sect. 4. Section 5
briefly describes how adaptations are enacted. Our
conclusions are finally summarized in Sect. 6.

2 Assumptions and Approach

Our approach is based on the classic steps of autonomic
computing [9], specialised and adapted as follows:

1. Collection of the user-context, viz. all those U
actions that result from expected and unexpected
human-computer interaction, as well as their times of
occurrence. Context collection may be interpreted as
the perception layer of our approach [5].

2. Context analysis, that is analysis of the collected
actions and times meant to derive simple knowledge
about the behaviour and the state of the current user,
and in particular some indication of the current QoE.

3. Situation analysis and identification, that we
interpret here simply1 as the analysis of multiple
instances of the context knowledge derived in step 2
so as to detect the onset of complex high-level
situations [17] requiring proper corrective responses.
The term apperception is used in [5] to refer to both
context and situation analysis.

4. Planning of corrective responses to the onset of
situation or the detection of QoE losses. In practice,
this step requires the definition of software
evolutions matching the current situations and meant
to optimize QoE and tolerate conditions threatening
the mission design goals and the validity of the
system assumptions [6]. Evolution engine is the term
used in [4] to refer to a system's ability to plan
corrective responses.

5. Execution of the selected software evolutions.

1 For a more general discussion of situation identification
we refer the reader to [17].

In what follows we introduce the solutions we adopted to
implement the above five steps.

Figure 1. Sequence diagram of Collection and Analysis steps.

3 Context Collection and Analysis

The Context collection and analysis steps in our strategy are
described via Fig. 1. Four main actors are portrayed therein:
the user in U produces events by interacting with a Tcl/Tk
graphical UI. In addition to its normal processing our UI
executes an extra task transparently of the user: for each
action being executed or activity being sensed, the UI
requests an Interaction Logger to produce a string describing
that action / activity and a time-stamp reporting the amount of
milliseconds elapsed since a given epoch. We refer to such
strings as to “the iCode”. The iCode may be considered as a
concise representation of UI events reflecting some of the
use-time events. The choice of which events to reflect is an
important design choice depending on technological, design,
mission, and cost constraints and influencing the quality of
the ensuing inferences, which are carried out by a component
called Interaction Analyzer (IA). Aim of the IA is parsing the
iCode—possibly producing a context knowledge base—and
analysing the interaction e.g. looking for misbehaviours or
other signs of non-optimal QoE. This analysis could for
instance infer that the user e.g. is is experiencing difficulties
in operating the system. Reactions to this could range from
distress signals to fail-safe enforcement, or just be used by the
UI itself to adjust autonomically its look-and-feel and
features.

Figure 2. Summary of the interactions carried out through a
simple Tcl/Tk UI.

A practical example of our Collection & Context Analysis
strategy is shown in Fig. 2. The picture shows on the left hand
side a snapshot from the interactions between a user and a
Tcl/Tk UI. The right hand side picture is a summary of all
interactions from the moment the UI is invoked until the user
presses the “Finished” button. As can be seen, the ordinates
represent a set of UI actions while the abscissas state the
times of occurrence of those actions. In this particular
example, the user first sets his age, then enters data, then
clicks the “Push Me” button; after this, he edits data, sets age
again, then clicks “Push Me”; and so forth. Timing is also
quite as it could be expected by an average user, with sudden
editing actions followed by periods of inactivity.

Figure 3. Excerpts from the source code and iCode of the UI
shown in Fig. 2.

Figure 3 shows excerpts from the UI code and the iCode
corresponding to the interactions of Fig. 2.

As anticipated in Fig. 1, a lexical analyser parses the iCode
and executes one or more analyses (see Fig. 4). The nature
and the extent of those analyses constitute a research topic in
itself and are likely to link together as different a discipline as
artificial intelligence, Bayesian intelligence, situation
calculus, and temporal logic—to name just a few [3]. The
ensuing results would then be reflected in several “biometric
sensors” as described e.g. in [7,8]. Our preliminary results are
based on two illustrative analyses shown in next section.

Figure 4. Excerpts from the iCode parser.

Analyses are carried out by functions that are called, one by
one, at the end of the parsing phase. As mentioned already,
various strategies may be employed, though the illustrative
ones we used here are based on the inspection of two stacks
of integer variables, called actstack and timestack and first
shown in Fig. 4. These stacks are filled in during the lexical
analysis in order to serialize iCode actions and their
corresponding times of occurrence. By inspecting these stacks
it is possible to detect several cases of discomfort or misuse.
In what follows we describe three examples by means of
excerpts from their source code (Fig. 5).

The first function in Fig. 5 checks whether the “Push Me”
button had been pressed before any input entry had occurred.
The second function checks whether multiple consecutive
occurrences of the same action (“Push Me”) are present in the
stack. The third one measures the time gradient while typing
in the input field. A typing rate of more than three characters
per second is assumed to be senseless and associated with
some source of distress. More complex analyses are likely to
require more sophisticated temporal-related techniques—
again, a matter in itself worth of research attention.

Figure 5. Discomfort detection: Three examples.

Figure 6 and Fig. 7 provide a summary of the interactions
during two runs of our Tcl/Tk interface, including three
discomfort detections.

As mentioned before, discomfort detections may trigger
corrective measures—for instance, a reshaping of the UI or a

request to reassert the user's identity. Such corrective
measures should take other context properties into account,
which could be represented as context models: sets of
assumptions characterizing the context the UI is meant to be
deployed in [6]. Context models could be as simple as a
device model and consist of e.g. a screen's dimensions, or
they could include complex assertions about the target user—
e.g. whether the user is impaired or not, or whether he or she
is accustomed to computer technology or otherwise. The
design of domain-specific context models should be
conducted with domain experts—e.g., in the case of target
user context models, by psychologists or sociologists able to
capture and express the essence of what the target user would
consider as positive QoE [3,16].

Figure 6. Summary of interactions, with two discomfort
detections.

Figure 7. Summary of interactions, with a third type of
discomfort detection. In this case during a burst of input
actions the user typed in an average of 4.7 characters per

second. As this is well above our threshold (3 chars/sec), a
case of suspected discomfort is declared.

4 Analyses and Planning

When the UI mission is confined to optimizing the current
user's QoE, Context analysis may be sufficient to direct the
ensuing Planning step. An example of this is described in Fig.
8, in which a simple UI adaptation is carried out to adjust
optimally the size of a widget. In this case we made use of a
simple technological context model—a screen size model: the
screen size is assumed to be that of a hand-held device with a
resolution of 260×H units and H>260 units. The case is
described in Fig. 8 and results in a progressive adjustment of
a Scale widget [14]. Once the widget becomes too large to fit
in horizontal mode, the UI is automatically adapted and the
widget is set in vertical mode.

In some other cases Situation analysis and identification
(SAI) as a higher level form of analysis may prove to be
indispensable in order to take higher level decisions—such as
those pertaining to system safety and security. In fact SAI
allows C or UI events and states to be put in relation with
complex U situations. A thorough discussion on this situation
identification and related techniques may be found in [17]. A
simple example of this is the use of rules stating the onset of
U situations after the occurrence of multiple UI events—for
instance, situation s1 = “User is likely to have changed” may
be declared after a given number of consecutive erroneous or
senseless sequences of UI operations. Another example would
be situation s2 = “User is likely to have been taken over by a
computer”. Once situations such as s1 or s2 are declared, the
Planning and Execution steps enforce some form of
corrective adaptation of the UI meant to guarantee the
integrity of the mission. An example of this is shown in Fig.
9. In this case the onset of situation s1 triggers a temporary
disabling of functionality of the UI until the user has re-
entered his or her credentials. Other forms of protection may
involve raising alarms when suspicion periods are started and
producing “black-box”-like logs of activities for off-line
analysis of the performance of the operators. Protection
against situations such as s2 may involve different strategies
e.g. a request to solve a CAPTCHA [1].

5 The Execution Step

When embedded in a UI, execution requires an evolution of
the structure and functions of the user interface. In our
prototypic implementation this is carried out by embedding
the analysis in the UI itself (cf. Fig. 10), which of course
means intertwining functional and adaptation concerns.
Another approach we carried out involved a Java UI that was
serialized, evolved, and then reloaded to execute the planned
adaptations. This allowed a straightforward implementation
of what we refer to as widget paging—a technique that
manages the widgets in a UI similarly to memory pages in
virtual memory. In so doing the screen space is allocated to
widgets in a way that reflects the frequency of usage of
widgets, with the least frequently used widgets removed from
the screen. Figure 11 shows an experiment with a winner-
takes-all strategy—the most frequently used widget taking all
the screen space.

Figure 8. Adaptation actions triggered by rapid bursts of
“scale” actions. The UI is deployed in a screen with a

width of 260 units (on a conventional PC screen, about
6cm). Height is assumed to be greater than 260 units. The
Scale widget is initially set to a width of 200 units. In a)

no adaptation is carried out. In b) and c) as a result of two
bursts of “scale” actions the size of the widget reaches 240
units. A further burst in d) triggers a change in orientation
of the widget, which now is set to a height of 260 units.

Extensively used in software adaptation, aspect orientation
[13] is a well-known technique that can be used to achieve
effectively separation of design concerns in the Execution
step of our approach. Aspects allow adaptation logics to be
modularized as individually deployable units that can be
directly weaved in the application business logics either off-
line or during the run-time [12], which makes aspect
orientation an ideal tool to realize systems such as the one
reported in this paper. One major drawback is that it calls for
specific linguistic support, which is not available e.g. for
Tcl/Tk. An interesting alternative is given by Transformer, a
Java / OSGi framework for adaptation behaviour composition
that dynamically selects and merges reusable and adaptation
modules in function of the current context [10,11,12]. Finally,
the Execution step may be realized as callbacks on so-called
reflective and refractive variables [7,8].

6 Conclusions

Human errors are at the core of many a catastrophic failure.
Such errors often take place behind a user interface, which

usually is the inert witness of behaviours and situations that,
when correctly understood, could trigger actions to mitigate
the extent and severity of those failures—if not tolerate them.
By making user interfaces aware of those dynamic situations
and context changes we argued that it may be possible to
enhance at the same time system safety, usability, and quality
of experience. In this paper we have introduced the main
concepts and a prototypic implementation of user interfaces
compliant to this vision and coupling dynamic profiling [3],
situation awareness [17], and autonomic computing [9].

Figure 9. “Too many” QoE failures (in this case, 6 or more)
trigger a request for confirming the identity of the user.

Figure 10. Trivial way to enact the Execution step: procedure
react is called each time a context change is detected.

Despite the simplistic design of our proof of concepts, our
system already allows several behaviours to be tracked
turning a user interface into a simple and cheap usability and
biometric sensor. When coupled with a framework such as
Transformer [10,11,12] our system may also allow the
computer system to be reshaped after the dynamic model of

the current user, preventing unnecessary or unsafe
functionality to be “unloaded” from both the system and the
user interface. This may also be used to produce “big data”
about the usability of computer services and tell enterprises
what features are the most desired or the most despised in
their products. Yet another by-product could be the realisation
of design-for-all interfaces based on a WYSIWYE (“what you
see is what you expect”) principle.
Many issues still remain open – in particular our monitoring
system is currently a single-point-of-failure, analyses are still
very limited, and current experiments have only been carried
out with very simple user interfaces. Such open issues are part
of our future research directions.

Acknowledgements

This work is partially funded by the Flemish Interdisciplinary
Institute for Broadband Technology (IBBT).

References

[1] W. Al-Sudani, A. Gill, C. Li, J. Wang, F. Liu.
“Protection through Intelligent and Multimedia
Captchas”, Int.l Journal of Adaptive, Resilient and
Autonomic Systems, 3 (2), pp. 44–58, (April–June 2012).

[2] A. B. Brown, D. A. Patterson. “To Err is Human”,
Proceedings of the 1st Workshop on Evaluating and
Architecting System dependabilitY (EASY ’01), (2001).

[3] M. Chevalier, C. Julien, C. Soulé. “User models for
adaptive information retrieval on the web: Towards an
interoperable and semantic model”, Int.l J. of Adaptive,
Resilient & Autonomic Systems, 3 (3), pp.1–19, (2012).

[4] V. De Florio. “Robust-and-evolvable Resilient Software
Systems: Open Problems and Lessons Learned”, Proc.
of the 8th workshop on Assurances for Self-Adaptive
Systems (ASAS 2011), Szeged, Hungary,(2011).

[5] V. De Florio. “On the role of perception and
apperception in ubiquitous and pervasive
environments”, Proc. of the 3rd Workshop on Service
Discovery and Composition in Ubiquitous and Pervasive
Environments (SUPE'12), Ontario, Canada, (2012).

[6] V. De Florio. “Software Assumptions Failure Tolerance:
Role, Strategies, and Visions”, in Architecting
Dependable Systems, 7, LNCS, Springer, (2010).

[7] V. De Florio, C. Blondia. “Reflective and Refractive
Variables: A Model for Effective and Maintainable
Adaptive-and-Dependable Software”, Proc. of the 33rd
Conference on Software Engineering and Advanced
Applications (SEAA 2007), Lübeck, Germany, (2007).

[8] V. De Florio, C. Blondia. “System Structure for
Dependable Software Systems”, Proc. of the 11th Int.l
Conf. on Computational Science and Its Applications
(ICCSA 2011), LNCS, 6784, Springer, (2011).

[9] J. O. Kephart, D. M. Chess. “The vision of autonomic
computing”, Computer, 36, pp. 41–50, (2003).

[10] N. Gui et al. “ACCADA: A Framework for Continuous
Context-Aware Deployment and Adaptation”, Proc. of
the 11th Int.l Symp. on Stabilization, Safety, and
Security of Distributed Systems, (SSS 2009), Lyon,
France, LNCS, 5873, Springer, pp. 325–340, (2009).

[11] N. Gui, V. De Florio, C. Blondia. “Toward architecture-
based context-aware deployment and adaptation”, J.
Syst. Software, 84 (2), pp. 185–197, (2011).

[12] N. Gui, V. De Florio. “Transformer: an adaptation
framework with contextual adaptation behavior
composition support”, Software: Practice & Experience,
Wiley, (to appear), (2012).

[13] G. Kiczales et al. “Aspect-oriented Programming”, Proc.
of the European Conf. on Object-Oriented Programming
(ECOOP), LNCS, 1241, Springer, (1997).

[14] J. K. Ousterhout, K. Jones. “Tcl and the Tk Toolkit”, 2nd
edition, Addison-Wesley, Reading, MA, (2009).

[15] D. Patterson, A. Brown et al. “Recovery oriented
computing (ROC): Motivation, definition, techniques,
and case studies”, Tech. Report, UCB/CSD-02-1175,
EECS Dept., Univ. of California, Berkeley, (2002).

[16] B. Shapira, P. Shoval, U. Hanani. “Stereotypes in
information filtering systems”, Information Processing
& Management, 33 (3), pp. 273–278, (1997).

[17] J. Ye, S. Dobson, S. McKeever. “Situation identification
techniques in pervasive computing: A review”,
Pervasive and Mobile Computing, 8 (1), pp. 36–66,
(2012).

Figure 11. Widget paging with a single widget: the screen is temporarily allocated to the single widget the user focuses
his or her attention to. At any time the user can restore the original structure by clicking a button.

